用户名: 密码: 验证码:
Wnt/β-catenin信号通路在肺纤维化形成中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:特发性肺纤维化为致命的肺部疾病。其特点是肺上皮细胞损伤,肺成纤维细胞/肌成纤维细胞增殖和细胞外基质过渡沉积,造成肺结构破坏。但机制不明。最近的证据表明,Wnt信号通路在IPF患者异常活跃。本研究采用Wntl蛋白干预人胚肺成纤维细胞,探讨对细胞增殖、活化的影响;通过Wntl蛋白及β-catenin质粒干预A549细胞,探讨Wnt/β-catenin信号通路对肺上皮细胞-间质转变作用。通过模型鼠,观察肺纤维化形成过程中,β-catenin动态变化规律。用肺纤维化模型鼠的支气管肺泡灌洗液培养HEPF和A549细胞,探讨对细胞表型转变的影响,及与Wnt/β-catenin信号通路的相关性;用P-catenin基因siRNA干扰慢病毒沉默β-catenin,再用支气管肺泡灌洗液培养细胞,对细胞表型转变的影响,进一步揭示Wnt/β-catenin信号通路对成纤维细胞活化、增殖及肺上皮细胞-间质转变的作用。
     方法:我们用不同浓度的Wntl干预人胚肺成纤维细胞,MTT检测细胞增殖率,RT-PCR及westen blot检测a-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白表达;不同浓度的Wntl干预A549细胞,RT-PCR及westen blot检测E-钙粘蛋白、a-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白表达;然后用P-catenin质粒转染A549细胞,光镜下观察细胞形态变化,RT-PCR及westen blot检测E-钙粘蛋白、α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白表达。进一步我们用气管内滴入博莱霉素构建小鼠肺纤维化模型,于造模后的第3、7、14、28天,取肺组织苏木精-伊红及Masson染色观察肺组织炎症及纤维化程度,碱水解法检测肺组织内羟脯氨酸含量,免疫组织化学法及westen blot检测β-catenin蛋白的表达。用造模后第7天获取支气管肺泡灌洗液培养人胚肺成纤维细胞和A549细胞,RT-PCR及westen blot检测E-钙粘蛋白、α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白及β-catenin mRNA及蛋白表达。进一步构建P-catenin基因RNA干扰慢病毒表达载体,筛选出高效特异性抑制P-atenin基因的shRNA'慢病毒载体。将β-catenin siRNA慢病毒转染人胚肺成纤维细胞和A549细胞,再用肺纤维化模型鼠支气管肺泡灌洗液培养细胞,RT-PCR及westen blot检测E-钙粘蛋白、α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA及蛋白表达。
     结果:不同浓度Wntl干预人胚肺成纤维细胞,促进细胞增值,尤其当浓度大于20μg/l,细胞增殖更明显,并且a-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA及蛋白表达增加,具有统计学意义(P<0.05)。Wntl干预A549细胞E-钙粘蛋白mRNA及蛋白表达减少,而α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA及蛋白表达增加,尤其当Wntl浓度大于20μg/l时,变化更明显。β-catenin质粒转染A549细胞,细胞形态发生改变,由原来的鹅卵石状变成了梭型,同时E-钙粘蛋白mRNA及蛋白表达减少,而α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA及蛋白表达增加。我们用博莱霉素气管内滴入,构建小鼠肺纤维化模型,与对照组比较,在纤维化形成过程中,肺组织中β-catenin蛋白表达第7天升高,表达高峰在第14天,第28天下降,但仍高于第7天。为了探讨肺泡上皮细胞损伤后诱导肺组织异常修复,在肺组织纤维化形成中与Wnt/β-catenin信号通路的关系,我们用肺纤维化模型鼠第7天支气管肺泡灌洗液培养人胚肺成纤维细胞,α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA和蛋白的表达均显著增加,而且与β-catenin相关。转染慢病毒P-catenin siRNA的人胚肺成纤维细胞后,再用肺纤维化模型鼠支气管肺泡灌洗液培养细胞,a-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白mRNA和蛋白没有显著增加。我们又用小鼠肺纤维化模型第7天支气管肺泡灌洗液培养A549细胞,结果显示表达间质特异性标记物α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白升高,而上皮标记物E-钙粘蛋白减低,与β-catenin升高有关。当我们预先用β-catenin siRNA慢病毒转染A549细胞,再用肺纤维化模型鼠的支气管肺泡灌洗液培养A549细胞,结果显示α-平滑肌肌动蛋白、波形蛋白、Ⅰ型胶原蛋白升高不明显,E-钙粘蛋白也无明显下降。
     结论:我们的研究表明,Wnt/β-catenin信号通路可以促进人胚肺成纤维细胞增殖并诱导向肌成纤维细胞转变,促进细胞外基质沉积;Wnt/β-catenin信号通路可诱导肺上皮细胞间质转变,从而增加成纤维细胞/肌纤维细胞的数量;证实Wnt/β-catenin信号通路参与了早期肺纤维化的发生及发展过程;而抑制Wnt/β-catenin信号通路,减轻细胞表型转变,减少肺纤维化发生。此外,这些结果还表明,在损伤部位激活异常生物修复程序并保持这种反应持久存在是肺纤维化形成中的一个关键因素。Wnt/β-catenin信号通路在肺损伤及纤维化疾病的形成中起重要作用,可能为IPF的治疗提供一条新途径。
Objective:Idiopathic pulmonary fibrosis(IPF) is a lethal lung disease of unknown etiology. It is characterized by alterations of the alveolar epithelium, the expansion of the fibroblast/myofibroblast population and extracellular matrix (ECM)deposition, which results in an irreversible distortion of the lung architecture. Recent studies showed that abnormal activation of the Wnt/β-catenin signaling pathway occurs in lung tissue of patients with IPF. In the present study, we explored the role of wntl in human embryo pulmonary fibroblast (HEPF) proliferation, activation and myofibroblast differentiation of fibroblasts. A549cells were treated by Wntl and transfected by β-catenin plasmid cells to investigated the possible role of the Wnt signaling pathway in inducing epithelial-mesenchymal transitions (EMT) in lung epithelial cells. Pulmonary fibrosis was induced in mice by intraltracheal instillation of bleomycin,to explore the relationship with β-catenin. HEPF and A549cells were cultured by bronchoalveolar fluid (BALF) which conducted from bleomycin-induced murine model of pulmonary fibrosis, to investigate the effects on the cell proliferation and phenotype transformation, which were correlated with Wnt/β-catenin signaling pathway;The recombinant lentiviruses which express siRNA targeting β-catenin gene were transfected into HEPF and A549cells, and then cultured cells by BALF,to explore the effects on the cell phenotype transformation.
     Methods:HEPF cells were stimulated with various concentrations of Wntl, the proliferation of HEPF cells observed by MTT method.Western blot analysis and qRT-PCR revealed that alpha-smooth muscle actin (a-SMA), vimentin and collagen I mRNA and protein expression. A549cells were stimulated with various concentrations of Wntl, western blot testing and qRT-PCR revealed that E-cadherinc (E-cad), vimentin, a-SMA, collagen I mRNA and protein expression. We used β-catenin plasmid-transfected A549cells,the cellular morphologic changes were observed by light microscope.Western blot analysis and qRT-PCR revealed that the expression of epithelial phenotypic marker E-cad and the mesenchymal marker a-SMA, vimentin and collagen I. Furthermore, we used intratracheal instillation of bleomycin as a model of pulmonary fibrosis,on the3rd,7th,14th and28th day after treatment with bleomycin, lung were dissected out, separated from other tissues. Hematoxylin and Eosin (H&E), Masson's Trichrome staining were used to detect the degrees of acute inflammation and fibrosis;Hydroxyproline (HYP) was tested by lung tissue alkaline hydrolysis. Western blot and immunohistochemical method was adopted to detect the protein of β-catenin. HEPF and A549cells cultured by BALF which was conducted on days7after bleomycin administration. qRT-PCR and westen blot were used to determine the mRNA and protein expression of E-cad, a-SMA, vimentin, collagen I and β-catenin.To clarify further the role of β-catenin in fibrosis, we constructed recombinant lentiviral vector expressing siRNA targeting β-catenin gene. The most effective sequence of siRNA was screened by efficiency of β-catenin gene knock-down in transfected HEPF cells. The recombinant lentiviruses were transfected into HEPF and A549cells, and then cultured cells by BALF coming from Mouse models. qRT-PCR and westen blot were used to determine the mRNA and protein expression of E-cad, a-SMA, vimentin, collagen I.
     Results:The present study revealed that cell proliferation improved following stimulation using different concentrations of Wntl in a concentration-dependent manner. When the concentration exceeded20μg/l, cell proliferation was significant (P<0.05) and the cell expression of a-SMA, vimentin and collagen I mRNA, as well as protein expression, significantly increased (P<0.05); A549cells were treated by Wntl, the results showed that the mRNA and protein expression of vimentin, a-SMA and collagen I gradully increased, meanwhile those of E-cad gradully decreased in a concentration dependent manner. A549were transfected by β-catenin plasmid cells, showing a changes their phenotype from pebble-shaped to fusiform. The mRNA and protein expression of vimentin, a-SMA and collagen I increased significantly, whereas those of E-cad decreased significantly. We used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis, the expressions of β-catenin had the consistent increasing trends, increaseing on day7and peaking around day14. To explored that lung fibrosis induced by abnormal wound healing in response to alveolar epithelial cell injury were relationship with the Wnt/β-catenin signaling pathway. BALF was obtained from bleomycin-induced models of pulmonary fibrosis. HEPF cells were cultured with Dulbecco's modified Eagle's medium plus BALF. The mRNA and protein expression of a-SMA, vimentin and collagen I significantly increased and these increases were associated with β-catenin. Furthermore, following being infected with the lentivirus expressing β-catenin shRNA, HEPF cells were cultured with BALF. However, the mRNA and protein expression of a-SMA, vimentin and collagen I did not increase significantly. We also incubated A549cells by BALF from the intratracheal bleomycin mice model. We observed an increased expression of mesenchymal markers (a-SMA, vimentin and collagen I), a concomitant decreased expression of epithelial markers (E-cad), corresponding to an increased expression of P-catenin. When A549cells were infected with a lentivirus expressing P-catenin shRNA, the expression of mesenchymal cell markers did not increase significantly and E-cad expression did not decrease.
     Conclusion:These findings show that the activation of the Wnt/β-catenin signaling pathway can increases the number of myofibroblasts and promotes fibroblasts to change into myofibroblasts,which leading to excessive ECM deposition. It also suggests that the activation of the Wnt signaling pathway can increase the number of myofibroblasts in pulmonary fibrosis through epithelial-mesenchymal transition. The Wnt/β-catenin signaling pathway is involved in the occurrence and development of pulmonary fibrosis,and the inhibition of Wnt/β-catenin signaling pathway suppresses the cell phenotype changed and pulmonary fibrosis.Furthermore, these results also demonstrated that the activation of a biological repair response and persistence at the injury site is a key factor in the formation of pulmonary fibrosis. The Wntl/β-catenin signalling pathway is important in the formation of fibrotic disease in lung injury and may provide opportunities for treatment and intervention in IPF.
引文
[I]Borensztajn K, Crestani B, Kolb M. Idiopathic pulmonary fibrosis:from epithelial injury to biomarkers-insights from the bench side. Respiration.2013,86(6):441-452.
    [2]Kliment CR, Englert JM, Gochuico BR, et al. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. The Journal of Biological Chemistry.2009,284(6): 3537-3545.
    [3]Dempsey OJ. Clinical review:idiopathic pulmonary fibrosis--past, present and future. Respir Med.2006,100(11):1871-1885.
    [4]Navaratnam V, Fogarty AW, Glendening R, et al. The increasing secondary care burden of idiopathic pulmonary fibrosis:hospital admission trends in England from 1998 to 2010. Chest.2013,143(4):1078-1084.
    [5]Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis:prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med.2001, 134(2):136-151.
    [6]Kasper M, Haroske G. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol.1996,11(2):463-483.
    [7]Katzenstein AL. Pathogenesis of "fibrosis"in interstitial pneumonia:an electron microscopic study. Hum Pathol.1985,16(10):1015-1024.
    [8]Kawanami O, Ferrans VJ, Crystal RG Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest.1982,46(1):39-53.
    [9]Adamson IY, Bowden DH. Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am J Pathol.1979, 96(2):531-544.
    [10]Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol.1997, 17(3):272-278.
    [11]Wang R, Ibarra-Sunga O, Verlinski L, et al. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol.2000,279(1):L143-L151.
    [12]Vancheri C. Common pathways in idiopathic pulmonary fibrosis and cancer. Eur Respir Rev. 2013,22(129):265-272.
    [13]Horowitz JC and Thannickal VJ. Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med.2006,27(6):600-612.
    [14]Raghu G, Anstrom KJ, King TE Jr, et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med.2012,366(21):1968-1977.
    [15]Park S, Lee EJ. Recent advances in idiopathic pulmonary fibrosis. Tuberc Respir Dis (Seoul). 2013,74(1):1-6.
    [16]Camelo A, Dunmore R, Sleeman MA, et al. The epithelium in idiopathic pulmonary fibrosis:breaking the barrier. Front Pharmacol.2014,4:173.
    [17]Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis:from innocent targets to serial killers. Proc Am Thorac Soc.2006,3(4):364-372.
    [18]Mehrad B, Burdick MD, Zisman DA, et al. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun.2007,353(1):104-108.
    [19]Andersson-Sjoland A, de Alba CG, Nihlberg K, et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol.2008,40(10): 2129-2140.
    [20]Mehrad B, Burdick MD, Strieter RM. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol.2009,41(8-9):1708-1718.
    [21]Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.2009,179(7):588-594.
    [22]Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1:potential role in idiopathic pulmonary fibrosis. Am J Pathol.2005,166 (5):1321-1332.
    [23]Willis BC, Borok Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease. AM J Physiol Lung Cell Mol Physiol.2007,293(3):L525-534.
    [24]Tanjore H, Xu XC, Polosukhin VV, et al. Blackwell TS,Lawson WE.Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2009,180(7):657-665.
    [25]Selman M, Pardo A. Idiopathic pulmonary fibrosis:misunderstandings between epithelial cells and fibroblasts? Sarcoidosis Vasc Diffuse Lung Dis.2004,21(3):16-172.
    [26]Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions:the importance of changing cell state in development and disease. J Clin Invest.2009,119(6): 1438-1449.
    [27]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest.2009, 119(6):1420-1428.
    [28]Kalluri R and Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest.2003,112(12):1776-1784.
    [29]Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA.2006,103(35):13180-13185.
    [30]Morali OG, Delmas V, Moore R, et al. IGF-II induces rapid P-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene.2001,20(36):4942-4950.
    [31]Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int.2002,61(5):1714-1728.
    [32]Kasai H, Allen JT, Mason RM, et al. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res.2005,6:56.
    [33]Wang Y, Huang C, Reddy Chintagari N, et al. miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway. Nucleic Acids Res.2013,41 (6): 3833-3844.
    [34]McNulty K, Janes SM. Stem cells and pulmonary fibrosis:cause or cure? Proc Am Thorac Soc.2012,9(3):164-171.
    [35]Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med.2013,188(7):820-830.
    [36]Cui A, Anhenn O, Theegarten D, et al. Angiogenic and angiostatic chemokines in idiopathic pulmonary fibrosis and granulomatous lung disease. Respiration.2010,80(5):372-378.
    [37]Sterclova M, Vasakova M, Pavlicek J, et al. Chemokine receptors in a regulation of interstitial lung fibrosis and inflammation. Exp Lung Res.2009,35(6):514-523.
    [38]Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem.1995,270(45):27348-27357.
    [39]Ebina M, Shimizukawa M, Shibata N, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.2004, 169(11):1203-1208.
    [40]Tsakiri KD, Cronkhite JT, Kuan PJ, et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA.2007,104(18):7552-7557.
    [41]Alder JK, Chen JJ, Lancaster L, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA.2008,105(35):13051-13056.
    [42]Diaz de Leon A, Cronkhite JT, Katzenstein AL, et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PloS One.2010,5(5):e 10680.
    [43]Chambers RC. Procoagulant signalling mechanisms in lung inflammation and fibrosis:novel opportunities for pharmacological intervention? Br J Pharmacol.2008,153(Suppl 1):S367-S378.
    [44]Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest.2005,115(1):56-65.
    [45]Pardo A, Barrios R, Gaxiola M, et al. Increase of lung neutrophils in hypersensitivity pneumonitis is associated with lung fibrosis. Am J Respir Crit Care Med.2000, 161(5):1698-1704.
    [46]McHedlidze T, Waldner M, Zopf S, et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity.2013,39(2):357-371.
    [47]Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med.2011,208 (7): 1339-1350.
    [48]Murray LA, Argentieri RL, Farrell FX, et al. Hyper-responsiveness of IPF/UIP fibroblasts:interplay between TDFbatal, IL-13 and CCL2. Int J Biochem Cell Biol.2008, 40(10):2174-2182.
    [49]Kotsianidis I, Nakou E, Bouchliou I, et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.2009, 179(12):1121-1130.
    [50]Liu F, Liu J, Weng D, et al. CD4+CD25+Foxp3+regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS One.2010,5(11):e 15404.
    [51]Marwick JA, Chung KF, Adcock IM. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis.2010,4(1):19-34.
    [52]Kuwano K, Maeyama T, Inoshima I, et al. Increased circulating levels of soluble Fas ligand are correlated with disease activity in patients with fibrosing lung diseases. Respirology.2002, 7(1):15-21.
    [53]Sime PJ, Xing Z, Graham FL, et al. Adenovector-mediated gene transfer of active transforming growth factor-betal induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997,100(4):768-776.
    [54]Fujimoto H, Gabazza EC, Taguchi O, et al. Thrombin-activatable fibrinolysis inhibitor deficiency attenuates bleomycin-induced lung fibrosis. Am J Pathol.2006,168(4):1086-1096.
    [55]Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med.2010.207(3):535-552.
    [56]Sullivan DE, Ferris M, Pociask D, et al. The latent form of TGFbeta(1) is induced by TNFalpha through an ERK specific pathway and is activated by asbestos-derived reactive oxygen species in vitro and in vivo. J Immunotoxicol.2008,5(2):145-149.
    [57]Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proc Am Thorac Soc.2012,9 (3):130-136.
    [58]Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci.2011,121 (6):233-251.
    [59]Daniels CE, Wilkes MC, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest.2004,114(9): 1308-1316.
    [60]Hu Y, Peng J, Feng D, et al. Role of extracellular signal-regulated kinase, p38 kinase, and activator protein-1 in transforming growth factor-betal-induced alpha smooth muscle actin expression in human fetal lung fibroblasts in vitro. Lung.2006,184(1):33-42.
    [61]Solovyan VT, Keski-Oja J. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells. J Cell Physiol.2006,207(2): 445-453.
    [62]Meuten T, Hickey A, Franklin K, et al. WNT7B in fibroblastic foci of idiopathic pulmonary fibrosis. Respir Res.2012,13:62.
    [63]Guo Y, Xiao L, Sun L, et al. Wnt/beta-catenin signaling:a promising new target for fibrosis diseases. Physiol Res.2012,61(4):337-346.
    [64]Caraci F, Gili E, Calafiore M, et al. TGF-betal targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res.2008,57(4):274-282.
    [65]Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and Cadherin pathways. Science. 2004,303(5663):1483-1487.
    [66]Moon RT, Kolin AD, De Ferrari GV, et al. Wnt and β-Catenin signaling:Disease and therapies. Nat Rev Genet.2004,5(9):691-701.
    [67]Morrisey EE. Wnt signaling and pulmonary fibrosis. Am J Pathol.2003,162(5):1393-1397.
    [68]Zea Borok. Role for a3 integrin in EMT and pulmonary fibrosis. J Clin Invest.2009,119(1): 7-10.
    [69]Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci.2002,115(Pt 21):3977-3978.
    [70]Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell.2002,108(6):837-847.
    [71]Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature.2000,407(6803):530-535.
    [72]Li L, Yuan H, Weaver CD, et al. Axin and FRAT1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J.1999,18(15):4233-4240.
    [73]Nusse R. Cell biology relays at the membrane. Nature.2005,438(7069):747-749.
    [74]Konigshoff M, Eickelberg O. WNT signaling in lung disease:a failure or a regeneration signal? Am J Respir Cell Mol Biol.2010,42(1):21-31.
    [75]Itasaki N, Jones CM, Mercurio S, et al. Wise, a context-dependent activator and inhibitor of WNT signalling. Development.2003,130(18):4295-4305.
    [76]Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem.2005,280(29):26770-26775.
    [77]Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis:aberrant recapitulation of developmental programs? PLoS Med.2008,5(3):e62.
    [78]Konigshoff M, Balsara N, Pfaff EM, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS ONE.2008,3(5):e2142.
    [79]Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol.2003,162(5):1495-1502.
    [80]Kim TH, Kim SH, Seo JY, et al. Blockade of the Wnt/beta-catenin pathway attenuates bleomycin-induced pulmonary fibrosis. Tohoku J Exp Med.2011,223(1):45-54.
    [81]Henderson WR, Jr, Chi EY, Ye X, et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CPB) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA.2010, 107(32):14309-14314.
    [82]Pfaff EM, Becker S, Giinther A, et al.Dickkopf proteins influence lung epithelial cell proliferation in idiopathic pulmonary fibrosis. Eur Respir J.2011,37(1):79-87.
    [83]Sun Z, Gong X, Zhu H, et al. Inhibition of Wnt/p-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury. J Cell Physiol.2014,229(2):213-224.
    [84]Sun Z, Wang C, Shi C, et al. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis. Int J Mol Med.2014,33 (5):1097-1109.
    [85]van der Velden JL, Guala AS, Leggett SE,et al. Induction of a mesenchymal expression program in lung epithelial cells by wingless protein (Wnt)/β-catenin requires the presence of c-Jun N-terminal kinase-1 (JNK1). Am J Respir Cell Mol Biol.2012,47(3):306-314.
    [86]Sheppard D. Transforming growth factor beta:a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc.2006,3(5):413-417.
    [87]Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-P signaling in fibrosis.Growth Factors.2011,29(5):196-202.
    [88]Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev.2008,22(l):106-120.
    [89]Zhang M, Wang M, Tan X, et al. Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem.2010,285(12):8703-8710.
    [90]Attisano L, Labbe E. TGF beta and Wnt pathway cross-talk. Cancer Metastasis Rev.2004, 23(1-2):53-61.
    [91]Eger A, Stockinger A, Park J, et al. beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene.2004,23(15):2672-2680.
    [92]Kim KK, Wei Y, Szekeres C, et al. Epithelial cell alpha3betal integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest. 2009,119(1):213-224.
    [93]Lin CL, Wang JY, Ko JY, et al. Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol.2010,21(1):124-135.
    [94]Zhou B, Liu Y, Kahn M, et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem.2012,287(10):7026-7038.
    [I]Chilosi M, Zamo A, Doglioni C, et al. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res.2006,7:95.
    [2]Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med.2001,345 (7): 517-525.
    [3]Katzenstein AL, Zisman DA, Litzky LA, et al. Usual interstitial pneumonia:histologic study of biopsy and explant specimens. Am J Surg Pahol.2002,26(12):1567-1577.
    [4]Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis.2008,3:8.
    [5]Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis:prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med.2001, 134(2):136-151.
    [6]Horowitz JC, Thannickal VJ. Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med.2006,27(6):600-612.
    [7]Selman M, Pardo A. Idiopathic pulmonary fibrosis:an epithelial/fibroblastic cross-talk disorder. Respir Res.2002,3:3.
    [8]Guo Y,Xiao L,Sun L,et al. Wnt/beta-catenin signaling:a promising new target for fibrosis diseases. Physiol Res.2012,61(4):337-346.
    [9]Meuten T, Hickey A, Franklin K, et al. WNT7B in fibroblastic foci of idiopathic pulmonary fibrosis. Respir Res.2012,13:62.
    [10]Chen S,McLean S,Carter DE,et al. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal.2007,1(3-4):175-183.
    [II]van der Velden JL, Guala AS, Leggett SE, et al. Induction of a mesenchymal expression program in lung epithelial cells by wingless protein (Wnt)/β-catenin requires the presence of c-Jun N-terminal kinase-1 (JNK1). Am J Respir Cell Mol Biol.2012,47(3):306-314.
    [12]Scotton CJ,Chambers RC. Molecular targets in pulmonary fibrosis:the myofibroblast in focus. Chest.2007,132(4):1311-1321.
    [13]Moon RT, Kohn AD, De Ferrari GV, et al. WNT and β-catenin signalling:Diseases and therapies. Nat Rev Genet.2004,5(9):691-701.
    [14]Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA.1991,88(15):6642-6646.
    [15]Salazar KD, Lankford SM, Brody AR. Mesenchymal stem cells produce Wnt isoforms and TGF-betal that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol.2009,297(5):L1002-L1011.
    [16]Lam AP, Flozak AS, Russell S, et al. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol,2011,45(5):915-922.
    [17]Challa AA, Stefanovic B. A novel role of vimentin filaments:binding and stabilization of collagen mRNAs. Mol Cell Biol.2011,31(18):3773-3789.
    [18]Zeisberg E M,Potenta S E,Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol,2008,19(12):2282-2287.
    [19]Zeisberg M,Yang C,Martino M, et al. Fibroblasts derive fromhepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem,2007,282(32):23337-23347.
    [20]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol,1982,95(1):333-339.
    [21]Willis BC,Liebler JM,Luby-Phelps K,et al.Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1:potential role in idiopathic pulmonary fibrosis. Am J Pathol.2005,166 (5):1321-1332.
    [22]Willis BC,Borok Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease.AM J Physiol Lung Cell Mol Physiol.2007,293(3):L525-534.
    [23]Tanjore H, Xu XC, Polosukhin W, et al. Blackwell TS,Lawson WE.Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med,2009,180(7):657-665.
    [24]Selman M, Pardo A.Idiopathic pulmonary fibrosis:misunderstandings between epithelial cells and fibroblasts? Sarcoidosis Vasc Diffuse Lung Dis.2004,21(3):165-172.
    [25]Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA,2006,103(35):13180-13185.
    [26]Tanjore H, Xu XC, Polosukhin VV, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med.2009,180(7):657-665.
    [27]Zhou B, Liu Y, Kahn M, et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP).J Biol Chem.2012,287(10):7026-7038.
    [28]Kim K.K, Wei Y, Szekeres C,et al. Epithelial cell alpha3betal integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis.J Clin Invest. 2009,119(1):213-224.
    [29]Xiu-li Bao,Hui Song,Zhuo Chen, et al. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis.2012,18:1983-1990.
    [30]Konigshoff M, Balsara N, Pfaff EM, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One.2008,3(5):e2142.
    [31]Chilosi M, Poletti V, Zamo A, et al. Aberrant wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol.2003,162(5):1495-1502.
    [32]Kim TH, Kim SH, Seo JY, et al. Blockade of the Wnt/β-catenin pathway attenuates bleomycin-induced pulmonary fibrosis. Tohoku J Exp Med.2011,223(1):45-54.
    [33]The Ministiry of sciene and Technology of the People's Republic of China. Guidance Suggestions for Care and Use of Laboratory.2006-09-30.
    [34]Szapiel S V, Elson N A, Fulmer J D, et al. Bleomycin-induced interstitial pulmonary disease in the nude,athymic mouse. Am Rev Respir Dis.1979,120(4):893-899.
    [35]Vancheri C. Common pathways in idiopathic pulmonary fibrosis and cancer.Eur Respir Rev. 2013,22(129):265-272.
    [36]Nusse R. Cell biology relays at the membrane. Nature.2005,438(7069):747-749.
    [37]Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004,303(5663):1483-1487.
    [38]Hemmati AA, Nazari Z, Samei M. A comparative study of grape seed extract and vitamin E effects on silica-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther.2008,21(4): 668-674.
    [39]Takemasa A, Ishii Y, Fukuda T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur Respir J.2012,40(6):1475-1482.
    [40]Gong LK,Li XH,Wang H,et al. Effect of Feitai on bleomycin-induced pulmonary fibrosis in rats. Journal of ethnopharmacology.2005;96(3):537-544.
    [41]Lam AP, Gottardi CJ. β-catenin signaling:a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol.2011,23(6):562-567.
    [42]Guo Y,Xiao L,Sun L,et al. Wnt/beta-catenin signaling:a promising new target for fibrosis diseases.Physiol Res.2012,61(4):337-346.
    [43]Anna P,Lam and Cara J,Gottardi. β-catenin signaling:a novel mediator of fibrosis and potential therapeutic target.PLoS ONE.2008,3(5):e2142.
    [44]Zea Borok. Role for α3 integrin in EMT and pulmonary fibrosis. J Clin Invest.2009,119(1): 7-10.
    [45]User manual of IBS-Lentivirus systems.Shanghai integrated biotechs Co.,Ltd.
    [46]Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis:aberrant recapitulation of developmental programs? PLoS Med.2008,5(3):e62.
    [47]Konigshoff M, Eickelberg O. WNT signaling in lung disease:a failure or a regeneration signal? Am J Respir Cell Mol Biol.2010,42(1):21-31.
    [48]Kim VN.RNA interference in functional genomics andmedicineJ Korean Med Sci.2003, 18(3):309-318.
    [49]Moffat J,Sabatini D M. Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol.2006,7(3):177-187.
    [50]de Jonge J, Holtrop M, Wilschut J, et al. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. Gene therapy. 2006,13(5):400-411.
    [51]Raoul C, Abbas-Terki T, Bensadoun JC, et al.Lentiviral-mediated silencing of SOD 1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med. 2005,11(4):423-428.
    [52]Chilosi M, Zamd A, Doglioni C, et al. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res.2006,7:95.
    [53]Raghu G, Anstrom KJ, King TE Jr, et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med.2012,366(21):1968-1977.
    [54]Katzenstein ALA, Myers JL. Idiopathic pulmonary fibrosis. Clinical relevance of pathologic classification. Am J Respir Crit Care Med.1998,157(4 Ptl):1301-1315.
    [55]Selman M, Pardo A. Idiopathic pulmonary fibrosis:misunderstandings between epithelial cells and fibroblasts? Sarcoidosis Vasc Diffuse Lung Dis.2004,21(3):165-172.
    [56]Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions:the importance of changing cell state in development and disease. J Clin Invest.2009,119(6): 1438-1449.
    [57]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest.2009, 119(6):1420-1428.
    [58]Kalluri R and Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest.2003,112(12):1776-1784.
    [59]Challa AA, Stefanovic B. A novel role of vimentin filaments:binding and stabilization of collagen mRNAs. Mol Cell Biol.2011,31(18):3773-3789.
    [60]Zavadil J, Bottinger EP.TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005,24(37):5764-5774.
    [61]Ohbayashi M, Kubota S, Kawase A, et al. Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J Toxicol Sci.2014,39(2):319-330.
    [62]Levanen B, Wheelock AM, Eklund A, et al. Increased pulmonary Wnt (wingless/integrated)-signaling in patients with sarcoidosis. Respir Med.2011,105(2):282-291.
    [63]Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors.2011,29(5):196-202.
    [64]Carre AL, James A W, MacLeod L, et al:Interaction of wingless protein (Wnt), transforming growth factor-betal, and hyaluronan production in fetal and postnatal fibroblasts. Plast Reconstr Surg.2010,125(1):74-88.
    [65]Sato M. Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol.2006,86(4):300-307.
    [66]Attisano L, Labbe E. TGFbeta and Wnt pathway cross-talk. Cancer Metastasis Rev.2004, 23(1-2):53-61.
    [67]Eger A, Stockinger A, Park J,et al. beta-Catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene.2004,23(15):2672-2680.
    [68]Carre AL, James A W, MacLeod L, et al. Interaction of wingless protein (Wnt), transforming growth factor-betal, and hyaluronan production in fetal and postnatal fibroblasts. Plast Reconstr Surg.2010,125(1):74-88.
    [69]Cheon SS, Wei Q, Gurung A, et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J.2006,20(6):692-701.
    [70]Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev.2008,22(1):106-120.
    [71]Zhang M, Wang M, Tan X,et al. Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes.J Biol Chem.2010,285(12):8703-8710.
    [72]Sato M. Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol.2006,86(4):300-307.
    [73]Satterwhite DJ,Neufeld KL. TGF-beta targets the Wnt pathway components, APC and beta-catenin, as Mvl Lu cells undergo cell cycle arrest. Cell Cycle.2004,3(8):1069-1073.
    [74]Cheon SS, Nadesan P, Poon R,et al. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res.2004,293(2):267-274.
    [75]Ulsamer A, Wei Y, Kim KK, et al. Axin pathway activity regulates in vivo pY654-|3-catenin accumulation and pulmonary fibrosis. J Biol Chem.2012,287(7):5164-5172.
    [76]Gurujeyalakshmi G, Wang Y and Giri SN. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice. J Pharmacol Exp Ther.2000,293(1):82-90.
    [77]Izumo T,Kondo M,Nagai A.Effects of a leukotriene B4 receptor antagonist on bleomycin-induced pulmonary fibrosis. Eur Respir J.2009,34(6):1444-1451.
    [78]Robb WB,Condron C,Moriarty M,et al. Taurine attenuates radiation-induced lung fibrosis in C57/B16 fibrosis prone mice. Ir J Med Sci.2010,179(1):99-105.
    [79]Izumo T, Kondo M, Nagai A. Effects of a leukotriene B4 receptor antagonist on bleomycin-induced pulmonary fibrosis.Eur Respir J.2009,34(6):1444-1451.
    [80]Robb WB,Condron C, Moriarty M,et al. Taurine attenuates radiation-induced lung fibrosis in C57/B16 fibrosis prone mice. Ir J Med Sci.2010,179(1):99-105.
    [81]Gurujeyalakshmi G, Wang Y, Giri SN. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice. J Pharmacol Exp Ther. 2000,293(1):82-90.
    [82]Jiang C, Huang H, Liu J, et al. Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci.2012,13(7):8293-8307.
    [83]Kelly M, Kolb M, Bonniaud P, et al. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des.2003,9(1):39-49.
    [84]Lynn M. Crosby,Christopher M. Waters Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol.2010,298(6):L715-L731.
    [85]Aumiller V, Balsara N, Wilhelm J, et al. WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2013,49(1):96-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700