用户名: 密码: 验证码:
戊唑醇对映异构体对大型溞的毒性差异及双酰胺类杀虫剂结合位点的选择性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是农业中重要的生产物资,是保证作物产量和质量的重要手段,明确不同结构和类型农药的作用机理和作用特性,可以为开发新型高效安全农药提供支持和引导。结合当前农药领域的研究热点,本论文分别研究了手性三唑类杀菌剂戊唑醇(rac-teb)对大型溞的毒性作用差异和两种双酰胺类杀虫剂在鱼尼丁受体(RyR)上结合位点的选择特性,具体研究成果如下:
     1.三唑类杀菌剂戊唑醇及其对映异构体对大型溞的毒性差异研究
     以纤维素-三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)为固定相手性拆分制得R-和S-teb,并分别测定了其对大型溞的48h急性运动抑制毒性、21d繁殖毒性和子代(F1代)14d恢复毒性差异。Rac-,R-和S-teb对大型溞的48h ECso(95%置信限)分别为3.5(3.3~3.8) mg/L,3.3(3.0~3.8)mg/L和2.7(2.3~3.1)mg/L,三者对大型溞的急性运动抑制毒性为中等且彼此之间毒性作用差异不显著。21d大型溞繁殖毒性试验中,以48h ECso值的1/10为上限,rac-, R-和5-teb的处理浓度均设定为0.01,0.05,0.10,0.20,0.30和0.40mg/Lo结果发现rac-, R-和S-teb均可显著地减少每只大型溞的总产溞数量[最低可观测效应浓度(LOEC, mg/L)分别为0.05,0.05,0.10),总繁殖胎数(LOEC分别为0.30,0.05,0.10),第一胎和第三胎的产幼溞数(LOEC分别为0.05,0.20,0.20;0.05,0.20,0.10),显著性地减少每只大型溞的蜕皮次数(LOEC分别为0.20,0.30,0.10),延长大型溞的性成熟(LOEC分别为>0.40,0.20,>0.40)和第一、第三胎产溞所需时间(LOEC分别为0.20,0.20,>0.40;0.10,0.10,0.10),使得大型溞的生长受到抑制,体长显著减少(LOEC分别为0.05,0.05,>0.40)。相同浓度处理下,rac-, R-和S-teb之间的毒性作用差异显著,强弱顺序为S->rac-≥R-teb,表明rac-, R-和5-teb之间存在显著的对映体选择毒性。
     14d F1代大型溞毒性恢复研究发现,当rac-teb处理F0代母溞的浓度不超过0.20mg/L时,F1代子溞的繁殖和生长发育基本可恢复,与对照组中大型溞的各项指标值差异不显著;当浓度高于0.20mg/L时,子溞的繁殖和生长会受到显著影响且不能恢复。S-teb暴露处理F0代母溞后对F1代子溞产生的影响>rac->R-teb,最小LOEC值仅为O.Olmg/L且在0.30或0.40mg/L下完全没有F2代子溞的产生。目前我国还没有水中戊唑醇残留量限值的规定,已报道的rac-teb在巴西地表水中的浓度为0.2-4.16μg/L,美国EPA报告地表水中戊唑醇最大浓度一般不超过13μg/L。本研究中最低处理浓度为O.Olmg/L时,rac-,R-和S-teb对F,代大型溞便可产生显著的不可恢复的影响,据此推测在长期暴露情况下,即使浓度低于0.01mg/L,环境中累积的rac-, R-和S-teb依然很有可能会对大型溞的繁殖和生长产生不可逆的影响,进而破坏水生生物种群稳态。根据本论文的研究发现,建议戊唑醇常规使用以外消旋体为佳,但应加强对其对映异构体在环境中的含量监测,以期建立可靠的戊唑醇及其对映异构体的环境控制标准,降低对非靶标水生生物产生的不良影响。
     2.双酰胺类杀虫剂结合位点的选择性研究
     本部分研究与加州大学-伯克利分校环境化学与毒理学实验室合作完成。自主合成新型放射性配基[3H]Chlo(氯虫苯甲酰胺),通过直接比较[3H]Ry(鱼尼丁),[3H]Chlo (氯虫苯甲酰胺)和[3H]Flu (氟虫双酰胺)与不同生物品系肌肉鱼尼丁受体(RyR)蛋白的特异性结合,推测两种双酰胺类杀虫剂在RyR上是否具体相同的作用位点,进而解释两种双酰胺类杀虫剂的物种选择特性。
     本论文选择龙虾(Lobster),兔子(Rabbit),四种昆虫品系包括家蝇(Musca domestica).蜜蜂(Apis mellifera),鳞翅目昆虫烟芽夜蛾(Heliothis virescens)和小地老虎(Agrotis ipsilon)制备RyR蛋白,测定ATP, Ca2+,非标记的Chlo, Cyan(氰虫苯甲酰胺),Flu, Ry对六种RyR蛋白与[3H]Ry,[3H]Chlo和[3H]Flu特异性结合的影响,结果发现[3H]Ry在六种生物品系RyR蛋白上都有结合位点,[3H]Chlo只与四种昆虫RyR有结合而[3H]Flu只与烟蚜夜蛾和小地老虎的RyR蛋白有结合。[3H]Ry与四种昆虫RyR蛋白的结合可以被Chlo, Cyan和Flu(家蝇除外)显著促进,二者龙虾与兔子体系中三者则作用不显著。在家蝇与蜜蜂体系内,Ry和Flu可促进[3H]Chlo的结合,在鳞翅目昆虫体系内,Chlo, Cyan和Flu则抑制[3H]Chlo的结合。[3H]Flu与烟蚜夜蛾和小地老虎RyR的结合可显著被Ry, Chlo, Cyan和Flu抑制。[3H]Chlo与[3H]Flu的结合对单一ATP或Ca2+的依赖度较弱,而ATP和Ca2+共同存在则可显著促进[3H]Chlo的结合反应。这说明ATP和Ca2+调控机制可能与Flu结合位点关系较弱,而与Ry和Chlo结合位点关系较强。通过烟芽夜蛾成虫RyR蛋白与[3H]Chlo和[3H]Flu的特异性结合反应判断两种双酰胺杀虫剂的结构-活性关系。结果发现在烟蚜夜蛾体系内,邻甲酰胺基苯甲酰胺类似物和邻苯二甲酰胺类似物均促进[3H]Ry的结合而抑制[3H]Chlo与[3H]Flu的结合,且两作用效果间相关性良好。在家蝇体系内,两种双酰胺类似物的作用效果不完全相同,邻甲酰胺基苯甲酰胺类似物可以促进[3H]Ry的结合而抑制[3H]Chlo的结合;邻苯二甲酰胺类似物可促进[3H]Chlo的结合而对[3H]Ry的结合影响不显著。这些发现说明两种双酰胺类杀虫剂具有明确的物种选择特性和结合位点差异性,Chlo和Flu在家蝇和蜜蜂RyR蛋白上具有相互偶联的两种不同结合位点,而在鳞翅目害虫RyR蛋白上具有相同的结合位点。本研究直接有力地证明双酰胺类杀虫剂的结合位点具有物种差异性,这对未来双酰胺类杀虫剂的结构优化和抗性机制评估具有重要的意义。
Pesticides play an important role in the process of agriculture practice, and they are used to improve the production and quality of the agricultural products. Studies of the mode of action and characteristics of pesticides can provide support and guidance for developing effective and safe new agrochemicals. Consulting the current hot research issues in pesticides, enantioselective toxicity of chiral fungicide tebuconazole to non-target aquatic organism Daphnia manga and binding sites differences of two diamides on RyRs are studied in the present study and the main findings are listed below:
     1. Studies of toxicity differences of the tebuconazole and its enantiomers'to Daphnia magna
     Enatiomers of tebuconazole, R-and5-teb were prepared using HPLC on CDMPC column and the48h acute immobilisation,21d reproduction and14d offspring recovery tests were performed to tell the toxicity differences of rac-, R-and5-teb. The48h EC50s of rac-,R-and5-teb to Daphnia were3.5(3.3-3.8) mg/L,3.3(3.0-3.8) mg/L and2.7(2.3-3.1) mg/L respectively. They are all medium toxic to Daphnia and have no significant toxicity differences. Based on the1/10of48h EC50s, neonates were exposed to0.01,0.05,0.10,0.20,0.30and0.40mg/L of rac-, R-and S-teb for21d reproduction test. During these exposures, rac-,R-and S-teb significantly reduce the total number of offspring [lowest-observed-effective-concentration (LOEC, mg/L) were0.05,0.05,0.10respectively), total number of broods (LOEC-0.30,0.05,0.10respectively), and size of the1st and3rd brood for per daphnia (LOEC-0.05,0.20,0.20and0.05,0.20,0.10respectively). Otherwise, the development of Daphnia was also impacted seriously as the molting retes (LOEC-0.20,0.30,0.10respectively) were reduced and the age at maturity (LOEC->0.40,0.20,>0.40respectively), days to the1st and3rt brood reproduction (LOEC-0.20,0.20,>0.40and0.10,0.10,0.10respectively) were all significantly delayed as well as the body legth (LOEC0.05,0.05,>0.40respectively). Under the same concentration, there are significant differences among the three tebs and the toxicity order is S>rac-b≥R-teb, which indicating the obvious stereoselective toxicity among tebs. The14d F1offspring-generation Daphnia recovery test showed that the impact of rac-teb on F1offsprings can generally recover when exposure concentrations to Fo Daphnia lower than0.20mg/L, but can't be recoverd when concentrations higher than0.20mg/L. The toxic effects of S-tebs on F1offspring is>rac-≥R-teb. The lowest LOEC of S-teb to observed paramets is just0.01mg/L and no F2offsprings were found under0.30and0.40mg/L exposure. By now, China has no standards limiting the residue amount of teb in water but0.2-4.16μg/L of rac-teb was calculated in Brazil groundwater and as by USEPA records, teb in water generally should be lower than13μg/L. Comprehensively considering the significant unrecovery effects of rac-, R-and D-teb on the F1offspring-generation Daphnia at0.01mg/L, it is reasonable to speculate that rac-, R-and S-teb may impact the fecundity and development of daphnia in long-time exposure even the concentration of teb is lower than10μg/L. Thus, in general use of teb, it is not recommended to separate the enantiomers to improve the safety to non-target aquatic organisms and it is necessary to establish monitoring standards of teb in water.
     2Selective studies of binding sites of diamide insecticides
     This part of study was achieved by collaborations with Environmental Chemistry and Toxicology Laboratory at University of California at Berkeley. New radiolabeled anthranilic diamide insecticide [N-C3H3]chlorantraniliprole (Chlo) was synthesized at high specific activity and compared with phthalic diamide insecticide [3H]flubendiamide (Flu) and [3H]ryanodine (Ry) in radioligand binding studies with muscle membranes of different species to chosed to define species differences in the degree and mechanisms of diamide selective action at the binding sites.
     Lobster, rabbit and four insect species, house fly (Musca domestica), honey bee(Apis mellifera), tobacco budworm(Heliothis virescens) and black cutworm(Agrotis ipsilon) are used to prepare RyR membarnes, and the effect of ATP, Ca2+, Ry, Flu, Chlo and Cyan on three radioligands binding are calculated. Through the radioligand specific binding studies, the [3H]Ry site is observed in muscle of lobster, rabbit and four insect species whereas the [3H]Chlo site is evident in the four insects and the [3H]Flu site in only the two lepidoptera.[3H]Ry binding is significantly stimulated by Chlo, Cyan and Flu with the insects (except Flu with Musca) but not the lobster and rabbit.[3H]Chlo binding is stimulated by Ry and Flu in Musca and Apis but not in the lepidoptera, while Flu and Cyan are inhibitory.[3H]Flu binding is strongly inhibited by Chlo and Cyan in Agrotis and Heliothis.[3H]Chlo and [3H]Flu binding are not dependent on added Ca2+or ATP whereas the other radioligand-receptor combinations are enhanced by Ca2+and ATP. A possible relationship is therefore evident between the Flu site but not the Ry and Chlo sites in the Ca2+and ATP modulation mechanisms. Using Heliothis with [3H]Chlo and [3H]Flu allows binding site structure-activity correlations for anthranilic and phthalic diamides. The anthranilic and phthalic diamide analogs stimulation of [3H]Ry binding greatly parallels their inhibition of [3H]Chlo and [3H]Flu binding. In Musca adults, anthranilic diamides stimulate [3H]Ry binding and inhibit [3H]Chlo binding. Phthalic diamide stimulate [3H]Chlo binding but has no significant effect on [3H]Ry binding. These results showed that two diamides have obvious species selectivity, Chlo and Flu have two different but coupled binding sites on Musca and Apis RyR, but they have same binding site on lepidoptera insect RyR. These observations establish species differences in diamide target site specificity and are important in considering diamide structure optimization and evaluation of resistance mechanisms.
引文
[1]曹克广,杨夕强.三唑类化合物杀菌剂的发展现状与展望.精细石油化工2007,24,(6),5.
    [2]许良忠,李慧静,张书圣.含1-2-4-三氮唑类杀菌剂的研究进展.青岛化工学院学报2000,21,(3),5.
    [3]周子燕,李昌春,高同春,等.三唑类杀菌剂的研究进展.安徽农业科学2008,36,(27),3.
    [4]李海屏.世界杀菌剂开发进展及趋势.化工科技市场2004,10,1-8.
    [5]Bossche, H. V., Biochemical Targets for antifungal azole derivatives:hypothesis on the mode of action. In Current Topics in Medical Mycology, McGinnis, M. R., Ed.1985; pp 313-351.
    [6]蔡智华,郭正元.三唑类杀菌剂的研究进展;湖南农业大学农业环境保护研究所:首届全国农业环境科学学术研讨会论文集,2005;pp 466-469.
    [7]Barton, H. A.; Tang, J.; Sey, Y. M., et al., Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes. Xenobiotica 2006,36, (9), 793-806.
    [8]Zarn, J. A.; Bruschweiler, B. J.; Schlatter, J. R., Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 2003,111, (3),255-61.
    [9]Crofton, K. M., A structure-activity relationship for the neurotoxicity of triazole fungicides. Toxicol Lett 1996,84, (3),155-9.
    [10]Goetz, A. K.; Ren, H.; Schmid, J. E., et al., Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat. Toxicol Sci 2007, 95,(1),227-39.
    [11]Betancourt-Lozano, M.; Baird, D. J.; Sangha, R. S., et al., Induction of morphological deformities and moulting alterations in Litopenaeus vannamei (Boone) juveniles exposed to the triazole-derivative fungicide tilt. Arch Environ Contam Toxicol 2006,51, (1),69-78.
    [12]周明国.麦角甾醇生物合成抑制剂的作用原理及其抗药性研究.中国植物病害化学防治研究,张家界,pp 11-23.
    [13]陈晓枫.三唑类杀菌剂对斑马鱼内分泌干扰作用研究:[博士学位论文]北京:中国农业大学,2013.
    [14]戴立信,陆熙岩,朱光美.手性技术的兴起.化学通报1995,6,15-22.
    [15]向小莉,袁黎明.手性化合物.化学教育2003,5,3-6.
    [16]Rodier, C.; Laurent, C.; Szopa, C., et al., Chirality and the origin of life:in situ enantiomeric separation for future space missions. Chirality 2002,14, (6),527-32.
    [17]Ye, J.; Zhao, M.; Liu, J., et al., Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environ Pollut 2010,158, (7),2371-83.
    [18]曹雅虹,李巧玲,李朝阳,等.手性三唑类农药环境行为研究进展.江苏农业科学2011,39,(3),515-517.
    [19]李朝阳,武彤,李景印,等.手性农药对映体选择性环境行为的研究进展.生态环境2008,17,(3),1268-1275.
    [20]Wang, P.; Jiang, S.; Liu, D., et al., Direct enantiomeric resolutions of chiral triazole pesticides by high-performance liquid chromatography. J Biochem Biophys Methods 2005,62, (3), 219-30.
    [21]Zhou, Y.; Li, L.; Lin, K., et al., Enantiomer separation of triazole fungicides by high-performance liquid chromatography. Chirality 2009,21, (4),421-7.
    [22]Wu, Y. S.; Lee, H. K.; Li, S. F. Y., High-performance chiral separation of fourteen triazole fungicides
    by sulfated b-cyclodextrin-mediated capillary electrophoresis. Journal of Chromatography 2001, 912,9.
    [23]张艳川,李朝阳,李巧玲,等.三唑类农药手性分离的研究进展.农药2009,48,(9),4.
    [24]杨丽萍,李树正,李煜昶,等.三种三唑类杀菌剂对映体生物活性的研究.农药学学报2002,4,(2),4.
    [25]王新全.六种手性农药对映体的立体选择性环境行为研究:[博士学位论文]:中国农业大学,2007.
    [26]Zhang, H.; Wang, X.; Qian, M., et al., Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 2011,59, (22),12012-7.
    [27]Li, Y.; Dong, F.; Liu, X., et al.. Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites:enantioselective transformation and degradation in soils. Environ Sci Technol 2012,46, (5),2675-83.
    [28]Dong, F.; Li, J.; Chankvetadze, B., et al., Chiral triazole fungicide difenoconazole:absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environ Sci Technol 2013,47, (7),3386-94.
    [29]Dong, F.; Cheng, L.; Liu, X., et al., Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry. J Agric Food Chem 2012,60, (8),1929-36.
    [30]董丰收,刘新刚,徐军,等.三唑醇对映体在黄瓜植株中的手性残留行为研究.
    [31]李富根,吴新平,刘乃炽.戊唑醇的作用特点及其应用概况.农药科学与管理2001,22,(3),2.
    [32]张之行,孙绪兵,梁孝生.杀菌剂戊唑醇的合成研究.农药群学与管理2004,25,(5),3.
    [33]谭成侠,张谦.杀菌剂戊唑醇的合成及表征.高校化学工程学报2007,6,(21),4.
    [34]Rial-Otero, R.; Arias-Estevez, M.; Lopez-Periago, E., et al., Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces. J Agric Food Chem 2005,53, (11),4471-5.
    [35]Jyot, G.; Arora, P. K.; Sahoo, S. K., et al., Persistence of trifloxystrobin and tebuconazole on grape leaves, grape berries and soil. Bull Environ Contam Toxicol 2010,84, (3),305-10.
    [36]Wang, X.; Wang, X.; Zhang, H., et al., Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils. Chirality 2012,24, (2),104-11.
    [37]Shen, Z.; Zhu, W.; Liu, D., et al., Stereoselective degradation of tebuconazole in rat liver microsomes. Chirality 2012,24, (1),67-71.
    [38]Zhu, W.; Qiu, J.; Dang, Z., et al., Stereoselective degradation kinetics of tebuconazole in rabbits. Chirality 2007,19, (2),141-7.
    [39]Yu, D.; Li, J.; Zhang, Y., et al., Enantioseletive bioaccumulation of tebuconazole in earthworm Eisenia fetida. J Environ Sci (China) 2012,24, (12),2198-204.
    [40]Norgaard, K. B.; Cedergreen, N., Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res Int 2010,17, (4),957-67.
    [41]Ochoa-Acuna, H. G.; Bialkowski, W.; Yale, G., et al., Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna. Ecotoxicology 2009,18, (4),440-6.
    [42]Liess, M.; Von Der Ohe, P. C., Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 2005,24, (4),954-65.
    [43]Kreutzl, L. C.; Barcellos, L. J. G.; Silva, T. O., et al., Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciencia Rural, Santa Maria 2008, 38, (4),6.
    [44]周炳,赵美蓉,黄海凤.4种农药对斑马鱼胚胎的毒理研究.浙江工业大学学报2008,36,(2),5.
    [45]Sancho, E.; Villarroel, M. J.; Fernandez, C., et al., Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio). Ecotoxicol Environ Saf 2010,73, (3),370-6.
    [46]Toni, C.; Loro, V. L.; Santi, A., et al., Exposure to tebuconazol in rice field and laboratory conditions induces oxidative stress in carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2011,153, (1),128-32.
    [47]Zubrod, J. P.; Bundschuh, M.; Schulz, R., Effects of subchronic fungicide exposure on the energy processing of Gammarus fossarum (Crustacea; Amphipoda). Ecotoxicol Environ Saf 2010,73, (7),1674-80.
    [48]郭晶,宋文华,丁峰,等.三唑类杀菌剂对大型溞急性毒性研究.南开大学学报(自然科学版)2009,42,(3),76-80.
    [49]Sancho, E.; Villarroel, M. J.; Andreu, E., et al., Disturbances in energy metabolism of Daphnia magna after exposure to tebuconazole. Chemosphere 2009,74, (9),1171-8.
    [50]Lanner, J. T.; Georgiou, D. K.; Joshi, A. D., et al., Ryanodine receptors:structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010,2, (11), a003996.
    [51]Marks, A. R., Intracellular calcium-release channels:regulators of cell life and death. Am J Physiol 1997,272, (2 Pt 2), H597-605.
    [52]Lanner, J. T.; Georgiou, D. K.; Joshi, A. D., et al., Ryanodine Receptors:Structure, Expression, Molecular Details, and Function in Calcium Release. Cold Spring Harbor Perspectives in Biology 2010,2, (11).
    [53]Lahm, G. P.; Cordova, D.; Barry, J. D., New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 2009,17, (12),4127-33.
    [54]Otsu, K.; Willard, H. F.; Khanna, V. K., et al., Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 1990,265, (23),13472-83.
    [55]Oyamada, H.; Murayama, T.; Takagi, T., et al., Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J Biol Chem 1994,269, (25),17206-14.
    [56]O'Brien, J.; Meissner, G.; Block, B. A., The fastest contracting muscles of nonmammalian vertebrates express only one isoform of the ryanodine receptor. Biophys J1993,65, (6), 2418-27.
    [57]Yano, M.; Yamamoto, T.; Ikeda, Y., et al., Mechanisms of Disease:ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract Cardiovasc Med 2006,3, (1),43-52.
    [58]A.G.Lee, The ryanodine receptor. Biomembranes 1996,6.
    [59]董卫莉,徐俊英,刘幸海,等.昆虫鱼尼丁受体及以其为靶标的杀虫剂的研究进展.农药学学报2008,10,(2),178-185.
    [60]Hasan, G.; Rosbash, M., Drosophila homologs of two mammalian intracellular Ca(2+)-release channels:identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 1992,116, (4),967-75.
    [61]Takeshima, H.; Nishi, M.; Iwabe, N., et al., Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett 1994, 337, (1),81-7.
    [62]Puente, E.; Suner, M.; Evans, A. D., et al., Identification of a polymorphic ryanodine receptor gene from Heliothis virescens (Lepidoptera:noctuidae). Insect Biochem Mol Biol 2000,30, (4),335-47.
    [63]Xu, X.; Bhat, M. B.; Nishi, M., et al., Molecular cloning of cDNA encoding a drosophila ryanodine receptor and functional studies of the carboxyl-terminal calcium release channel. Biophys J 2000,78, (3),1270-81.
    [64]Scott-Ward, T. S.; Dunbar, S. J.; Windass, J. D., et al., Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. J Membr Biol 2001,179, (2),127-41.
    [65]孟祥冰,欧阳贵平,刘浩,等.鱼尼丁受体抑制剂的研究进展.广州化工2011,39,(10),28-32.
    [66]Sutko, J. L; Airey, J. A.; Welch, W., et al., The pharmacology of ryanodine and related compounds. Pharmacological Reviews 1997,49, (1),53-98.
    [67]Jeanguenat, A., The story of a new insecticidal chemistry class:the diamides. Pest Management Science 2013,69, (1),7-14.
    [68]Kiyonaka, S.; Kato, K.; Mizuno, Y., et al., Flubendiamide, a novel insectfiede, selectively activate ryanodine-sensitive Ca2+release channel. Biophysical Journal 2007,458a-458a.
    [69]孟祥冰,欧阳贵平,刘浩,等.鱼尼丁受体抑制剂的研究进展.广州化工2011,39,(10),28-32.
    [70]Masaki, T.; Yasokawa, N.; Tohnishi, M., et al., Flubendiamide, a novel Ca(2+) channel modulator, reveals evidence for functional cooperation between Ca(2+) puijnps and Ca(2+) release. Molecular Pharmacology 2006,69, (5),1733-1739.
    [71]Tohnishi, M.; Nakao, H.; Furuya, T., et al., Novel class insecticide, flubendiamide:Synthesis and biological activity. Abstracts of Papers of the American Chemical Society 2005,230, U98-U98.
    [72]刘熠,王国胜.鱼尼丁受体类新型杀虫剂氯虫酰胺的研究概述.化学工程师2009,171,(11),4.
    [73]Lahm, G. P.; Stevenson, T. M.; Selby, T. P., et al., Rynaxypyr (TM):A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic & Medicinal Chemistry Letters 2007,17, (22),6274-6279.
    [74]谭海军,张湘宁,朱红军,等.邻甲酰胺基苯甲酰胺类杀虫剂的研究进展.现代农药2010,9,(2),6.
    [75]Nauen, R., Insecticide mode of action:return of the ryanodine receptor. Pest Management Science 2006,62, (8),690-2.
    [76]Nauen, R.; Elbert, A.; Mccaffery, A., et al., IRAC:Insecticide Resistance, and Mode of Action Classification of Insecticides.pdf>. In Modern Crop Protection Compounds, Sencond ed.; Wolfgang Kramer; Ulrich Schirmer; Peter Jeschke, et al., Eds. Wiley:VCH Verlag GmbH&Co. KGaA.,2012.
    [77]Hiroshi Hamaguchi; Takashi Hirooka; Takao Masaki, Insecticides affecting calcium homeostasis. In Modern Crop Protection Compounds, Second ed.; Wolfgang Kramer; Ulrich Schirmer; Peter Jeschke, et al., Eds. Wiley:2012; pp 1389-1425.
    [78]Casida, J. E., Pest toxicology:the primary mechanisms of pesticide action. Chemical Research in Toxicology 2009,22, (4),609-19.
    [79]胡志彬,柳爱平.邻甲酰胺基苯甲酰胺类农药研究概述.农药研究与应用2009,13,(4),5.
    [80]王鹏,江树人,张宏军,等.王鹏戊唑醇和三唑酮对映体的手性拆分.分析化学研究报告2004,32,(5),3.
    [81]赵永刚,章勇,张蓓蓓,等.固相萃取高效液相色谱法测定水体中的戊唑醇.农药2008,47,(4),2.
    [82]OECD202, OECD Guideline for Testing of Chemicals. No.202:Daphnia Sp., Acute Immobilisation Test. Organization for Economic Cooperation and Development 2004.
    [83]OECD211, OECD Guideline for Testing of Chemicals. No.211:Daphnia magna Reproduction Test. Organization for Economic Cooperation and Development 2008.
    [84]Schafer, R. B.; Caquet, T.; Siimes, K., et al., Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 2007,382, (2-3),272-85.
    [85]Toropov, A. A.; Benfenati, E., QSAR models for Daphnia toxicity of pesticides based on combinations of topological parameters of molecular structures. Bioorg Med Chem 2006, 14, (8),2779-88.
    [86]Konwick, B. J.; Garrison, A. W.; Avants, J. K., et al., Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2006,80, (4),372-81.
    [87]Subramoniam, T., Crustacean ecdysteroids in reproduction and embryogenesis. Comp Biochem Physiol C Toxicol Pharmacol 2000,125,21.
    [88]Mu, X.; LeBlanc, G. A., Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. J Exp Zool 2002,292, (3),287-92.
    [89]Hassold, E.; Backhaus, T., Chronic toxicity of five structurally diverse demethylase-inhibting fungicides to the crustacean daphnia magna:a comparative assessment. Environmental toxicology and chemistry 2009.
    [90]Taxvig, C.; Hass, U.; Axelstad, M., et al., Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol Sci 2007,100, (2),464-73.
    [91]Kast-Hutcheson, K.; Rider, C. V.; LeBlanc, G. A., The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ Toxicol Chem 2001,20, (3),502-9.
    [92]Lehmberg, E.; Casida, J. E., Similarity of Insect and Mammalian Ryanodine Binding-Sites. Pesticide Biochemistry and Physiology 1994,48, (2),145-152.
    [93]Ebbinghaus-Kintscher, U.; Luemmen, P.; Lobitz, N., et al., Phthalic acid diamides activate ryanodine-sensitive Ca2+release channels in insects. Cell Calcium 2006,39, (1),21-33.
    [94]Kato, K.; Kiyonaka, S.; Sawaguchi, Y., et al., Molecular Characterization of Flubendiamide Sensitivity in the Lepidopterous Ryanodine Receptor Ca2+Release Channel. Biochemistry 2009,48, (43),10342-10352.
    [95]Mizuno, Y.; Kato, K.; Kiyonaka, S., et al., Flubendiamide, a novel activator for ryanodine receptor. Journal of Pharmacological Sciences 2007,103,159p-159p.
    [96]Gnamm, C.; Jeanguenat, A.; Dutton, A. C., et al., Novel diamide insecticides:sulfoximines, sulfontmidamides and other new sulfonimidoyl derivatives. Bioorganic & Medicinal Chemistry Letters 2012,22, (11),3800-6.
    [97]Sattelle, D. B.; Cordova, D.; Cheek, T. R., Insect ryanodine receptors:molecular targets for novel pest control chemicals. Invert Neurosci 2008,8, (3),107-19.
    [98]Troczka, B.; Zimmer, C. T.; Elias, J., et al., Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology 2012,42, (11),873-880.
    [99]Wang, X. L; Khakame, S. K.; Ye, C., et al.. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science 2013,69, (5),661-665.
    [100]Isaacs, A. K.; Qi, S. Z.; Sarpong, R., et al., Insect Ryanodine Receptor:Distinct but Coupled Insecticide Binding Sites for [N-(CH3)-H-3]Chlorantraniliprole, Flubendiamide, and [H-3]Ryanodine. Chemical Research in Toxicology 2012,25, (8),1571-1573.
    [101]Jefferies, P. R.; Yu, P.; Casida, J. E., Structural modifications increase the insecticidal activity of ryanodine. Pesticide Science 1997,51, (1),33-38.
    [102]Pessah, I. N.; Francini, A. O.; Scales, D. J., et al., Calcium-Ryanodine Receptor Complex-Solubilization and Partial Characterization from Skeletal-Muscle Junctional Sarcoplasmic-Reticulum Vesicles. Journal of Biological Chemistry 1986,261, (19),8643-8638.
    [103]Isaac N. Pessah, A. O. F., Donald J. Scales, Andrew L Waterhouse, and John E. Casida, Calcium-ryanodine receptor complex. Solubilization and partial characterization from skeletal muscle junctional sarcoplasmic reticulum vesicles. Journal of Biological Chemistry 1986,261,8643-8648.
    [104]Coronado, R.; Morrissette, J.; Sukhareva, M., et al., Structure and Function of Ryanodine Receptors. American Journal of Physiology 1994,266, (6), C1485-C1504.
    [105]Fill, M.; Copello, J. A., Ryanodine receptor calcium release channels. Physiological Reviews 2002,82, (4),893-922.
    [106]Hamaguchi, H.; Hirooka, T.; Masaki, T., Insecticides Affecting Calcium Homeostasis. Second Edition ed.; Wiley:2012; Vol.1-3.
    [107]Lahm, G. P.; Cordova, D.; Barry, J. D., New and selective ryanodine receptor activators for insect control. Bioorganic & Medicinal Chemistry 2009,17, (12),4127-4133.
    [108]Tohnishi, M.; Nakao, H.; Furuya, T., et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. Journal of Pesticide Science 2005,30, (4),354-360.
    [109]Tao, Y.; Gutteridge, S.; Benner, E. A., et al., Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides. Insect Biochem Mol Biol 2013,43, (9),820-8.
    [110]Qi, S.; Casida, J. E., Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor. Pestic Biochem Physiol 2013,107, (3), 321-6.
    [111]Rossi, D.; Sorrentino, V., Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 2002,32, (5-6),307-19.
    [112]Vazquez-Martinez, O.; Canedo-Merino, R.; Diaz-Munoz, M., et al., Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase. J Cell Sci 2003,116, (Pt 12),2483-94.
    [113]Lahm, G. P.; Selby, T. P.; Freudenberger, J. H., et al., Insecticidal anthranilic diamides:A new class of potent ryanodine receptor activators. Bioorganic & Medicinal Chemistry Letters 2005,15, (22),4898-4906.
    [114]Teixeira, L. A.; Andaloro, J. T., Diamide insecticides:Global efforts to address insect resistance stewardship challenges. Pesticide Biochemistry and Physiology 2013,106, (3),76-78.
    [115]Lai, T.; Su, J., Assessment of resistance risk in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 2011,67, (11),1468-72.
    [116]Wang, X.; Wu, Y., High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J Econ Entomol 2012,105, (3),1019-23.
    [117]Dinter, A.; Brugger, K.E.; Frost, N-M., and Woodward M.D., Chlorantraniliprole (Rynaxypyr): A novel DupontTM insecticide with lowtoxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management, Hazards of pesticides to bees-10th International Symposium of the ICP-Bee Protection Group, Julius-Kuhn-Archiv 423,2009, pp 84-96.
    [118]Irwin, C.; Scott-Dupree, C.; O'Keefe, K.; Van den Borre, N.; and Harris, R., Honeybee susceptibility to recommended and potential european corn borer insecticides at three temperatures, Universtiy of Guelph,2007. http://www.ccaontario.com/FCKEditor/File/IRWIN.pdf
    [119]Nauen, R.; Konanz, S.; Hirooka, T., et al., Flubendiamide:a unique tool in resistance management tactics for pest lepidoptera difficult to control. Pflanzenschutz-Nachrichten Bayer 2007,60,247-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700