用户名: 密码: 验证码:
苜蓿干草与苜蓿青贮对奶牛瘤胃蛋白质利用的影响及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过5个试验系统探讨了日粮选用苜蓿干草或苜蓿青贮作为粗饲料,对奶牛瘤胃发酵、微生物蛋白合成、肽链降解酶浓度、瘤胃内微生物区系及蛋白质分解菌数量的影响,以期探究苜蓿不同加工形式产物(苜蓿干草vs.苜蓿青贮)对奶牛瘤胃内氮利用的影响及作用机制。
     试验一选择苜蓿干草及精料作为试验饲料来源,以100%精料为对照组,将苜蓿干草以不同比例与精料混合(25:75、45:55、55:45和75:25),分析苜蓿干草与精粗比对体外瘤胃发酵、微生物蛋白含量、肽链内切酶和外切酶浓度及蛋白质降解菌数量的影响。将饲料样品粉碎后过1mm分析筛,作为短期人工瘤胃发酵底物,在恒温培养箱中(39℃)发酵24h,测定24h产气量、挥发性脂肪酸、氨态氮、微生物蛋白合成效率、肽链内切酶及外切酶浓度、总细菌及相关蛋白质降解细菌数量。结果表明:与全精料组相比,添加苜蓿干草,奶牛瘤胃乙酸/总挥发酸、氨态氮含量及总细菌数显著增加(P<0.05),24h产气量、总嘌呤含量、普雷沃氏菌及嗜淀粉瘤胃拟杆菌显著减少(P<0.05),肽链外切酶中的三肽基肽酶浓度显著降低(P<0.05)。精粗比对瘤胃内24h产气量及半胱氨酸蛋白酶浓度有显著降低的影响,随着苜蓿干草添加水平的增加,二者均呈线性下降(P<0.05)。苜蓿干草与精粗比二因素互作对本试验测定指标无显著影响,但对嗜淀粉瘤胃拟杆菌数量有极显著影响(P<0.01)。苜蓿干草:精料比例为55:45时,总细菌数、溶纤维丁酸弧菌及嗜淀粉瘤胃拟杆菌显著高于其他处理组(P<0.05)。
     试验二选择苜蓿青贮及精料作为试验饲料来源,以100%精料为对照组,将苜蓿青贮以不同比例与精料混合(25:75、45:55、55:45和75:25),分析苜蓿青贮与精粗比对瘤胃发酵、微生物蛋白含量、肽链内切酶和外切酶浓度及蛋白质降解菌数量的影响。将饲料样品粉碎后过1mm分析筛,混匀后作为短期人工瘤胃发酵底物,在恒温培养箱中39℃条件下发酵24h,测定24h产气量、挥发性脂肪酸、氨态氮、微生物蛋白合成效率、肽链内切酶及外切酶、总细菌及与相关蛋白质降解菌。结果表明:与全精料组相比,添加苜蓿青贮,奶牛瘤胃24h产气量、微生物蛋白合成效率、天冬氨酸蛋白酶浓度、半胱氨酸蛋白酶浓度、二肽基肽酶浓度及普雷沃氏菌数均显著下降(P<0.05),氨态氮浓度、总细菌及溶纤维丁酸弧菌数显著增加(P<0.05)。随着苜蓿青贮比例增加,24h产气量、微生物蛋白合成效率、天冬氨酸蛋白酶浓度、半胱氨酸蛋白酶浓度、二肽基肽酶浓度均呈现显著降低的变化规律(P<0.05),氨态氮浓度线性增加(P<0.05)。氨态氮浓度、总细菌数、溶纤维丁酸弧菌及普雷沃氏菌数受到苜蓿青贮与精粗比互作的显著影响(P<0.05)。苜蓿青贮:精料比例为45:55时,溶纤维丁酸弧菌、牛链球菌、普雷沃氏菌及嗜淀粉瘤胃拟杆菌数最多。
     试验三采集安徽省蚌埠地区苜蓿,分别加工为苜蓿干草及苜蓿青贮,将饲料样品粉碎过1mm分析筛,作为发酵底物在恒温培养箱中39℃条件下发酵24h,测定瘤胃液中挥发性脂肪酸、氨态氮、微生物蛋白合成效率、总细菌与相关蛋白质降解细菌数量。结果显示,苜蓿干草组总嘌呤含量(5.38mmol/L)显著高于(P<0.05)苜蓿青贮组(4.97mmol/L),两组之间氨态氮含量及微生物蛋白合成效率差异不显著,但苜蓿干草组氨态氮含量(26.51mg/l00mL)略低于苜蓿青贮组(27.59mg/l00mL),苜蓿干草组微生物蛋白合成效率(0.18)高于苜蓿青贮组(0.17),苜蓿干草组溶纤维丁酸弧菌数量显著高于苜蓿青贮组(P<0.05)。
     试验四收集试验三中苜蓿干草与苜蓿青贮样品,粉碎过2.5mmm分析筛进行尼龙袋降解试验,比较二者的干物质、粗蛋白及18种氨基酸有效降解率。结果显示,苜蓿干草与苜蓿青贮之间干物质降解率差异不显著(P>0.05),苜蓿干草的粗蛋白有效降解率(41.18%)显著高于(P<0.05)苜蓿青贮的粗蛋白有效降解率(34.84%)。苜蓿青贮中的脯氨酸有效降解率(41.38%)略高于苜蓿干草中的脯氨酸降解率(P>0.05),但苜蓿干草中天冬氨酸、苏氨酸、丝氨酸、谷氨酸、甘氨酸、丙氨酸、缬氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、组氨酸、精氨酸、色氨酸及胱氨酸有效降解率均显著高于苜蓿青贮(P<0.05),苜蓿干草中赖氨酸及蛋氨酸有效降解率也高于苜蓿青贮(P>0.05)。
     试验五收集苜蓿干草与苜蓿青贮经体外培养24h后的瘤胃液,采用高通量测序技术测定提取DNA后的微生物菌群分布,结果显示,苜蓿干草组中微生物OTUs数目高于苜蓿青贮组,苜两组之间微生物OTUs种类有较大的交叉度,聚类相似性阈值为90%时,苜蓿干草组含5386个OTUs,苜蓿青贮组含4633个OTUs,其中二者交叉3908个OTUs。聚类相似性阈值为97%时,苜蓿干草组含19544个OTUs,苜蓿青贮组含16099个OTUs,其中二者交叉8806个OTUS。瘤胃液中细菌种类较为相似,其中,拟杆菌属、梭状芽孢杆菌属丰度最高,球菌属、纤维弧菌及β-变形菌属丰度较高。
Five experiments were conducted to investigate the effects of alfalfa hay or haylage on ruminal fermentation, microbial synthesis, nitrogen utilization, difference of rumen bacteria flora in dairy cows, to explore possible mechanism on utilization of dietary protein in dairy cows with alfalfa hay and alfalfa silage.
     Experiment1, Rumen fluids were collected from three Holstein heifers which fitted with permanent rumen fistulas, and an in vitro batch culture was conducted to investigate differences in the fermentation characteristics. Alfalfa hay (AH) mixed concentrate with different ratio (0:100,25:75,45:55,55:45and75:25, respectively) in terms of24h gas production, volatile fatty acid production, ammonia nitrogen, total purines, efficiency of microbial protein synthesis, concentration of endopeptidase and exopeptidase, rumen gene expression quantities of total bacteria, Butyrivibrio fibrisolvens, Streptococcus bovis, Prevotellabryantii and Ruminobacter amylophilus. Results show that acetate/total volatile acid ratio, ammonia nitrogen content and total bacterial count were significantly increased (P<0.05) with adding alfalfa hay; total purines content, Prevotellabryantii and Ruminobacter amylophilus gene expression quantities significantly decreased (P<0.05) with alfalfa hay treatment, tripeptidyl-peptidase concentration also was affected by alfalfa hay (P<0.05). Cysteine peptidase concentration and24h gas production significantly increased with the increase of alfalfa hay level (P<0.05), the total bacteria, Butyrivibrio fibrisolvens, Prevotellabryantii and Ruminobacter amylophilus gene expression quantities also affected by forage-to-concentrate ratio. Total bacterial count, Butyrivibrio fibrisolvens count and Ruminobacter amylophilus count were highest on55:45(AH: concentrate).
     Experiment2, In vitro batch culture was conducted to investigate differences in the fermentation characteristics alfalfa silage (AS) mixed concentrate with different ratio (0:100,25:75,45:55,55:45and75:25, respectively) in terms of24h gas production, volatile fatty acid production, ammonia nitrogen, total purines, efficiency of microbial protein synthesis, concentration of endopeptidase and exopeptidase, Rumen gene expression quantities of total bacteria, Butyrivibrio fibrisolvens, Streptococcus bovis, Prevotellabryantii and Ruminobacter amylophilus. Results show that24h gas production, efficiency of microbial protein synthesis, aspartic peptidase, cysteine peptidase, dipeptidyl-peptidase concentration and Prevotellabryantii gene expression quantity were significantly reduced (P<0.05) with alfalfa silage treatment; ammonia nitrogen concentration, total bacteria and Butyrivibrio fibrisolvens gene expression quantities significantly increased by alfalfa silage (P<0.05). Microbial protein synthesis, aspartic peptidase, cysteine peptidase concentration were significantly decrease, ammonia nitrogen concentration got higher (P<0.05) with the increase of alfalfa silage level (P<0.05). In this trial, ammonia nitrogen concentration, total bacteria, Butyrivibrio fibrisolvens and Prevotellabryantii gene expression quantities also affected by alfalfa silage and forage-to-concentrate ratio. Butyrivibrio fibrisolvens count, Streptococcus bovis count, Prevotellabryantii count and Ruminobacter amylophilus count were highest on45%alfalfa silage mixed55%concentrate.
     Experiment3, Fresh alfalfa was harvested from AnHui province and then prepared as alfalfa hay (AH) and alfalfa silage (AS). In vitro batch culture was conducted to investigate differences in the ammonia nitrogen, total purines and volatile fatty acid production and gene expression quantities of total bacteria, Butyrivibrio fibrisolvens, Streptococcus bovis, Prevotellabryantii and Ruminobacter amylophilus between AH and AS. Rumen fluids were collected from three healthy Holstein heifers, fitted with permanent rumen fistulas. Results indicate that the total purines of AH was significantly higher (P><0.05) than those of AS, efficiency of microbial protein synthesis of AH also higher than that of AS even though there was not significantly affect (P>0.05).
     Experiment4, Fresh alfalfa was harvested from AnHui province and then prepared as alfalfa hay (AH) and alfalfa silage (AS). In situ ruminal dry matter, crude protein and amino acid degradation characteristics were determined for AH and AS with three Holstein heifers, fitted with permanent rumen fistulas. Effective crude protein degradability was significantly greater in AH than in AS (P<0.05). AH has higher aspartic acid, threonine, serine, glutamic acid, glycine, alanine, valine, isleucine, leucine, tyrosine, phenylalanine, histidine, arginine and tryptophan and cystine effective degradation rate (P<0.05) than AS. Lysine and methionine effective degradation rate in AH were higher than those in AS (P>0.05).
     Experiment5, Collected rumen fluid with alfalfa hay or alfalfa silage were incubated24h by using in vitro batch culture, tested the microbial flora distribution by using high-throughput sequencing technology after DNA were extracted. Results show that microorganisms OTUs class of alfalfa hay group had large cross with that of alfalfa silage group. Microorganism OTUs number of AH was higher than that of AS, AHgroup contains5386OTUs, AS group contains4633OTUs, including both cross3908OTUs with the cutoff value of0.10. AH contains19544OTUs, AS contains16099OTUs, including both cross8806OTUs with the cutoff value of0.03. Thus, microbial flora class level in AH and that in AS was similar, bacteroides, clostridia, β-proteobacteria and fibrobacteria were major microorganisms.
引文
[1]Sanchez I, Zapata N, Faci J M. Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation:I. Irrigation performance and soil water recharge in alfalfa and maize. Agricultural water management,2010,97(10):1571-1581.
    [2]Tabacco E, Borreani G, Odoardi M, et al. Effect of cutting frequency on dry matter yield and quality of lucerne (Medicago sativa L.) in the Po Valley. Italian Journal of Agronomy, 2002,6(1):27-34.
    [3]Volenec J J, Cherney J H, Johnson K D. Yield components, plant morphology, and forage quality of alfalfa as influenced by plant population. Crop science,1987,27(2):321-326.
    [4]Grum D E, Shockey W L, Weiss W P. Electrophoretic examination of alfalfa silage proteins. Journal of dairy science,1991,74(1):146-154.
    [5]Hall M H, Smiles W S, Dickerson R A. Morphological development of alfalfa cultivars selected for higher quality. Agronomy Journal,2000,92(6):1077-1080.
    [6]Hanson A A, Barnes D K, Hill Jr R R. Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,1988.
    [7]Gossen B D, Horton P R, Wright S, et al. Field Respose of Alfalfa to Harvest Frequency, Cultivar, Crown Pathogens, and Soil Fertility:I. Survival and Yield. Agronomy Journal,1994,86(1):82-88.
    [8]Getachew G, Robinson P H, DePeters E J, et al. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal feed science and technology,2004,111(1):57-71.
    [9]Kammes K L, Heemink G, Albrecht K A, et al. Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows. Journal of dairy science,2008,91(8):3138-3144.
    [10]Jonker J S, Cherney D, Fox D G, et al. Orchardgrass versus alfalfa for lactating dairy cattle: Production, digestibility and nitrogen balance. Journal of Applied Animal Research, 2002,21(1):81-92.
    [11]Mikolayunas C, Thomas D L, Armentano L E, et al. Effect of rumen-undegradable protein supplementation and fresh forage composition on nitrogen utilization of dairy ewes. Journal of dairy science,2011,94(1):416-425.
    [12]Kleinschmit D H, Anderson J L, Schingoethe D J, et al. Ruminal and intestinal degradability of distillers grains plus solubles varies by source. Journal of dairy science,2007,90(6):2909-2918.
    [13]Gehman A M, Kononoff P J. Utilization of nitrogen in cows consuming wet distillers grains with solubles in alfalfa and corn silage-based dairy rations. Journal of dairy science, 2010,93(7):3166-3175.
    [14]Christensen D A, Cochran M I. Composition and nutritive value of dehydrated alfalfa for lactating dairy cows. Journal of Dairy Science,1983,66(6):1282-1289.
    [15]张秀芬.饲草料加工与贮藏.北京:农业出版社,1992.
    [16]Chen J, Stokes M R, Wallace C R. Effects of enzyme-inoculant systems on preservationand nutritive value of haycrop and corn silages. Journal of dairy science,1994,77(2):501-512.
    [17]Ridla M, Uchida S. Comparative study on the effects of combined treatments of lactic acid bacteria and cellulases on the fermentation characteristic and chemical composition of Rhodesgrass (Chloris gayana Kunth.) and italian ryegrass (Lolium multiflorum Lam.) silages. Asian-Australasian Journal of Animal Sciences,1999,12(4):525-530.
    [18]Charmley E, Robinson P H, McQueen R E. Corn or alfalfa as the forage source in predominantly silage diets for late-lactation dairy cows. Canadian Journal of Animal Science,1993,73(1):67-77.
    [19]Broderick G A. Alfalfa silage or hay versus corn silage as the sole forage for lactating dairy cows. Journal of Dairy Science,1985,68(12):3262-3271.
    [20]Ruppert L D, Drackley J K, Bremmer D R, et al. Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows. Journal of dairy science, 2003,86(2):593-609.
    [21]Kammes K L, Heemink G, Albrecht K A, et al. Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows. Journal of dairy science,2008,91(8):3138-3144.
    [22]Weiss W P, Shockey W L. Value of Orchardgrass and Alfalfa Silages Fed with Varying Amounts of Concentrates to Dairy Cows 1,2. Journal of dairy science,1991,74(6):1933-1943.
    [23]Plaizier J C. Replacing chopped alfalfa hay with alfalfa silage in barley grain and alfalfa-based total mixed rations for lactating dairy cows. Journal of dairy science,2004,87(8):2495-2505.
    [24]宋伟红,苗树君,曲永利,等.不同方法调制的苜蓿主要营养成分奶牛瘤胃有效降解率.中国牛业科学,2008,34(4):48-51.
    [25]Calberry J M, Plaizier J C, Einarson M S, et al. Effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration on production and rumen conditions of lactating dairy cows. Journal of dairy science,2003,86(11):3611-3619.
    [26]Borreani G, Giaccone D, Mimosi A, et al. Comparison of hay and haylage from permanent alpine meadows in winter dairy cow diets. Journal of dairy science,2007,90(12):5643-5650.
    [27]Broderick G A. Performance of lactating dairy cows fed either alfalfa silage or alfalfa hay as the sole forage. Journal of dairy science,1995,78(2):320-329.
    [28]King J K, A B G, H S R, et al. Ruminal digestion of alfalfa harvested as hay or silage. Journal of dairy science,1989 (72(Suppl.1)):554.
    [29]Nugent J, Mangan J L. Characteristics of the rumen proteolysis of fraction 1 (18S) leaf protein from lucerne (Medicago sativa L). British journal of nutrition,1981,46(01):39-58.
    [30]Peltekova V D, Broderick G A. In vitro ruminal degradation and synthesis of protein on fractions extracted from alfalfa hay and silage. Journal of dairy science,1996,79(4):612-619.
    [31]Council N N R. Nutrient requirements of dairy cattle.7th rev. ed,2001:381.
    [32]Muck R E, LE M, RE P. Postharvest factors affecting ensiling 251-304 Silage science and technology. Agron. Monogr,2003,42.
    [33]Jouany J P. Manipulation of microbial activity in the rumen. Archives of animal Nutrition, 1994,46(2):133-153.
    [34]Wallace R J, Kopecny J. Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases. Applied and environmental microbiology,1983,45(1):212-217.
    [35]Attwood G T, Reilly K. Identification of proteolytic rumen bacteria isolated from New Zealand cattle. Journal of applied bacteriology,1995,79(1):22-29.
    [36]Winters A L, Cockburn J E, Dhanoa M S, et al. Effects of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass. Journal of applied microbiology,2000,89(3):442-452.
    [37]Barrett A J, Woessner J F, Rawlings N D. Handbook of proteolytic enzymes. Elsevier,2004.
    [38]Wallace R J, BRAMMALL M L. The role of different species of bacteria in the hydrolysis of protein in the rumen. Journal of general microbiology,1985,131(4):821-832.
    [39]Kopecny J, Logar R M, Kobayashi Y. Phenotypic and genetic data supporting reclassification ofButyrivibrio fibrisolvens isolates. Folia microbiologica,2001,46(1):45-48.
    [40]Velasquez A, Pichard G. Effects of rumen fluid pre-incubation onin vitro proteolytic activity of enzymatic extracts from rumen microorganisms. Animal feed science and technology, 2010,162(3):75-82.
    [41]Lindberg J E. Estimation of rumen degradability of feed proteins with the in sacco technique and various in vitro methods:a review [nylon bag technique, in vivo]. Acta Agriculturae Scandinavica. Supplementum,1985.
    [42]Nocek J E. In situ and other methods to estimate ruminal protein and energy digestibility:a review. Journal of Dairy Science,1988,71(8):2051-2069.
    [43]Michalet-Doreau B, Ould-Bah M Y. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen:a review. Animal Feed Science and Technology, 1992,40(1):57-86.
    [44]Wallace R J, Kopecny J. Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases. Applied and environmental microbiology,1983,45(1):212-217.
    [45]Mahadevan S, Erfle J D, Sauer F D. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. Journal of Animal Science, 1980,50(4):723-728.
    [46]Broderick G A, Wallace R J,(?)rskov E R. Control of rate and extent of protein degradation. Physiological aspects of digestion and metabolism in ruminants,1991,541.
    [47]Madsen J, Hvelplund T. Prediction of in situ protein degradability in the rumen. Results of a European ringtest. Livestock Production Science,1994,39(2):201-212.
    [48](?)rskov E R, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 1979,92(02):499-503.
    [49]Tilley J, Terry R A. A two-stage technique for the in vitro digestion of forage crops. Grass and forage science,1963,18(2):104-111.
    [50]Menke K H, Raab L, Salewski A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science,1979,93(01):217-222.
    [51]Theodorou M K, Williams B A, Dhanoa M S, et al. A new laboratory procedure for estimating kinetic parameters associated with the digestibility of forages:Int. Symp. on Forage Cell Wall Structure and Digestibility, US Dairy Forage Research Center and USDA Agricultural Research Service, Madison, WI,1991.
    [52]Stern M D, Bach A, Calsamiglia S. Alternative techniques for measuring nutrient digestion in ruminants. Journal of Animal Science,1997,75(8):2256-2276.
    [53]Varel V H, Kreikemeier K K. Technical note:comparison of in vitro and in situ digestibility methods. Journal of animal science,1995,73(2):578-582.
    [54]Dewhurst R J, Hepper D, Webster A. Comparison of in sacco and in vitro techniques for estimating the rate and extent of rumen fermentation of a range of dietary ingredients. Animal feed science and technology,1995,51(3):211-229.
    [55]Dehority B A. Rumen microbiology. Nottingham University Press Nottingham,2003.
    [56]Krause D O, Russell J B. How many ruminal bacteria are there? Journal of dairy science, 1996,79(8):1467-1475.
    [57]Cirne D G, Delgado O D, Marichamy S, et al. Clostridium lundense sp. nov., a novel anaerobic lipolytic bacterium isolated from bovine rumen. International journal of systematic and evolutionary microbiology,2006,56(3):625-628.
    [58]Rymer C, Huntington J A, Williams B A, et al. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Animal Feed Science and Technology, 2005,123:9-30.
    [59]Krumholz L R, Bryant M P, Brulla W J, et al. Proposal of Quinella ovalis gen. nov., sp. nov., based on phylogenetic analysis. International journal of systematic bacteriology, 1993,43(2):293-296.
    [60]Sadet-Bourgeteau S, Martin C, Morgavi D P. Bacterial diversity dynamics in rumen epithelium of wethers fed forage and mixed concentrate forage diets. Veterinary microbiology, 2010,146(1):98-104.
    [61]Whitford M F, Forster R J, Beard C E, et al. Phylogenetic Analysis of Rumen Bacteria by Comparative Sequence Analysis of Cloned 16S rRNA Genes B. Anaerobe, 1998,4(3):153-163.
    [62]Tajima K, Aminov R I, Nagamine T, et al. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiology Ecology,1999,29(2):159-169.
    [63]Tajima K, Arai S, Ogata K, et al. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe,2000,6(5):273-284.
    [64]Deng W, Wanapat M, Ma S, et al. Phylogenetic analysis of 16S rDNA sequences manifest rumen bacterial diversity in Gayals (Bos frontalis) fed fresh bamboo leaves and twigs (Sinarumdinaria). Asian australasian journal of animal sciences,2007,20(7):1057.
    [65]Koike S, Yoshitani S, Kobayashi Y, et al. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiology Letters, 2003,229(1):23-30.
    [66]Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985,230(4732):1350-1354.
    [67]Skillman L C, Toovey A F, Williams A J, et al. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Applied and environmental microbiology, 2006,72(1):200-206.
    [68]Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology, 2001,67(6):2766-2774.
    [69]Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006,58(3):572-582.
    [70]Ozutsumi Y, Tajima K, Takenaka A, et al. Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle. Current microbiology,2006,52(2):158-162.
    [71]Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied microbiology and biotechnology,2007,75(1):165-174.
    [72]Moya D, Mazzenga A, Holtshausen L, et al. Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately:Journal of dairy science,2010[C]. Elsevier science inc 360 park ave south, NewYork, NY 10010-1710 USA.
    [73]Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-380.
    [74]王兴春,杨致荣,王敏,等.高通量测序技术及其应用.中国生物工程杂志,2012,32(1):109-114.
    [75]Mardis E R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 2008,9:387-402.
    [76]Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science,2011,331 (6016):463-467.
    [77]Zened A, Combes S, Cauquil L, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS microbiology ecology,2013,83(2):504-514.
    [78]Pope P B, Mackenzie A K, Gregor I, et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One,2012,7(6):e38571.
    [79]Tufarelli V, Dario M, Laudadio V. Forage to concentrate ratio in Jonica breed goats:influence on lactation curve and milk composition. Journal of dairy research,2009,76(01):124-128.
    [80]王立志,姜宁,张爱忠.不同精粗比的日粮对反刍动物消化代谢功能的影响.畜牧与饲料科学,2006,27(2):36-38.
    [81]Russell J B. Fermentation of peptides by Bacteroides ruminicola B14. Applied and environmental microbiology,1983,45(5):1566-1574.
    [82]王锐.饲料细胞壁酚酸结构组成与瘤胃微生物降解特性的关联性研究.[博士论文]北京:中国农业大学,2012.
    [83]Erwin E S, Marco G J, Emery E M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of dairy science,1961,44(9):1768-1771.
    [84]Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of dairy science,1980,63(1):64-75.
    [85]Zinn R A, Owens F N. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science,1986,66(1):157-166.
    [86]Rook J, Balch C C. The effects of intraruminal infusions of acetic, propionic and butyric acids on the yield and composition of the milk of the cow. British journal of Nutrition, 1961,15(03):361-369.
    [87]Shiao, TzongFaa, Shou Chou Liu E A. Effects of dietary grain to forage ratio on methane production in the digestivetract of Holstein dry cows. Journal of Chinese Soc Anita Science, 1999,28:437-449.
    [88]王满红.日粮中氨化稻草水平及精粗比对体外培养发酵总产气量、甲烷和VFA产量的影响.[硕士论文]北京:中国农业大学,2012.
    [89]Salem A, Robinson P H, El-Adawy M M, et al. In vitro fermentation and microbial protein synthesis of some browse tree leaves with or without addition of polyethylene glycol. Animal feed science and technology,2007,138(3):318-330.
    [90]Owens D, McGee M, Boland T, et al. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat. Journal of animal science,2009,87(2):658-668.
    [91]Stewart C S. Factors affecting the cellulolytic activity of rumen contents. Applied and Environmental Microbiology,1977,33(3):497-502.
    [92]Krause K M, Combs D K, Beauchemin K A. Effects of forage particle size and grain fermentability in midlactation cows. I. Milk production and diet digestibility. Journal of dairy science,2002,85(8):1936-1946.
    [93]赵静雯.奶牛瘤胃微生物蛋白酶和二肽基肽酶IV基因的筛选与多样性分析.[博士论文]北京:中国农业科学院,2013.
    [94]Wiederanders B. Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim. Pol,2003,50:691-713.
    [95]Lin J, Lee S, Chen Y, et al. Purification and Characterization of a Novel Extracellular Tripeptidyl Peptidase from Rhizopus oligosporus. Journal of agricultural and food chemistry, 2011,59(20):11330-11337.
    [96]Wallace R J, McKain N, Broderick G A, et al. Peptidases of the Rumen Bacterium,< i> Prevotella ruminicola. Anaerobe,1997,3(1):35-42.
    [97]Gupta R, Walunj S S, Tokala R K, et al. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of type 2 diabetes. Current drug targets, 2009,10(1):71-87.
    [98]Wallace R J, BRAMMALL M L. The role of different species of bacteria in the hydrolysis of protein in the rumen. Journal of general microbiology,1985,131(4):821-832.
    [99]Griswold K E, White B A, Mackie R I. Proteolytic activities of the starch-fermenting ruminal bacterium, Streptococcus bovis. Current microbiology,1999,39(4):180-186.
    [100]Fernando S C, Purvis H T, Najar F Z, et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and environmental microbiology,2010,76(22):7482-7490.
    [101]Potempa M, Potempa J, Kantyka T, et al. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS pathogens, 2009,5(2):e1000316.
    [102]Onetti S G, Reynal S M, Grummer R R. Effect of alfalfa forage preservation method and particle length on performance of dairy cows fed corn silage-based diets and tallow. Journal of dairy science,2004,87(3):652-664.
    [103]Merry R J, Lee M, Davies D R, et al. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion.1. In vitro and in vivo studies of nitrogen utilization. Journal of animal science,2006,84(11):3049-3060.
    [104]Muck R E, LE M, RE P. Postharvest factors affecting ensiling 251-304 Silage science and technology. Agron. Monogr,2003,42.
    [105]Broderick G A. Desirable characteristics of forage legumes for improving protein utilization in ruminants. Journal of animal science,1995,73(9):2760-2773.
    [106]Brouk M, Belyea R. Chewing activity and digestive responses of cows fed alfalfa forages. Journal of dairy science,1993,76(1):175-182.
    [107]Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied microbiology and biotechnology,2007,75(1):165-174.
    [108]Wallentine M V, Johnston N P, Kellems R E A. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. Feedstuffs,1992,15(3):15-16.
    [109]Hristov A N, Broderick G A. Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay, or corn silage. Journal of dairy science,1996,79(9):1627-1637.
    [110]Nicholson J, McQueen R E, Charmley E, et al. Forage conservation in round bales or silage bags: effect on ensiling characteristics and animal performance. Canadian journal of animal science, 1991,71(4):1167-1180.
    [111]Craig W M, Broderick G A, Ricker D B. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition,1987,117(1):56-62.
    [112]Erasmus L J, Botha P M, Cruywagen C W, et al. Amino acid profile and intestinal digestibility in dairy cows of rumen-undegradable protein from various feedstuffs. Journal of Dairy Science, 1994,77(2):541-551.
    [113]Bach A, Calsamiglia S, Stern M D. Nitrogen metabolism in the rumen. Journal of Dairy Science, 2005,88:E9-E21.
    [114]冯仰廉.反刍动物营养学.科学出版社,2006.
    [115]Nelson W F, Satter L D. Impact of alfalfa maturity and preservation method on milk production by cows in early lactation. Journal of dairy science,1992,75(6):1562-1570.
    [116]Nguyen H V, Kawai M, Takahashi J, et al. Change in nitrogen fractions and ruminal nitrogen degradability of orchardgrass and alfalfa during the ensiling process and the subsequent effects on nitrogen utilization by sheep. Asian Australasian Journal of Animal Sciences, 2004,17(11):1524-1528.
    [117]Sniffen C J, O'Connor J D, Van Soest P J, et al. A net carbohydrate and protein system for evaluating cattle diets:II. Carbohydrate and protein availability. Journal of Animal science, 1992,70(11):3562-3577.
    [118]Susmel P, Stefanon B, Mills C R, et al. Change in amino acid composition of different protein sources after rumen incubation. Anim. Prod,1989,49:375-383.
    [119]Walker N D, McEwan N R, Wallace R J. Cloning and functional expression of dipeptidyl peptidase IV from the ruminal bacterium Prevotella albensis M384T. Microbiology, 2003,149(8):2227-2234.
    [120]Newkirk R. Canola meal feed industry guide. Canola Council of Canada.4th Edition, Winnipeg, Manitoba,2009.
    [121]Frey J C, Pell A N, Berthiaume R, et al. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. Journal of applied microbiology, 2010,108(6):1982-1993.
    [122]Weimer P J, Stevenson D M, Mertens D R, et al. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied microbiology and biotechnology,2008,80(1):135-145.
    [123]Yang S, Ma S, Chen J, et al. Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Molecular biology reports,2010,37(4):2063-2073.
    [124]赵圣国.牛瘤胃脲酶基因多样性分析与酶活性调控.[博士论文]北京:中国农业科学院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700