用户名: 密码: 验证码:
家蚕“明”死卵突变体l-e~m基因的定位克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是一种完全变态昆虫,以卵滞育,可以说卵是家蚕生命周期中的第一个发育阶段,蚕卵品质的好坏直接影响到幼虫、蛹和成虫的发育。正常卵通常呈短椭圆形、侧面扁平且有轻微凹陷。本课题研究对象“明”死卵突变体(lethal egg of“ming”, l-em)是在实用品种“苏·菊×明·虎”母本品系“明”的生产和保存过程中发现的一种死卵突变体,在产卵后一小时左右出现三角形凹陷,表现失水死亡特征;遗传分析发现该突变由一对隐性基因控制,纯合致死,遵循伪母性遗传规律;扫描电镜观察突变体卵壳,发现卵壳表面凹陷处小室的边缘有明显的裂纹,卵壳纵断面中间层亦出现不连续的裂缝。本研究在对l-em卵突变体遗传分析及表型观察的基础上,采用图位克隆技术对l-em基因进行了定位克隆,采用qRT-PCR、2-DE、RNAi等技术对候选基因进行表达分析和功能验证。主要研究结果如下:
     一、l-em基因的定位
     选择l-em卵突变体隐性纯合的雄性亲本(P1)与p50近交系的雌性亲本(P2)杂交,组配F1代群体;F1代雌性个体与雄性亲本(P1)回交,同时进行蛾区内自交分别组配BC1F群体及F2代群体。使用P1、P2和F1筛选了28个连锁群上具有多态性的SSR分子标记,并使用BC1F群体确定了l-em基因位于家蚕第十连锁群;进一步对2287个F2代群体中产死卵的雌性个体检测,使用13个与l-em基因连锁的具有多态性的SSR标记,将l-em基因定位于S65与S82两个标记之间,相距约360kb,绘制出l-em基因的分子标记遗传连锁图谱;通过与家蚕基因组比对查明该区域内包含24个基因。
     二、候选基因的表达模式、基因结构分析和功能验证
     通过对24个基因在正常蛾及l-em卵突变体蛾卵巢内的表达分析,明确了2个差异表达基因BmVMP23和BmEP80为候选基因。BmVMP23基因的表达量在l-em卵突变体的卵巢中出现明显下调,而在l-em卵突变体的卵巢中则未检测到BmEP80基因的表达。
     反向PCR分析测序显示BmVMP23基因终止密码子后的第22个碱基至BmEP80基因ORF的第161个碱基间发生了突变,导致BmVMP23基因的3′-UTR和BmEP80基因结构的不完整性。
     对2个候选基因的RNAi试验表明,经BmEP80基因干扰后的部分雌蛾所产卵发生明显的凹陷,且表型与l-em卵突变体所产卵的表型相似,而对BmVMP23基因干扰未见此现象。因而推断BmEP80基因的突变是导致l-em卵突变体产生的主要原因。
     三、l-em突变体卵巢组织差异蛋白质分析
     通过双向电泳技术对正常个体及l-em卵突变体的卵巢组织进行蛋白质组学分析,结果显示BmEP80基因所编码的BmEP80蛋白从蛹期第九天开始在正常个体卵巢中大量表达,而在l-em卵突变体的卵巢中则未检测到该蛋白的表达。除了BmEP80蛋白之外的其他蛋白在正常个体和l-em卵突变体之间无明显差异。进一步说明了BmEP80蛋白的缺失是l-em卵突变体产生的主要原因。
     四、候选基因BmVMP23的表达调控分析
     鉴于l-em卵突变体的BmVMP23基因的3′-UTR结构被破坏,而3′-UTR为miRNAs的调控位点,为了分析miRNA对BmVMP23基因的表达调控作用,将BmVMP23基因的3′-UTR序列与家蚕的miRNAs序列比对,发现了一个与BmVMP23基因的3′-UTR序列匹配度极高的miRNA(bmo-miR-1a-3p)。荧光实时定量检测该miRNA在正常个体卵巢中表达量较高,且其表达趋势与BmVMP23基因的表达趋势相反,而在l-em卵突变体卵巢中仅有微量表达。通过miRNAmimic过表达和miRNA inhibitor抑制表达体外转染实验证实了bmo-miR-1a-3p能够抑制BmVMP23基因的表达。
     上述研究证实了卵黄膜蛋白BmEP80基因的突变是导致l-em卵突变体产生的主要原因,该研究为“明”死卵基因突变的分子机制的阐明提供了重要的理论依据,具有重要的科学意义和价值。
The silkworm is a complete metamorphosis insect and diapaused in egg stage. Eggstage is the first and an important stage of the silkworm (Bombyx mori) life cycle, andthe quality of the silkworm eggs has a direct impact on the development of larvae,pupae and moth. The normal eggs are usually short and elliptic, flattened laterally, thesurface of the lateral side is sometimes hollowed. The object of this study (“Ming”lethal egg mutants, l-em) is a lethal egg of mutant which was found in “ming” duingthe production and preservation of “su·ju×ming·hu”. The eggs laid by l-emmutant lostwater and became concaved around one hour, ultimately exhibiting a triangular shapeon the egg surfaces. Genetic analysis showed that the l-emmutation is dominated by arecessive gene and followed the pseudo-maternal inherited mode, and the hollowplace of surface have obvious rhagades and the cross section have cracks were foundin dead eggs using the scanning electron microscope.
     In the present study, we performed positional cloning using map-based cloningbased on the phenotypic observation and genetic analysis. Expression analysis andfunctional verification of candidate genes were performed by using qRT-PCR,2-DE,RNAi. The results of the study are as follows.
     1. Positional cloning of the l-emgene
     The male parent (P1) and the female parent (P2) were selected from thehomozygous recessive individuals and inbred line of p50, respectively. Both of themwere used as parent strains for the mapping panel and a single-pair cross between p50and l-emmutant produced the F1offspring. The female individuals of F1offspringwere used for selfing and back-crossing with P1to produce F2and BC1F progeny. Thepolymorphic SSR markers of28linkage groups were selected using P1, P2and F1, andconfirmed the l-emgene located on the10thlinkage group using BC1F progeny. Thegenetic linkage map of the l-emgene was constructed using2,287F2femaleindividuals which laid dead eggs and13polymorphic SSR markers which linked withthe l-emgene, and a region of~360kb tightly linked to the l-emgene between themarkers S65and S82was identified.24genes within this locus were predicted byusing gene-prediction models.
     2. Expression models, gene structures and functional verification of thecandidate genes
     Two differentially expressed genes (BmVMP23and BmEP80) were identified ascandidate genes through investigating the expression level of the24initial candidategenes in the eggs laid by virgin WT and l-emmutant moths. The results showed thatthe expression level of BmVMP23gene in l-emmutant was much lower than inwild-type, while BmEP80gene did not express in ovaries of the l-emmutantcompletely. The results of inverse PCR showed that the mutation was located betweenthe3′-UTR of BmVMP23and the forepart of BmEP80, and destroyed the structuralintegrity of the two genes.
     The results of the RNAi showed that the eggs laid by the individuals treated withBmEP80siRNAs appeared with a triangular shape on the egg surface, consistent withthe l-emmutation. However, the eggs laid by all individuals treated with BmVMP23siRNAs did not appear this phenomenon. So we concluded that BmEP80was mostlikely the gene causing the l-emmutation.
     3. Differential expression of the ovary proteins between WT and l-emmutant
     2-DE was used to investigate the differential expression of the egg proteins betweenthe WT and l-emmutant, and the result showed that the BmEP80protein wasexpressed in the ovary from the9thday of the pupal stage of the WT, but not wasexpressed at all in the ovary of the l-emmutant. However, there was no difference ofthe other proteins between the WT and l-emmutant except the BmEP80protein. Thisresult further indicated that the the defection of BmEP80resulted in the termination ofBmEP80protein expression, thereby triggering the l-emmutation.
     4. Analysis the expression regulation of the candidate gene BmVMP23
     The results of the sequence analysis have shown that the3′-UTR of BmVMP23wasdestroyed, and3′-UTR is an important regulatory site of the microRNAs. Toinvestigate the relationship between the miRNAs and the expression of BmVMP23,we downloaded all the known miRNAs of the silkworm and performed a BLASTsearch for the3′-UTR (WT) sequence of BmVMP23, and found a miRNA(bmo-miR-1a-3p) that highly matched the3′-UTR (WT) sequence of BmVMP23.
     The results of the qRT-PCR indicated that the expression level ofbmo-miR-1a-3p in the ovaries of WT was higher than that in the l-emmutant, and the expression level was contrary to the expression level of BmVMP23. We confirmedthat the bmo-miR-1a-3p can inhibit the expression of BmVMP23through transfectionin vitro.
     The above results confirmed that the mutation of BmEP80is responsible for thel-emmutant. This study laid a foundation for further study of the formationmechanism of the l-emmutant. It has an important scientific significance and value.
引文
[1]王磊,黄德辉,孙家羿,等.基因突变在家蚕育种应用上的研究进展[J].安徽农业科学,2007,35(34):11123-11125.
    [2]秦俭,易文仲.家蚕突变基因分析和基因资源的建立及应用研究[J].蚕业科学,1996,22(1):13-19.
    [3]张友洪,肖金树,周安莲.灰黑蛾基础品种的育成及其杂交育种生产性能测定[J].西南农业学报,2004,17(2):244-247.
    [4]朱勇,陈萍. sch基因在家蚕性别控制及单养雄蚕品种选育上的应用研究[J].蚕业科学,2001,27(4):253-256.
    [5]代方银,鲁成.家蚕^60Co-Y射线诱发油蚕的遗传学研究[J].西南农业大学学报2002,24(2):173-175.
    [6] Q.Y. Xia, Z.Y. Zhou, C. Lu, et al. A draft sequence for the silkworm of the domesticatedsilkworm (Bombyx mori)[J]. Science,2004,306(5703):1937-1940.
    [7] K. Mita, M. Kasahara, S. Sasaki, et al. The genome sequence of the silkworm, Bombyx mori[J]. DNA Res,2004.11(1):27-35.
    [8] Y.Meng, S.Katsuma, K.Mita,et al.Abnormal red body coloration of the silkworm, Bombyxmori, is caused by a mutation in a novel kynureninase [J]. Genes to Cells,2009,14(2):129-140.
    [9] F.Y. Dai, L. Qiao, X.L. Tong,,et al. Mutations of an arylalkylamine-N-acetyltransferase,Bm-iAANAT, are responsible for the silkworm melanism mutant [J]. J Biol Chem,2010,285(25):19553-19560.
    [10] L. Qiao, Y.H. Li, G. Xiong, et al. Effects of altered catecholamine metabolism onpigmentation and physical properties of sclerotized regions in the silkworm melanism mutant[J]. PLoS One,2012,7(8): e42968.
    [11] M. Osanai-Futahashi, K. Tatematsu, K. Yamamoto, et al. Identification of the bombyx red egggene reveals involvement of a novel transporter family gene in late steps of the insectommochrome biosynthesis pathway [J]. J Biol Chem,2012,287(21):17706-17714.
    [12]陈安利,赵巧玲,张国政,等.家蚕卵突变体“明”死卵(l-em)的卵壳构造和遗传分析[J].蚕业科学,2009,35(1):139-143.
    [13] K. Sato, T.M. Matsunaga, R. Futahashi, et al. Positional cloning of a bombyx wingless locusflügellos (fl) reveals a crucial role for fringe that is specific for wing morphogenesis [J].Genetics,2008,179(2):875-885.
    [14] Y.Meng, S.Katsuma,T. Daimon, et al. The silkworm mutant lemon (lemon lethal) is apotential insect model for human sepiapterin reductase deficiency [J]. J Biol Chem,2009,284(17):11698-11705.
    [15]车永和.几种代表性分子标记技术[J].江苏农业科学,2003,2:3-4,12.
    [16] L.T. Van Beuningen, R.H. Busch. Genetic diversity among North American spring wheatcultivars: III. Cluster analysis based on quantitative morphological traits [J]. Crop Science,1997,37(3):981-988.
    [17]彭林泽,曾献存,余智勇,等.动物遗传标记的研究进展及应用[J].畜牧兽医杂志,2007,26(2):32-34.
    [18]朱颜,周国利,吴玉厚,等.遗传标记的研究进展和应用[J].延边大学农学学报,2004,26(1):64-69.
    [19] C.L. Markert, F. Moller. Multiple forms of enzymes: tissue ontogenetic and species specificpatterns [J]. Proc Natl Acad Sci,1959,45(5):753-763.
    [20] J.M. Thoday. Location of polygenes [J]. Nature,1961,191(4876):368-370.
    [21] S.D. Tanksley, J. Hewitt. Use of molecular markers in breeding for soluble solids content intomato-a re-examination [J]. Theor Appl Genet,1988,75(5):811-823.
    [22]钱惠荣,郑康乐. DNA标记与分子育种[J].生物工程进展,1998,18(3):12-18.
    [23]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,15(4):19-22.
    [24]吴谡琦,张进兴.分子标记技术的进展及其应用[J].高技术通讯,2001,11(4):99-103.
    [25]何光源.植物基因工程实验手册[M].清华大学出版社,2007, p83.
    [26]陈宏等.基因工程原理与应用[M].北京:中国农业大学出版社,2004, p171.
    [27] Bostein, R.L. White, M. Skolnick, et al. Construction of genetic linkage map in man usingrestriction fragment length polymorphisms [J]. Am J Hum Genet,1993,32(3):314-331.
    [28] S.R. McCouch, G. Kochert, Z.H. Yu, et al. Molecular mapping of rice chromosomes [J].Theor Appl Genet,1988,76(6):815-829.
    [29] T. Helentjaris, M. Slocum, S. Wright, et al. Construction of genetic linkage maps in maizeand tomato using restriction fragment length polymorphisms [J]. Theor Appl Genet,1986,72(6):761-769.
    [30] S. Bentolila, C. Guitton, N. Bouvet, et al. Identification of an RFLP marker tightly linked tothe Ht1gene in maize [J]. Theor Appl Genet,1991,82(4):393-398.
    [31] S. Faure, J.L. Noyer, J.P. Horry, et al. A molecular marker-based linkage map of diploidbananas (Musa acuminata)[J]. Theor Appl Genet,1993,87(4):517-526.
    [32] J. Shi, D.G. Heckel, M.R. Goldsmith. A genetic linkage map for the domesticated silkworm,Bombyx mori, based on restriction fragment length polymorphisms. Genet Res Camb,1995,66(2):109-126.
    [33] W. Pinyarat, T. Shimada, W.H. Xu, et al. Linkage analysis of the gene encoding precursorprotein of diapause hormone and pheromone biosynthesis-activating neuropeptide in thesilkmoth, Bombyx mori [J]. Genet Res,1995,65(2):105-111.
    [34] J. Welsh, M. McClelland. Fingerprinting genomes using PCR with arbitrary primers [J]. NuclAcids Res,1990,18(24):7213-7218.
    [35]管敏强,陈锡文,赵惠玲.分子标记技术及其应用[J].试验动物科学与管理,2005,22(1):48-53.
    [36]王凯,韦善忠,罗江,等. DNA分子标记及其进展[J].黑龙江八一农垦大学学报,2003,15(1):39-43.
    [37]陈洪,朱立煌,徐吉臣,等. RAPD标记构建水稻分子连锁图[J].植物学报,1995,37(9):677-684.
    [38] M. Hemmat, N.F. Weedon, A.G. Manganaris, et al. Molecular marker linkage for apple [J]. JHered,1994,85(1):4-11.
    [39] L.J. Rowland, A. Levi. RAPD-based genetic linkage map of blueberry derived from a crossbetween diploid species [J]. Theor Appl Genet,1994,87(7):863-868.
    [40] R.S. Reiter, J.G. Williams, K.A. Feldmann, et al. Global and local genome mapping inArabidopsis thaliana by using recombinant inbred lines and random amplified polymorphicDNAs [J]. P Natl Acad Sci USA,1992,89(4):1477-1481.
    [41] J.X. Chaparro, D.J. Werner, D. O'Malley, et al. Targeted mapping and linkage analysis ofmorphological isozyme, and RAPD markers in peach [J]. Theor Appl Gene,1994,87(7):805-815.
    [42] A. Promboon, T. Shimada, H. Fujiwara, et al. Linkage map of random amplified polymorphicDNAs (RAPDs) in the silkworm, Bombyx mori [J]. Genet Res Camb,1995,66(1):1-7.
    [43]李斌,鲁成,周泽扬,等. RAPD标记构建家蚕连锁图[J].遗传学报,2000,27(2):127-132.
    [44]何宁佳,鲁成,李斌,等.结合SADF与RAPD标记构建家蚕连锁图[J].昆虫学报,2001,44(4):476-482.
    [45] Y. Yasukochi. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomesbased on1018molecular markers [J]. Genetics,1998,150(4):1513-1525.
    [46] Dib, S. Faure, C. Fizames, et al. A comprehensive genetic map of the human genome basedon5,264microsatellites [J]. Nature,1996,380(6570):152-154.
    [47] T. Serikawa, T. Kuramoto, P. Hilbert, et al. Rat gene mapping using PCR-analyzedmicrosatellites [J]. Genetics,1992,131(3):701-721.
    [48] W.F. Dietrich, J. Miller, R. Steen, et al. A comprehensive genetic map of the mouse genome[J]. Nature,1996,380(14):149-152.
    [49] E.A. Ostrander, G.F. Sprague, J. Rine. Identification and characterization of dinucleotiderepeat (CA)n markers for genetic mapping in dog [J]. Genomics,1993,16(1):207-213.
    [50] P. Werner, M.G. Raducha, U. Prociuk, et al. A comparative approach to physical and linkagemapping of genes on canine chromosomes using gene-associated simple sequence repeatpolymorphisms illustrated by studies of dog chromosome9[J]. J Hered,1999,90(1):39-42.
    [51] R.P.M.A Crooijmans, P.A.M. Vanoers, J.A. Strijk, et al. Preliminary linkage map of thechicken (Gallus domesticus) genome based on microsatellite markers:77new markersmapped [J]. Poult Sci,1996,75(6):746-754.
    [52] M.S. Akkaya, R.C. Shoemaker, J.E. Specht, et al. Integration of simple sequence repeat DNAmarkers into a soybean linkage map [J]. Crop Sci,1995,35(5):1439-1445.
    [53] L. Ramsay, M. Macaulay, S. degli Ivanissevich, et al. A simple sequence repeat-based linkagemap of barley [J]. Genetics,2000,156(4):1997-2005.
    [54] M.A. Menz, R.R. Klein, J.E. Mullet, et al. A high-density genetic map of Sorghum bicolor (L.)Moench based on2926AFLP, RFLP and SSR markers [J]. Plant Mol Biol2002,48(5-6):483-499.
    [55] J.E. Bowers, C. Abbey, S. Anderson, et al. A high-density genetic recombination map ofsequence-tagged sites for sorghum, as a framework for comparatives tructural andevolutionary genomics of tropical grains and grasses [J]. Genetics,2003,165(1):367-386.
    [56] X.X. Miao, S.J Xub, M.H. Li, et al. Simple sequence repeat-based consensus linkage map ofBombyx mori [J]. P Natl Acad Sci USA,2005,102(45):16303-16308.
    [57]钱荷英,李木旺,张月华,等.用SSR标记进行家蚕日系品种资源指纹图谱的构建及亲缘关系分析[J].蚕业科学,2005,31(4):422-428.
    [58]赵远,吴阳春,张健.家蚕耐热近等基因系的构建及分子标记育种技术的开发应用[J].安徽农业科学,2009,37(36):17983-17985,18004.
    [59] M. Zabeau, P. Vos. Selective restriction fragment amplification: Ageneral method for DNAfingerprinting. European Patent Application (Publication No.0534858Al). European PatentOffice,1992, Paris.
    [60]鲁成,赵爱春,向仲怀,等.中国野桑蚕遗传多样性的AFLP分析[J].动物学研究,2002,23(2):166-172.
    [61]翁跃进. AFLP-一种DNA分子标记新技术[J].遗传,1996,18(6):28-31.
    [62]王斌,翁曼丽. AFLP的原理及其应用[J].杂交水稻,1996,(5):27-30.
    [63]郑先云,郭亚平,马恩波,等. AFLP分子标记技术的发展[J].生命的化学,2003,23(1):65-68.
    [64] P. Vos, R. Hogers, M. Bleeker, et a1. AFLP: a new technique for DNA fingerprinting [J].Nucl Acids Res,1995,23(21):4407-4414.
    [65] J. Becker, P. Vos, M. Kuiper, et a1. Combined mapping of AFLP and RFLP markers in barley[J]. Mol Gen Genet,1995,249(1):65-73.
    [66] D.J. Mackill, Z. Zhang, E.D. Redona, et al. Level of polymorphism and genetic mapping ofAFLP markers in rice [J]. Genome,1996,39(5):969-977.
    [67]唐定中,李维明,吴为人,等.利用RFLP、AFLP标记构建水稻分子连锁图[J].高技术通讯,1999,(3):48-52.
    [68] H. Pakniyat, W. Powell, E. Baird, et al. AFLP variation in wild barley (Hordeum spontaneumC. Koch) with reference to salt tolerance and associated ecogeography [J]. Genome,1997,40(3):332-341.
    [69] K. Meksem, D. Leister, J. Peleman, et al. A high-resolution map of the vicinity of the R1locus on chromosome V of potato based on RFLP and AFLP markers [J]. Mol Gen Genet,1995,249(1):74-81.
    [70] C.M. Thomas, P. Vos, M. Zabeau, et al. Identification of amplified restriction fragmentpolymorphism (AFLP) markers tightly linked to the tomato CF-9gene for resistance toCladosporium fulvum [J]. Plant J,1995,8(5):785-794.
    [71] Y.D. Tan, C. Wan, Y. Zhu, et al. An amplified fragment length polymorphism map of thesilkworm [J]. Genetics,2001,157(3):1277-1284.
    [72]万春玲,谭远德,朱玉芳,等.利用AFLP标记构建家蚕分子连锁图谱[J].中国农业科学,2001,34(3):338-341.
    [73]朱玉芳,谭远德,万春玲,等.家蚕AFLP连锁框架图谱的构建[J].昆虫学报,2001,44(4):483-493.
    [74]赵爱春,鲁成,李斌,等.家蚕AFLP分子连锁图谱的构建及绿茧基因定位[J].遗传学报,2004,31(8):787-794.
    [75] R.I. Maekie, R. Aminov, W. Hu, et al. Ecology of Uncultivated Oscillospira Species in theRumen of Cattle, Sheep, and Reindeer as Assessed by Microscopy and Molecular Approaches[J]. Appl Environ Microbiol,2003,69(11):6808-68l5.
    [76] G. Muyzer, E.C. de Waal, A.G. Uitterlinden. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for16S rRNA [J]. Appl Environ Mierobiol,1993,59(3):695-700.
    [77] R.M. Myers, S.G. Fischer, L.S. Lerman, et al. Nearly all single base substitutions in DNAfragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Res, l985,13(9):3l31-3145.
    [78] L. Merrill, J. Richardson, C.R. Kuske, et al. Fluorescent Heteroduplex Assay for MonitoringBacillus anthracis and Close Relatives in Environmental Samples [J]. Appl Envir Microbiol,2003,69(6):3317-3326.
    [79] E.S. Lander, L.M. Linton, B. Birren, et al. Initial sequencing and analysis of the humangenome [J]. Nature,2001,409(6822):860-921.
    [80] D.N. Cooper, B.A. Smith, H.J. Cooke, et al. An estimate of unique DNA sequenceheterozygosity in the human genome [J]. Hum Genet,1985,69(3):201-205.
    [81]杨永强,王巍杰,徐长波.单核苷酸多态性研究进展[J].化学与生物工程,2009,26(8):19-21.
    [82] M.I. Tenaillon, M.C. Sawkins, A.D. Long, et al. Patterns of DNA sequence polymorphismalong chromosome1of maize (Zea mays ssp. mays L.)[J]. P Natl Acad Sci USA,2001,98(16):9161-9166.
    [83] A. Rafalski. Applications of single nucleotide polymorphisms in crop genetics [J]. Curr OpinPlant Biol,2002,5(2):94-100.
    [84]李艳杰,龙火生,李影,等.单核苷酸多态性(SNP)的研究进展[J].畜牧兽医杂志,2003,22(4):16-18.
    [85] W.C. Black, J.G. Vontas. Affordable assays for genotyping single nucleotide polymorphismsin insects [J]. Insect Mol Biol,2007(4):377-387.
    [86] T.C. Cheng, Q.Y. Xia, J.F. Qian, et al. Mining single nucleotide polymorphisms from ESTdata of silkworm, Bombyx mori, inbred strain Dazao [J]. Insect Biochem Mol Biol,2004(6):523-530.
    [87] K. Yamamoto, J. Narukawa, K. Kadono-Okuda, et al. Construction of a single nucleotidepolymorphism linkagemap for the silkworm, Bombyx mori, based on bacterial artificialchromosome end sequences [J]. Genetics,2006,173(1):151-161.
    [88] K. Yamamoto, J. Nohata, K. Kadono-Okuda, et al. A BAC-based integrated linkage map ofthe silkworm Bombyx mori [J]. Genome Biol,2008,9(1): R21.
    [89]赵云坡,张浩,杨晓楠,等.采用单碱基延伸法检测家蚕单核苷酸多态性位点[J].蚕业科学,2009,35(3):523-527.
    [90] M.R. Capecchi. Altering the genome by homologous recombination [J]. Science,1989,244(4910):1288-1292.
    [91] S.L. Mansour, K.R. Thomas, C.X. Deng, et al. Introduction of a lacZ reporter gene into themouse int-2locus by homologous recombination [J]. Proc Natl Acad Sci,1990,87(19):7688-7692.
    [92] A.J. Hamilton, D.C. Baulcombe. A Species of Small Antisense RNA in PosttranscriptionalGene Silencing in Plants [J]. Science,1999,286(5441):950-952.
    [93] Bernstein, A.A. Caudy, S.M. Hammond, et al. Role for a bidentate ribonuclease in theinitiation step of RNA interference [J]. Nature,2001,409(6818):363-366.
    [94] S.M. Hammond, E. Bernstein, D. Beach, et al. An RNA-directed nuclease mediatespost-transcriptional gene silencing in Drosophila cells [J]. Nature,2000,404(6775):293-296.
    [95] A. Nykanen, B. Haley, P.D. Zamore. ATP requirements and small interfering RNA structurein the RNA interference pathway [J]. Cell,2001,107(3):309-321.
    [96] T. Tuschl, P.D. Zamore, R. Lehmann, et al. Targeted mRNA degradation by double-strandedRNA in vitro [J]. Genes Dev,1999,13(24):3191-3197.
    [97] P.D. Zamore, T. Tuschl, P.A. Sharp, et al. RNAi: double-stranded RNA directs theATP-dependent cleavage of mRNA at21to23nucleotide intervals [J]. Cell,2000,101(1):25-33.
    [98] Siolas, C. Lerner, J. Burchard, et al. Synthetic shRNAs as potent RNAi triggers [J]. NatBiotechnol,2004,23(2):227-231.
    [99] R.S. Goomer, G.R. Kunkel.The transcriptional start site for a human U6small nuclear RNAgene is dictated by a compound promoter element consisting of the PSE and the TATA box [J].Nucleic Acids Res,1992,20(18):4903-4912.
    [100] C.P. Paul, P.D. Good, I. Winer, et al. Effective expression of small interfering RNA inhuman cells [J]. Nat Biotechnol,2002,20(5):505-508.
    [101] P.J. Paddison, J.M. Silva, D.S. Conklin, et al. A resource for large-scaleRNA-interference-based screens in mammals [J]. Nature,2004,428(6981):427-431.
    [102] Y. Lee, M. Kim, J. Han, et al. MicroRNA genes are transcribed by RNA polymerase II [J].EMBO J,2004,23(20):4051-4060.
    [103] J. Han, Y. Lee, K.H. Yeom, et al. The Drosha-DGCR8complex in primary microRNAprocessing [J]. Genes Dev,2004,18(24):3016-3027.
    [104] Lund, S. Güttinger, A. Calado, et al. Nuclear Export of MicroRNA Precursors [J]. Science,2004,303(5654):95-98.
    [105] R. Yi, Y. Qin, I. G. Macara, et al. Exportin-5mediates the nuclear export of pre-microRNAsand short hairpin RNAs [J]. Genes Dev,2003,17(24):3011-3016.
    [106] R.C. Lee, R.L. Feinbaum, V. Ambros. The C. elegans heteroehronic gene lin-4eneodessmall RNAs with antisense complementarity to lin-4[J]. Cell,1993,75(5):843-854.
    [107] M. Lagos-Quintana, R. Rauhut, A. Yalein, et al. Identifieation of tissue-specific microRNAsfrom mouse [J].Curr Biol,2002,12(9):735-739.
    [108] R.C. Lee, V. Ambros. An extensive class of small RNAs in Caenorhabditis elegans [J].Science,2001,294(5543):862-864.
    [109] M. Lagos-Quintana, R, Rauhut, J. Meyer, et al. New microRNAs from mouse and human[J]. RNA,2003,9(2):175-179.
    [110] L.P. Lim, M.E. Glasner, S. Yekta, et al. Vertebrate microRNA genes [J]. Seience,2003,299(5612):1540.
    [111] L.P. Lim, N.C. Lau, E.G. Weinstein, et al. The microRNAs of Caenorhabditis elegans [J].Genes Dev,2003,17(8):991-1008.
    [112] A. Kozomara, S. Griffiths-Jones. miRBase: integrating microRNA annotation anddeep-sequencing data [J]. Nucleic Acids Res,2011,39(Datebase issue): D152-D157.
    [113] B. Fire, S. Xu, M.K. Montgomery, et al. Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [114] Bernstein, A.M. Denli, G.J. Hannon [J]. The rest is silence. RNA,2001,7(11):1509-1521.
    [115] S.M. Hammond, A.A. Caudy, G.J Hannon. Post-transcriptional gene silencing bydouble-stranded RNA [J]. Nat Rev Genet,2001,2(2):110-119.
    [116] J. Capodici, K. Karikó, D. Weissman. Inhibition of HIV-1infection by small interferingRNA-mediated RNA interference [J]. J Immunol,2002,169(9):5196-5201.
    [117] S.L Wang, F.H. Lan, J.L. Fu. Experimental study on the suppression of human nuclearreceptor hLRH-1via a vector-based RNA interference [J]. Acta Genetica Sinica,2006,33(1):26-31.
    [118]周琼,白明,苏远. Polo-like激酶1反义RNA对肺癌细胞A549细胞周期的影响[J].癌症,2005,24(2):149-154.
    [119] A. Raoul, T. Abbas-Terki, J.C. Bensadoun, et al. Lentiviral-mediated silencing of SOD1through RNA interference retards disease onset and progression in a mouse model of ALS [J].Nat Med,2005,11(4):423-428.
    [120] M. Byzova, C. Verduyn, D. De Brouwer, et al. Transforming petals into sepaloid organs inArabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencingtechnology in an organ-specific manner [J]. Planta,2004,218(3):379-387.
    [121]陈银华,张俊红,欧阳波,李汉霞,叶志彪.花椰菜ACC氧化酶基因的克隆及其RNAi对内源基因表达的抑制作用[J].遗传学报,2005,32(7):764-769.
    [122] G.X. Quan, T. Kanda, T. Tamura. Induction of the white egg3mutant phenotype byinjection of the double-stranded RNA of the silkworm white gene [J]. Insect Mol Biol,2002,11(3):217-222.
    [123]刘春,帅小蓉,程廷才,等.家蚕胚胎发育时期的RNA干涉研究[J].生物化学与生物物理进展,2004,31(4):322-327.
    [124] M.D. Prasad, M. Muthulakshmi, M Madhu, et al. Survey and analysis of microsatellites inthe silkworm, Bombyx mori: Frequency, Distribution, Mutations, Marker potential and theirConservation in heterologous species [J]. Genetics,2004,169(1):197-214.
    [125] D.D. Kosambi. The estimation of map distances from recombination values [J]. Ann Eugen,1943,12(1):172-175.
    [126] T. Tamura, T. Thibert, C. Royer, et al. A piggyBac element-derived vector efficiencypromotes germ-line transformation in the silkworm Bombyx mori [J]. L Nat Biotechnol,2000,18:81-84.
    [127] K. Yamamoto, J. Nohata, K. Kadono-Okuda, et al. A BAC-based integrated linkage map ofthe silkworm Bombyx mori [J]. Genome Biol,2008,9(1): R21:1-21.
    [128] A. Lu, F.Y. Dai, Z.H. Xiang, et al. Studies on the mutation strains of the Bombyx mori genebank [J]. Scientia Agricultura Sinica,2003,36:968-975.
    [129] M.R. Goldsmith, T. Shimada, H. Abe. The genetics and genomics of the silkworm, Bombyxmori [J]. Annu Rev Entomol,2005,50:71-100.
    [130] J. Wang, Q.Y. Xia, X.M. He, et al. SilkDB: a knowledgebase for silkworm biology andgenomics [J]. Nucleic Acids Res,2005,33(Datebase issue): D399-402.
    [131] N. Komoto, G.X. Quan, H. Sezutsu, et al. A single-base deletion in an ABC transporter genecauses white eyes, white eggs, and translucent larval skin in the silkworm w-3oemutant [J].Insect Biochem Mol Biol,2009,39(2):152-156.
    [132] K. Tatematsu, K. Yamamoto, K. Uchino, et al. Positional cloning of silkworm white egg2(w-2) locus shows functional conservation and diversification of ABC transporters forpigmentation in insects [J]. Genes Cells,2011,16(4):331-342.
    [133] A. Liu, K. Yamamoto, T.C. Cheng, et al. Repression of tyrosine hydroxylase is responsiblefor the sex-linked chocolate mutation of the silkworm, Bombyx mori [J]. P Natl Acad SciUSA,2010,107(29):12980-12985.
    [134] Y.M. Xu, Z.L. Zou, X.F. Zha, et al. A syntenic coding region for vitellinemembrane proteins in four lepidopteran insects [J]. J Biochem Mol Biol,2012,1(3):155-160.
    [135] Y.M. Xu, Q.Fu, S. Li, et al. Silkworm egg proteins at the germ-band formation stage and afunctional analysis of BmEP80protein [J]. Insect Biochem Mol Biol,2011,41(8):572-581.
    [136] M.R. Cummings. Formation of the vitelline membrane and chorion in developing oocytesof ephestia kuhniella [J]. Cell Tissue Res,1972,127(2):175-188.
    [137] P.J.S. Furneaux, A.L. Mackay. The composition, structure and formation of the chorion andthe vitelline membrane of the insect egg-shell [J]. The Insect Integument,1976, chapter9:157-176.
    [138] C.M. Griffith, J. Lai-Fook. The ovaries and changes in their structural components at theend of vitellogenesis and during vitelline membrane formation in the butterfly, Calpodes [J].Tissue Cell,1986,18(4):575-588.
    [139] L. Swevers, K. Iatrou. The ecdysone regulatory cascade and ovarian development inlepidopteran insects: insights from the silkmoth paradigm [J]. Insect Biochem Mol Biol,2003,33(12):1285-1297.
    [140] V.C. Wasinger, S.J. Cordwell, A. Cerpa-Poljak, et al. Progress with gene-product mappingof the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis,1995,16(7):1090-1094.
    [141] P.H. O′Farrell. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem,1975,250(10):4007-4021.
    [142]邹勇,钟晓武,张利平,等.家蚕幼虫期和蛹期马氏管差异蛋白质组学分析[J].中国农业科学,2012,45(9):1833-1839.
    [143]张利平,钟晓武,聂红毅,等.不同产丝量家蚕品系后部丝腺的蛋白质组学分析[J].蚕业科学,2012,38(3):468-474.
    [144]张俊,徐安英,王小强,等.家蚕绵茧突变品系中部丝腺的差异蛋白组学分析[J].蚕业科学,2012,38(3):475-482.
    [145] A. Stark, J. Brennecke, N. Bushati, et al. Animal MicroRNAs Confer Robustness to GeneExpression and Have a Significant Impact on3′UTR Evolution [J]. Cell,2005,123(6):1133-1146.
    [146] J.R. Lytle, T.A Yario, J.A Steitz. Target mRNAs are repressed as efficiently bymicroRNA-binding sites in the5′UTR as in the3′UTR [J]. P Natl Acad Sci USA,2007,104(23):9667-9672.
    [147] K. Okamura, M.D. Phillips, D.M. Tyler, et al. The regulatory activity of microRNA*species has substantial influence on microRNA and3′UTR evolution [J]. Nat Struct Mol Biol,2008,15(4):354-363.
    [148] E.C. Lai. Micro RNAs are complementary to3′UTR sequence motifs that mediate negativepost-transcriptional regulation [J]. Nat Genet,2002,30(4):363-364.
    [149] M. Wickens, D.S. Bernstein, J. Kimble, et al. A PUF family portrait:3′UTR regulation as away of life [J]. Trends Genet,2002,18(3):150-157.
    [150] S. Kuersten, E.B. Goodwin. The Power of the3′UTR: Translational Control andDevelopment [J]. Nature,2003,4(8):626-637.
    [151] A. Mazumder, V. Seshadri, P.L. Fox. Translational control by the3′UTR: the ends specifythe means [J]. Trends Biochem Sci,2003,28(2):91-98.
    [152] Vaucheret, F. Vazquez, P. Crete, et al. The action of Argonaute1in the miRNA pathway andits regulation by the miRNA pathway are crucial for plant development [J]. Genes Dev,2004,18(10):1187-1197.
    [153] Q.W. Niu, S.S. Lin, J.L. Reyes, et al. Expression of artificial microRNAs in transgenicArabidopsis thaliana confers virus resistance [J]. Nat Biotechnol,2006,24(11):1420-1428.
    [154] E.A. Parizotto, P. Dunoyer, N. Rahm, et al. In vivo investigation of the transcription,processing, endonucleolytic activity, and functional relevance of the spatial distribution of aplant miRNA [J]. Genes Dev,2004,18(18):2237-2242.
    [155] Y. Zeng, E.J. Wagner, B.R. Cullen. Both natural and designed micro RNAs can inhibit theexpression of cognate mRNAs when expressed in human cells [J]. Mol Cell,2002,9(6):1327-1333.
    [156] C.Z. Chen, L. Li, H.F. Lodish, et al. MicroRNAs modulate hematopoietic lineagedifferentiation [J]. Science,2004,303(5056):83-86.
    [157] Q.L. Zhao, X.J.Shen, L.J. Zhu, et al. Characterization of CIb1Gene Promoter fromSilkworm, Bombyx mori [J]. Z Naturforsch,2007,62c:875-880.
    [158] A. Kendirgi, L. Swevers, K. Iatrou. An ovarian follicular epithelium protein of the silkworm(Bombyx mori) that associates with the vitelline membrane and contributes to the structuralintegrity of the follicle [J]. FEBS Lett,2002,524(1-3):59-68.
    [159] J. Brennecke, A. Stark, R.B. Russell, et al. Principles of microRNA-target recognition [J].PLoS Biol,2005,3(3): e85:0404-0418.
    [160] B.P. Lewis, C.B. Burge, D.P. Bartel. Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700