用户名: 密码: 验证码:
硫辛酸对肉鸡骨骼肌发育及缓解黄曲霉毒素中毒机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先通过体内与体外试验研究硫辛酸(ALA)对肉鸡骨骼肌发育相关基因表达、肌纤维类型转化和抗氧化能力的影响。另外,利用ALA具有抗氧化和抗炎性的特性,研究ALA缓解肉鸡黄曲霉毒素中毒的效果及机制。
     试验一研究日粮中添加ALA对肉鸡生产性能、骨骼肌发育相关基因表达、肌纤维类型转化和肌肉抗氧化能力影响。选取80只健康公雏,随机分成2个处理组,在基础日粮上添加ALA(300mg/kg),以饲喂基础日粮为对照组,试验期21天。结果表明:ALA显著降低肉仔鸡平均日增重(ADWG)(P<0.05),对平均日耗量(ADFI)有降低趋势(P=0.0532);日粮中添加ALA显著降低肉仔鸡胸肌绝对重量(P<0.05),对胸腿肌相对重量和腿肌绝对重量没有影响(P>0.05); ALA显著降低肉仔鸡血液中甘油三酯、葡萄糖和甲状腺激素3水平(P<0.05); ALA显著降低胸肌中丙二醛(MDA)水平(P<0.05),显著增加胸腿肌中谷胱甘肽(GSH)、谷胱甘肽还原酶(GR)、Na+-K+-ATP和Ca2+-Mg2+-ATP酶(P<0.05)水平,对腿肌中总超氧化物歧化酶(T-SOD)活性有增加趋势(P=0.0622); ALA显著增加肉仔鸡胸腿肌慢肌(SM)和腿肌快红肌(FRM)肌球蛋白重链基因(MyHC) mRNA相对表达量(P<0.05),并显著降低胸腿肌快白肌(FWM) MyHC基因相对表达量(P<0.05);另外,显著降低胸肌生肌决定因子(MyoD)、生肌因子(Myf5)和肌肉生长抑制素基因表达量(P<0.05),显著降低胸肌MyoD、Myf5、胰岛素样生长因子Ⅰ和1胰岛素样生长因子Ⅰ受体基因表达量(P<0.05)。本试验结果提示:ALA能降低肉鸡体重、胸肌绝对含量和抑制骨骼肌发育,但明显提高肉仔鸡肌肉抗氧化性能,并调控肌纤维类型转化,从而改善肉品质。
     试验二主要研究ALA对鸡胚骨骼成肌细胞增殖、Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶活性、骨骼肌增殖与分化相关调节因子基因表达,及MyHC基因相对表达量影响。通过噻唑蓝(MTT)比色法测定发现,与对照组相比,ALA显著降低成肌细胞吸光值,且随着时间推移和浓度增加差异更显著(P<0.05)。通过细胞形态学角度看基本与MTT结果一致,另外还发现1000μmol/LALA组在处理72h后有大量细胞脱落现象发生。细胞周期测定结果可知,ALA浓度达到100μmol/L以上时就已经开始显著增加处于G1/GO期细胞数,且显著降低S期细胞数,使得细胞主要停留G1/G0期。200μmol/L ALA显著降低成肌细胞融合率。相关基因表达方面:500μmol/L ALA对增殖期成肌细胞Pax7基因表达有降低趋势(P=0.0622);200μmol/L ALA显著增加处理后期MyoD、肌细胞生长素(MyoG)和Myf5基因表达量(P<0.05),而对MyoG基因表达在处理24h是显著降低(P<0.05);随着ALA添加量增加,FWM MyHC基因mRNA相对表达量呈线性降低趋势,FRM和SM MyHC mRNA相对表达量呈线性增加趋势。另外,ALA显著抑制成肌细胞Na+-K+-ATP和Ca2+-Mg2+-ATP两种酶活性(P<0.05)。本试验结果提示:高浓度ALA抑制骨骼成肌细胞增殖,对分化影响也许是先降低后升高,并调控肌纤维类型转化。
     试验三主要研究ALA对缓解采食被黄曲霉毒素污染花生粕肉鸡机体损伤的机制。选取160只健康公雏,随机分配成4个处理组:对照组(Control)为基础日粮组;硫辛酸组(ALA):基础日粮中添加300mg/kg ALA;黄曲霉毒素霉变组(AFB1):用霉变花生粕替代基础日粮中正常花生粕(AFB1检测浓度是(74μg/kg));霉变+硫辛酸组(AFB1+ALA),在霉变日粮中添加300mg/kg ALA,处理时间为3周。结果显示:AFB1没有影响到肉鸡生产性能(P>0.05),而添加ALA后显著降低肉鸡ADWG;AFB1显著降低血浆中白蛋白(ALB)和总蛋白(TP)含量(P<0.05),显著增加血浆中碱性磷酸酶(AKP)活性(P<0.05),添加ALA后增加了血浆中ALB和TP含量,且AKP活性被显著降低(P<0.05); AFB1显著降低肝脏中代谢酶谷草转氨酶(GOT)和谷丙转氨酶(GPT)活性(P<0.05),并对肝脏组织形态学造成一定损伤,添加ALA后显著改善AFB1对肝脏形态学损伤,显著增加GOT活性,对GPT有增加趋势;AFB1显著增加肉鸡肝脏中丙二醛(MDA)和一氧化氮(NO)水平(P<0.05),显著降低肝脏中谷胱甘肽过氧化物酶(GSH-Px)活性(P<0.05),消耗了肝脏中GSH水平(P<0.05),添加ALA后显著抑制这些指标变化,而单独添加ALA后显著降低MDA含量和提高T-SOD、GR、GSH-Px活性与GSH水平(P<0.05);AFB1显著下调肉鸡肝脏GSH-Px基因表达量,添加ALA后其表达量得到恢复;AFB1显著上调肝脏Ⅰ相代谢酶细胞色素氧化酶(CYP1A1和CYP2H1)基因表达量(P<0.05),下调Ⅱ相酶谷胱甘肽巯基转移酶α(GSTα)基因表达量(P<0.05),对环氧化物水解酶基因表达量无影响,添加ALA后显著下调CYP1A1和CYP2H1基因表达量,对GSTα基因表达量有上调趋势;AFB1显著上调肝脏促炎性因子白介素-6(IL6)表达水平(P<0.05),添加ALA后其表达量得到抑制;AFB1显著上调肉鸡肝脏核因子-κB(NF-κB)和诱导性一氧化氮合酶(iNOS)蛋白表达量(P<0.05),对NF-κB基因表达量无影响,添加ALA后显著抑制NF-κB和iNOS蛋白表达量;AFB1显著上调肉鸡脾脏促炎性因子肿瘤坏死因子α、γ-干扰素和IL6(P<0.05)表达水平,对NF-κB和血红素氧合酶基因表达无影响,添加ALA后促炎性因子基因表达量被抑制。本试验结果提示:ALA虽然降低采食AFB1污染日粮肉鸡生产性能,但能提高肉鸡健康水平,主要体现在缓解AFB1对肝脏功能的损伤,提高肝脏抗氧化能力,改善肝脏生物转化,抑制肝脏和脾脏的炎性反应,以及降低核转录因子NF-κB蛋白表达量。
This study was designed to evaluate the effect of alpha lipoic acid (ALA) on skeletal muscle development, transformation of myofiber type and antioxidant ability in vovo and in vitro in broiler chickens. In addition, the protective mechanisms of lipoic acid on aflatoxicosis were investigated in broiler chickens, based on the characteristics of its antioxidant and anti-inflammatory.
     In Exp.l, the experiment was conducted to study the effects of dietary ALA on the growth performance, the expression of skeletal muscle development-related genes, transformation of myofibre type and antioxidant ability of skeletal muscle in broiler chickens. A total of80male broilers were randomly divided into2groups and assigned different diets:basal diet (Control),300mg/kg ALA supplementation in basal diet, for3weeks. Results showed that LA significantly decreased the average daily weight gain (ADWG), have a decrease tend on the average daily feed intake (ADFI). ALA had no marked change on the relative percentage of breast and thigh muscle, but significantly decreased the breast muscle weight. Triglyceride, glucose, and triiodothyronine were significantly decreased among chickens in the treatment group. In ALA treated broiler chickens, a decrease in the breast muscle malondialdehyde (MDA) level, an increase in the activities of glutathionereductase (GR), Na+-K+-ATPase and Ca2+-Mg2+-ATPase (P<0.05) and a deletion of the glutathione (GSH) in in breast and thigh muscle, while had an increase in total superoxide disumutase (T-SOD) activity in thigh muscle. LA increased the expression of breast muscle slow myofiber (SM)(P<0.05), thigh muscle SM (P <0.05), thigh muscle fast red myofiber (FRM) MyHC mRNA (P<0.05), and decreased the expression of breast muscle fast white myofiber (FWM)(P<0.05), thigh muscle FWM MyHC mRNA (P<0.05) in broilers. ALA administration down-regulated the mRNA expression of myogenic determining factor (MyoD), myogenic factor5(Myf5) and myostatin in breast muscle, and down-regulated the mRNA expression of MyoD, Myf5, insulin-like growth factor I and insulin-like growth factor I receptor in thigh muscle. Results indicated that ALA decreased the growth performance and breast muscle weight, inhibited the expression of skeletal muscle development-related genes, but enhance the antioxidant ability of chicken muscle and regulated the transformation of myofibre type, and then might improve meat quality.
     In Exp.2, this study was designed to evaluate the effect of lipoic acid on skeletal myoblasts proliferation, the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase, the expression of skeletal muscle cell transcription factors (involved in proliferation and differentiation) and MyHC genes. The results by MTT method showed that, the value of myoblast absorbance in the ALA-treated group was significantly decreased than the control group, especially high doses (P<0.05). Similar with the results by the cell morphology, beside that, we also found that a large number of cells were shed after72h in1000μmol/L ALA treated group. Results of cell cycle showed that ALA (exceed to100umol/L) significantly increased the number of cells in G1/G0phase, and significantly reduced the number of cells in the S phase. The fusion index was inhibited in the200umol/L ALA group as compared to the control group.500μmol/L ALA down-regulated the expression of the myoblast Pax7gene in the proliferation period.200μmol/L ALA up-regulated the expression of MyoD, myogenin (MyoG) and Myf5in the later stages of ALA treatment, however, the expression of MyoG was down-regulated in24h. With the increasing ALA level, significantly increased the expression of skeletal cell myofibre SM, FRM MyHC mRNA, and decreased the relative expression of FWM MyHC mRNA. In addition, ALA inhibited the activities of myoblast Na+-K+-ATP and Ca2+-Mg2+-ATPase. Results suggest that a high dose of ALA can inhibit the myoblast proliferation, maybe have a tendency of decreasing firstly and then increasing with treatment time, and alter the transformation of myofiber type.
     In Exp.3, LA, an antioxidant and anti-inflammatory compound, is evaluated in this study for its ability to protect the body from Aflatoxin B1(AFB1) caused injury in broiler chickens. A total of160male broilers were randomly divided into4groups and assigned different diets:basal diet,300mg/kg ALA supplementation in basal diet, diet containing74μg/kg AFB1, and300mg/kg ALA supplementation in diet containing74μg/kg AFB1, for3weeks. The results revealed that AFB1(74ppb) had no change on growth performance, however, the addition of300mg/kg ALA to the AFB1diet significantly decreased the ADWG and had a decrease trend on ADFI in broilers. Addition of300mg/kg ALA protected against the liver function damage of broilers induced by chronic low dose of AFB1as estimated by significantly (P<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase, and histological morphology. After fed diet containing AFB1, MDA (P<0.05) and nitric oxide (NO) levels (P<0.05) increased; the activity of glutathione peroxidase (GSH-Px)(P<0.05) decreased and GSH (P<0.05) content depleted in the chicken liver, while the expression of GSH-Px (P <0.05) mRNA was also down-regulated, but these negative effects were inhibited by the addition of300mg/kg ALA. Meantime, ALA alone can decrease the levels of MDA and NO, increase the activities of T-SOD, GR and GSH-Px and GSH level. AFB1significantly up-regulated the expression of the hepatic CYP1A1and CYP2H1, down-regulated the expression of the hepatic glutathione S-transferase (GSTa), and had no any change on the expression of epoxide hydrolase (P>0.05). However, the supplementation of ALA in AFB1-diet down-regulated the expression of the CYP1A1and CYP2H1, and tended to up-regulate the expression of GSTa gene. The pro-inflammatory factor IL-6(P<0.05) mRNA level increased in the AFB1group as compare to the control group. Additionally, the protein expression of the nuclear factor kappa B (NF-κB) p65and inducible nitric oxide synthase increased significantly (P<0.05) in the AFB1group compared to the corresponding control group. In addition, the increased expressions of IL-6, TNFa and IFNy were observed in birds exposed to the AFB1-contaminated diet. However, these negative effects were inhibited by treatment of ALA. The results suggest that ALA inhibits the performance in broiler chickens exposed to AFB1, but improves birds health, alleviates AFB1induced liver damage, enhance liver antioxidant ability, modulates the liver biotransformation, inhibits the inflammatory response in liver and spleen, and reduce the protein expression of NF-κB.
引文
1. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med,1995.19(2):p.227-250.
    2. Bilska A, Wlodek L. Lipoic acid-the drug of the future. Pharmacol. Rep.,2005.57(5):p. 570-577.
    3. Chen P, Ma QG, Ji C, et al. Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. Int. J. Mol. Sci,2011.12(12):p.8476-8488.
    4. Zhang Y, Hongtrakul K., Ji C, et al. Effects of dietary alpha-lipoic acid on anti-oxidative ability and meat quality in arbor acres broilers. Asian-Aust. J. Anim. Sci,2009.22(8):p. 1195-1201.
    5. Bai XM, Ma QG, Zhao LH, et al. Effects of alpha-lipoic acid supplementation on antioxidative ability and performance of sows and nursing piglets. J. Anim. Physiol. Anim. Nutr (Berl),2011.6(96):p.955-961.
    6. Surai PF. Natural antioxidants in poultry nutrition:New developments.16th European Symposium on Poultry Nutrition. Scotland, UK,2010. p.669-676.
    7. Marasas WF, Gelderblom WC, Shephard GS, et al. Mycotoxins:a global problem. See Ref,2008.54:p.29-40.
    8. Guengerich FP, Johnson WW, Ueng YF, et al. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ. Health Perspect,1996.104(Suppl 3):p. 557-562.
    9. Alexander D. Lipoic Acid Report.2012.
    10. Podda M, Tritschler HJ, Ulrich H, et al. a-Lipoic acid supplementation prevents symptoms of vitamin E deficiency. Biochem. Biophys. Res. Commun,1994.204(1):p. 98-104.
    11. Lodge JK, Packer L.9 Natural Sources of Lipcic Acid in Plant and Animal Tissues. Antioxidant Food Supplements in Human Health,1999:p.121-141.
    12. Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition,2001.17(10):p.888-895.
    13. Zhou Q, Lam PY, Han D, et al. Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS lett,2009. 583(7):p.1132-1140.
    14. Gibson GE, Park LC, Sheu KF, et al. The a-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem. Int,2000.36(2):p.97-112.
    15. Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase:a target and generator of oxidative stress. Philos. Trans. R. Soc. B:Biol. Sci,2005.360(1464):p.2335-2345.
    16. Jacob S, Streeper RS, Fogt DL, et al. The antioxidant a-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes, 1996.45(8):p.1024-1029.
    17. Sies H. Physiological society symposium:impaired endothelial and smooth muscle cell function in oxidative stress. Exp. Physiol,1997.82:p.291-295.
    18. Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med,2010.49(11):p.1603-1616.
    19. Sies H. Oxidative stress:from basic research to clinical application. Am. J. Med,1991. 91(3):p.S31-S38.
    20. Ojano-Dirain CP, Iqbal M, Cawthon D, et al. Determination of mitochondrial function and site-specific defects in electron transport in duodenal mitochondria in broilers with low and high feed efficiency. Poult. Sci,2004.83(8):p.1394-1403.
    21. Moreira PI, Harris PL, Zhu X, et al. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J. Alzheimer's Dis,2007.12(2):p.195-206.
    22. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med,2000.29(3):p.222-230.
    23. Bast A, Haenen GR. Lipoic acid:a multifunctional antioxidant. Biofactors,2003.17(1-4): p.207-213.
    24. Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen. Pharmacol,1997.29(3):p.315-331.
    25. Navari-Izzo F, Quartacci MF, Sgherri C, Lipoic acid:a unique antioxidant in the detoxification of activated oxygen species. Plant Physiol Bioch,2002.40(6):p.463-470
    26. Jesudason EP, Masilamoni JG, Jesudoss KS, et al. The protective role of DL-a-lipoic acid in the oxidative vulnerability triggered by Aβ-amyloid vaccination in mice. Mol Cell. Biochem,2005.270(1-2):p.29-37.
    27. Sehirli O, Tatlidede E, Yuksel M, et al. Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats. Pharmacology,2007.81(2):p.173-180.
    28. Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid:a therapeutic metal-chelating antioxidant? Biochem. Pharmacol,1995.50(1):p.123-126.
    29. Anuradha B, Varalakshmi P. Protective role of DL-lipoic acid against mercury-induced neural lipid peroxidation. Pharmacol. Res,1999.39(1):p.67-80.
    30. Bush AI. Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging, 2002.23(6):p.1031-1038.
    31. Podda M, Tritschler HJ, Ulrich H, Packer L. a-Lipoic Acid Supplementation Prevents Symptoms of Vitamin E Deficiency. Biochem. Biophys. Res. Commun,1994.204(1):p. 98-104.
    32. Han D, Handelman G, Marcocci L, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors,1997.6(3):p.321-338.
    33. Sen CK, Roy S, Han D, et al. Regulation of Cellular Thiols in Human Lymphocytes by [alpha]-Lipoic Acid:A Flow Cytometric Analysis. Free Radic. Biol. Med,1997.22(7):p. 1241-1257.
    34. Packer L, Cadenas E. Lipoic acid:energy metabolism and redox regulation of transcription and cell signaling. J. Clin. Biochem. Nutr,2011.48(1):p.26-32.
    35. Suh JH, Wang H, Liu RM, et al. (R)-a-Lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues:evidence for increased cysteine requirement for GSH synthesis. Arch. Biochem. Biophys,2004.423(1):p.126-135.
    36. Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems:a perspective on redox systems biology. Free Radic. Biol. Med,2008.44(6):p. 921-937.
    37. Lee HA, Hughes DA. Alpha-lipoic acid modulates NF-κB activity in human monocytic cells by direct interaction with DNA. Exp. Gerontol,2002.37(2):p.401-410.
    38. Lindner V, Collins T. Expression of NF-kappa B and I kappa B-alpha by aortic endothelium in an arterial injury model. Am. J. Pathol,1996.148(2):p.427-438.
    39. Li N, Karin M. Is NF-κB the sensor of oxidative stress? The FASEB Journal,1999. 13(10):p.1137-1143.
    40. Collins T, Cybulsky MI. Cybulsky, NF-κB:pivotal mediator or innocent bystander in atherogenesis? J. Clin. Invest,2001.107(3):p.255-264.
    41. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol,1998.55(11):p.1747-1758.
    42. Zhang WJ, Frei B. a-Lipoic acid inhibits TNF-a-induced NF-κB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J,2001.15(13):p. 2423-2432.
    43. Moini H, Packer L, Saris NE. Antioxidant and prooxidant activities of a-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol,2002.182(1):p.84-90.
    44. Lodge JK, Traber MG, Packer L. Thiol Chelation of Cu< sup> 2 By Dihydrolipoic Acid Prevents Human Low Density Lipoprotein Peroxidation. Free Radic. Biol. Med, 1998.25(3):p.287-297.
    45. Kim MS, Park JY, Namkoong C, et al. Anti-obesity effects of a-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med,2004.10(7):p. 727-733.
    46. Chen WL, Kang CH, Wang SG, et al. alpha-Lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia,2012.55(6):p.1824-1835.
    47. Picard B, Lefaucheur L, Berri C, et al. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev,2002.42(5):p.415-432.
    48. Remignon H, Gardahaut MF, Marche G, et al. Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. J. Muscle Res. Cell Motil,1995.16(2):p.95-102.
    49. Grounds M. Towards understanding skeletal muscle regeneration. Pathol. Res. Pract, 1991.187(1):p.1-22.
    50. Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol,1961.9(2): p.493-495.
    51. Collins CA, Olsen I, Zammit PS, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell,2005.122(2):p. 289-301.
    52. Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science,2005.309(5743):p.2064-2067.
    53. Sherwood RI, Christensen JL, Conboy IM, et al. Isolation of adult mouse myogenic progenitors:functional heterogeneity of cells within and engrafting skeletal muscle. Cell, 2004.119(4):p.543-554.
    54. Dildey DD, Aberle ED, Forrest JC, et al. Porcine muscularity and properties associated with pale, soft, exudative muscle. J. Anim. Sci,1970.31(4):p.681-685.
    55. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin. Genet,2000. 57(1):p.16-25.
    56. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev. Biol,1999. 210(2):p.440-455.
    57. Mal A, Harter ML. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc. Natl. Acad. Sci,2003.100(4):p. 1735-1739.
    58. Hawke TJ, Garry DJ. Myogenic satellite cells:physiology to molecular biology. J. Appl. Physiol,2001.91(2):p.534-551.
    59. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell. Biol,2005.37(10):p.1974-1984.
    60. Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nat. Cell. Biol, 2001.3(11):p.1009-1013.
    61. Quinn LS, Anderson BG, Plymate SR. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Am. J. Physiol. Endocrinol. Metab,2007.293(6):p. E1538-E1551.
    62. Coleman ME, DeMayo F, Yin KC, et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem,1995.270(20):p.12109-12116.
    63. Artaza JN, Bhasin S, Magee TR, et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T (1/2) mesenchymal multipotent cells. Endocrinology,2005. 146(8):p.3547-3557.
    64. Armand AS, Della Gaspera B, Launay T, et al. Expression and neural control of follistatin versus myostatin genes during regeneration of mouse soleus. Dev. Dyn,2003.227(2):p. 256-265.
    65. McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest,2002.109(5):p.595-601.
    66. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. USA,1998.95(25):p.14938-14943.
    67. Yang W, Wang K, Chen Y, et al. Functional characterization of recombinant myostatin and its inhibitory role to chicken muscle development. Acta Biochem. Et Biophys,2003. 35(11):p.1016-1022.
    68. Young JF, Stagsted J, Jensen SK, et al. Ascorbic acid, alpha-tocopherol, and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poult. Sci,2003. 82(8):p.1343-1351.
    69. 王旖,硫辛酸对动物能量平衡的调控及相关信号转导机制.2009.[博士学位论文].北京:中国农业大学.
    70. 白兆鹏,硫辛酸对热应激下产蛋生产性能及抗氧化能力的研究.2004.[硕士学位论文].哈尔滨:东北农业大学.
    71. Imik H, Ozkanlar S, Kaynar O, et al. Effects of vitamin E, C, and a-lipoic acid supplementation on the serum glucose, lipid profile, and proteins in quails under heat stress. B. Vet I. Pulawy,2009.53:p.521-526.
    72. Hamano Y. Influence of lipoic acid on lipid metabolism and beta-adrenergic response to intravenous or oral administration of clenbuterol in broiler chickens. Reprod. Nutr. Dev, 2002.42(4):p.307-316.
    73. Karaman M, Ozen H, Tuzcu M, et al. Pathological, biochemical and haematological investigations on the protective effect of a-lipoic acid in experimental aflatoxin toxicosis in chicks. Br. Poult. Sci,2010 51 (1):p.132-141.
    74. Yasin M, Asghar A, Anjum FM, et al. Oxidative stability enhancement of broiler bird meats with a-lipoic acid and a-tocopherol acetate supplemented feed. Food Chem,2012. 131(3):p.768-773.
    75. Arshad MS, Anjum FM, Asghar A. Lipid stability and antioxidant profile of microsomal fraction of broiler meat enriched with a-lipoic acid and a-tocopherol acetate. J. Agric. Food chem,2011.59(13):p.7346-7352.
    76. Gourama H, Bullerman LB. Aspergillus flavus and Aspergillus parasiticus:Aflatoxigenic fungi of concern in foods and feeds:A review. J. Food Protect(?),1995.58(12):p. 1395-1404.
    77. Richard JL. Some major mycotoxins and their mycotoxicoses-an overview. Int. J. food Microbiol,2007.119(1):p.3-10.
    78. 张自强,柏凡,我国饲料中黄曲霉毒素B1污染的分布规律研究.中国畜牧杂志,2009.45(12):p.27-30.
    79. Liu R, Jin Q, Tao G, et al. Degradation of aflatoxin B1 in aqueous medium through UV irradiation. Eur. Food Res. Technol,2011.233(6):p.1007-1012.
    80. Yunus AW, Razzazi-Fazeli E, Bohm J. Aflatoxin B1 in affecting broiler's performance, immunity, and gastrointestinal tract:A review of history and contemporary issues. Toxins, 2011.3(6):p.566-590.
    81. Gao X, Ma QG, Zhao LH, et al. Isolation of Bacillus subtilis:screening for aflatoxins B1, M1, and G1 detoxification. Eur. Food Res. Technol,2011.232(6):p.957-962.
    82. Mishra H, Das C. A review on biological control and metabolism of aflatoxin. Crit. Rev. Food Sci. Nutr,2003.43(3):p.245-264
    83. He J, Zhang KY, Chen DW, et al. Effects of maize naturally contaminated with aflatoxin B1 on growth performance, blood profiles and hepatic histopathology in ducks. Livest. Sci,2013.152(2-3):p.192-199.
    84. Magnoli AP, Monge MP, Miazzo RD, et al. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poult Sci,2011.90(1):p.48-58.
    85. Ramos A, Hernandez E. In situ absorption of aflatoxins in rat small intestine. Mycopathologia,1996.134(1):p.27-30.
    86. Wogan GN, Edwards GS, Shank RC. Excretion and tissue distribution of radioactivity from aflatoxin B1-14C in rats. Cancer Res,1967.27(10 Part 1):p.1729-1736.
    87. Wolzak A, Pearson AM, Coleman TH, et al. Aflatoxin carryover and clearance from tissues of laying hens. Food Chem. Toxicol,1986.24(1):p.37-41.
    88. Hussain Z, Khan MZ, Khan A, et al. Residues of aflatoxin B1 in broiler meat:Effect of age and dietary aflatoxin B1 levels. Food Chem. Toxicol,2010.48(12):p.3304-3307.
    89. Wild CP, Turner PC. Exposure biomarkers in chemoprevention studies of liver cancer. IARC Sci. Publ,2000.154:p.215-222.
    90. Hendrickse RG. Kwashiorkor:the hypothesis that incriminates aflatoxins. Pediatrics, 1991.88(2):p.376-379.
    91. Verma R. Aflatoxin cause DNA damage. Int. J. Hum. Genet,2004.4(4):p.231.
    92. Agag B. Mycotoxins in foods and feeds:1-aflatoxins. Ass. Univ. Bull. Environ. Res,2004. 7(1):p.173-205.
    93. Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology,2001.167(2):p.101-134.
    94. Dhanasekaran D, Shanmugapriya S, Thajuddin N, et al. Aflatoxins and Aflatoxicosis in Human and Animals. Aflatoxins-Biochemistry and Molecular Biology,2011:p.221-254.
    95. Modirsanei M, Mansoori B, Khosravi AR, et al. Effect of diatomaceous earth on the performance and blood variables of broiler chicks during experimental aflatoxicosis. J. Sci. Food Agr,2008.88(4):p.626-632.
    96. Zaghini A, Martelli G, Roncada P, et al. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens:effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poult. Sci,2005.84(6):p.825-832.
    97. Klein PJ, Van Vleet TR, Hall JO, et al. Biochemical factors underlying the age-related sensitivity of turkeys to aflatoxin B1. Comp. Biochem. Physiol. C:Toxicol. Pharmacol, 2002.132(2):p.193-201.
    98. Kana J, Teguia A, Tchoumboue J. Effect of dietary plant charcoal from Canarium schweinfurthii Engl. and maize cob on aflatoxin B1 toxicosis in broiler chickens. Adv. Anim. Biosci,2010.1(02):p.462-463.
    99. Raju M, Devegowda G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poult. Sci,2000.41(5): p.640-650.
    100. Smith R. Inhibition of amino acid activation in liver and Escherichia coll preparations by aflatoxin in vitro. Biochem. J,1965.95, p.43-44.
    101. Shankaran R, Raj H, Venkitasubramanian T. Effect of aflatoxin on carbohydrate metabolism in chick liver. Enzymologia,1970.39(6):p.371-378.
    102. Chou C, Marth E. Incorporation of (2-14C) acetate into lipids of mink (Mustela vison) liver and intestine during in vitro and in vivo treatment with aflatoxin B1. Appl. Microbiol, 1975.30(6):p.946-950.
    103. Coulombe Jr RA, Eaton D, Groopman J. Nonhepatic disposition and effects of aflatoxin B1. The toxicology of aflatoxins:human health, veterinary and agricultural significance (Eaton DA, Groopman JD, eds). San Diego, CA:Academic Press,1993:p.89-101.
    104. Bbosa GS, Kitya D, Lubega A, et al. Review of the Biological and Health Effects of Aflatoxins on Body Organs and Body Systems.2013.
    105. Ghosh R, Chauhan H, and Roy S. Immunosuppression in broilers under experimental aflatoxicosis. Br. Vet. J,1990.146(5):p.457-462.
    106. Yarru LP, Settivari RS, Gowda NK, et al. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci,2009.88(12):p.2620-2727.
    107. McDonagh PD, Judah DJ, Hayes JD, et al. Determinants of specificity for aflatoxin Bi-8, 9-epoxide in Alpha-class glutathione S-transferases. Biochem. J,1999.339:p.95-101.
    108. Shen HM, Shi CY, Shen Y, et al. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic. Biol. Med,1996.21(2):p. 139-146.
    109. Toskulkao C, Taycharpipranai S, Glinsukon T. Enhanced hepatotoxicity of aflatoxin B1 by pretreatment of rats with ethanol. Res. Commun. Chem. Pathol. Pharmacol,1982.36(3): p.477-491.
    110. Toskulkao C, Glinsukon T. Hepatic lipid peroxidation and intracellular calcium accumulation in ethanol potentiated aflatoxin B1 toxicity. J. Pharmacobiodyn,1988.11(3): p.191-197.
    111. El-Agamy DS. Comparative effects of curcumin and resveratrol on aflatoxin B1-induced liver injury in rats. Arch. Toxicol,2010.84(5):p.389-396.
    112. Choi KC, Chung WT, Kwon JK, et al. Inhibitory effects of quercetin on aflatoxin B1-induced hepatic damage in mice. Food Chem. Toxicol,2010.48(10):p.2747-2753.
    113. Banu GS, Kumar G, Murugesan A. Ethanolic leaves extract of Trianthema portulacastrum 1. ameliorates aflatoxin b1 induced hepatic damage in rats. Indian J. Clin. Biochem,2009. 24(3):p.250-256.
    114. Gowda NK, Ledoux DR, Rottinghaus GE, et al. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br. J. Nutr,2009.102(11):p.1629-1634.
    115. Gesing A, Karbownik-Lewinska M. Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats. Cell Biochem. Funct, 2008.26(3):p.314-319.
    116. Naaz F, Javed S, Abdin M. Hepatoprotective effect of ethanolic extract of< i> Phyllanthus amarus Schum. et Thonn. on aflatoxin B1-induced liver damage in mice. J. Ethnopharmacol,2007.113(3):p.503-509.
    117. Preetha SP, Kanniappan M, Selvakumar E, et al. Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats. Comp. Biochem. Physiol. C:Toxicol. Pharmacol, 2006.143(3):p.333-339.
    118. Rastogi R, Srivastava AK, Rastogi AK. Long term effect of aflatoxin B1 on lipid peroxidation in rat liver and kidney:effect of picroliv and silymarin. Phytother. Res,2001. 15(4):p.307-310.
    119. Yang CF, Liu J, Shen HM, et al. Protective Effect of Ebselen on Aflatoxin B1-Induced Cytotoxicity in Primary Rat Hepatocytes. Pharmacol. Toxicol,2000.86(4):p.156-161.
    120. Liu J, Yang CF, Lee BL, et al. Effect of Salvia miltiorrhiza on aflatoxin B1-induced oxidative stress in cultured rat hepatocytes. Free Radic. Res,1999.31(6):p.559-568.
    121.Shen HM, Ong CN, Shi CY. Involvement of reactive oxygen species in aflatoxin B1-induced cell injury in cultured rat hepatocytes. Toxicology,1995.99(1):p.115-123.
    122. Shen HM, Shi CY, Lee HP, et al. Aflatoxin B1-Induced Lipid Peroxidation in Rat Liver. Toxicol. Appl. Pharmacol,1994.127(1):p.145-150.
    123. Sudakin DL. Dietary Aflatoxin Exposure and Chemoprevention of Cancer:A Clinical Review:REVIEW. J. Toxicol. Clin. Toxicol,2003.41(2):p.195-204.
    124. Groopman JD, Kensler TW. The light at the end of the tunnel for chemical-specific biomarkers:daylight or headlight? Carcinogenesis,1999.20(1):p.1-11.
    125. Groopman JD, Kensler TW, Wild CP. Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annu. Rev. Public Health,2008. 29:p.187-203.
    126. 赵丽红等,黄曲霉毒素降解菌对饲喂含AFB1霉变玉米日粮蛋鸡生产性能和蛋品质的影响.中国畜牧杂志,2012(11):p.31-35.
    127. Ma QG, Gao X, Zhou T, et al. Protective effect of Bacillus subtilis ANSB060 on egg quality, biochemical and histopathological changes in layers exposed to aflatoxin B1. Poult. Sci,2012.91(11):p.2852-2857.
    128. Fan Y, Zhao L, Ma Q, et al. Effects of< i> Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol,2013.59:p.748-753.
    129. Coulombe RA, Guarisco JA, Klein PJ, et al. Chemoprevention of aflatoxicosis in poultry by dietary butylated hydroxytoluene. Anim. Feed Sci. Technol,2005.121(1):p.217-225.
    130. Tedesco D, Steidler S, Galletti S, et al. Efficacy of silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poult. Sci,2004.83(11):p. 1839-1843.
    131. Wilson HR, Manley JG, Harms RH, et al. The response of Bobwhite quail chicks to dietary ammonium and an antibiotic-vitamin supplement when fed B1 aflatoxin. Poult. Sci,1978.57(2):p.403-407.
    132. Yu MW, Lien JP, Chiu YH, et al. Effect of aflatoxin metabolism and DNA adduct formation on hepatocellular carcinoma among chronic hepatitis B carriers in Taiwan. J. hepatol,1997.27(2):p.320-330.
    133. Singletary K. Effect of dietary butylated hydroxytoluene on the in vivo distribution, metabolism and DNA-binding of 7,12-dimethylbenz [< i> a] anthracene. Cancer Lett, 1990.49(3):p.187-193.
    134. Klein PJ, Van Vleet TR, Hall JO, et al. Effects of dietary butylated hydroxytoluene on aflatoxin B1-relevant metabolic enzymes in turkeys. Food Chem. Toxicol,2003.41(5):p. 671-678.
    135. Klein PJ, Van Vleet TR, Hall JO, et al. Dietary butylated hydroxytoluene protects against aflatoxicosis in Turkeys. Toxicol. Appl. Pharmacol,2002.182(1):p.11-19.
    136. Yi X, Maeda N. Endogenous production of lipoic acid is essential for mouse development. Mol. Cell. Biol,2005.25(18):p.8387-8392.
    137. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods,2001.25(4):p.402-408.
    138. Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem,2004.279(13):p.12005-12008.
    139. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature,2004. 428(6982):p.569-574.
    140. Prieto-Hontoria PL, Pereez-Matute P, Fernandez-Galilea M, et al. Lipoic acid prevents body weight gain induced by a high fat diet in rats:effects on intestinal sugar transport. J. Physiol. Biochem,2009.65(1):p.43-50.
    141. Shen QW, Jones CS, Kalchayanand N, et al. Effect of dietary a-lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice. J. Anim. Sci,2005.83(11):p.2611-2617.
    142. Huong DT, Ide T. Dietary lipoic acid-dependent changes in the activity and mRNA levels of hepatic lipogenic enzymes in rats. Br. J. Nutr,2008.100(1):p.79-87.
    143. 陈鹏,外源抗氧化剂对肉鸡和肥育猪肉品质和抗氧化性能的调控.2013.[博士学位论文].北京:中国农业大学.
    144. 张勇,硫辛酸、乙酰肉碱对肉仔鸡肉品质及肌纤维类型分布的营养调控.2010.[博士学位论文].北京:中国农业大学.
    145. Darras VM, Cokelaere M, Dewil E, et al. Partial food restriction increases hepatic inner ring deiodinating activity in the chicken and the rat. Gen. Comp. Endocrinol,1995. 100(3):p.334-338.
    146. Soukup T, Zacharova G, Smerdu V, et al. Body, heart, thyroid gland and skeletal muscle weight changes in rats with altered thyroid status. Physiol. Res,2001.50(6):p.619-626.
    147. Berg EP, Maddock KR, Linville ML. Creatine monohydrate supplemented in swine finishing diets and fresh pork quality:III. Evaluating the cumulative effect of creatine monohydrate and alpha-lipoic acid. J. Anim. Sci,2003.81(10):p.2469-2474.
    148. Bou R, Codony R, Tres A, et al. Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products. Crit. Rev. Food Sci. Nutr,2009. 49(9):p.800-822.
    149. Valberg S, Haggendal J, Lindholm A. Blood chemistry and skeletal muscle metabolic responses to exercise in horses with recurrent exertional rhabdomyolysis. Equine Vet. J, 1993.25(1):p.17-22.
    150. Bagh MB, Thakurta IG, Biswas M, et al. Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology,2011.12(2):p.119-131.
    151. Ruiz JA, Guerrero L, Arnau J, et al. Descriptive sensory analysis of meat from broilers fed diets containing vitamin E or beta-carotene as antioxidants and different supplemental fats. Poult. Sci,2001.80(7):p.976-982.
    152. Guo Q, Richert BT, Burgess JR, et al. Effect of dietary vitamin E supplementation and feeding period on pork quality. J. Anim. Sci,2006.84(11):p.3071-3078.
    153. Makeeva AV, Popova TN, Matasova LV, et al. Effects of lipoic acid on citrate content, aconitate hydratase activity, and oxidative status during myocardial ischemia in rats. Biochemistry (Moscow),2008.73(1):p.76-79.
    154. Chae CH, Shin CH, Kim HT. The combination of a-lipoic acid supplementation and aerobic exercise inhibits lipid peroxidation in rat skeletal muscles. Nutr.Res,2008.28(6): p.399-405.
    155. Fridovich I. Superoxide radical and superoxide dismutases. Annu.Rev. Biochem,1995. 64(1):p.97-112.
    156. Dracup M, Turner NC, Tang C, et al. Responses to abiotic stresses. J.S. Gladstones, C. Atkins, J. Hamblin (Eds.), Lupin as Crop Plants. Biology, Production and Utilization, CAB International, Wallingford.,1998:p.227-262.
    157. Stevens MJ, Obrosova I, Cao X, et al. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes,2000.49(6):p.1006-1015.
    158. Martins VD, Manfredini V, Peralba MC, et al. Alpha-lipoic acid modifies oxidative stress parameters in sickle cell trait subjects and sickle cell patients. Clin. Nutr,2009.28(2):p. 192-197.
    159. Warriss PD. Meat science:an introductory text. CABI Pub. Inc, New York,2000.
    160. Xie Z, Kometiani P, Liu J, et al. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem,1999.274(27):p.19323-19328.
    161. Davidson RJ, Robertson JD, Galea G, et al. Hematological changes associated with marathon running. Int. J. Sports Med,1987.8(01):p.19-25.
    162. Berridge MJ. Unlocking the secrets of cell signaling. Annu. Rev. Physiol,2005.67:p. 1-21.
    163. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling:dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol,2003.4(7):p.517-529.
    164. Jain SK, Lim G. Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na< sup>++K< sup>+)-and Ca< sup>++-ATPase activities in high glucose-treated human erythrocytes. Free Radic. Biol. Med,2000. 29(11):p.1122-1128.
    165. Ashmore CR, Doerr L. Comparative aspects of muscle fiber types in different species. Exp. Neurol,1971.31(3):p.408-418.
    166. Schiaffino S, Reggiani C. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol,1994.77(2):p.493-501.
    167. Tidyman WE, Moore LA, Bandman E. Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Dev. Dynam,1997.208(4):p. 491-504.
    168. Karlsson AH, Klont RE, Fernandez X. Skeletal muscle fibres as factors for pork quality. Livest. Prod. Sci,1999.60(2):p.255-269.
    169. Lee SH, Joo ST, Ryu YC. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci,2010.86(1):p.166-170.
    170. Reaven GM. Relationship between insulin resistance and hypertension. Diabetes Care, 1991.14(Supplement 4):p.33-38.
    171. Muscat GE, Downes M, Dowhan DH. Regulation of vertebrate muscle differentiation by thyroid hormone:the role of the myoD gene family. Bioessays,1995.17(3):p.211-218.
    172. Caiozzo VJ, Baker MJ, Baldwin KM. Novel transitions in MHC isoforms:separate and combined effects of thyroid hormone and mechanical unloading. J. Appl. Physiol,1998. 85(6):p.2237-2248.
    173. Vadaszova A, Zacharova G, Machacova K, et al., Influence of thyroid status on the differentiation of slow and fast muscle phenotypes. Physiol. Res,2004.53:p. S57-62.
    174. Li Y, Yuan L, Yang X, et al. Effect of early feed restriction on myofibre types and expression of growth-related genes in the gastrocnemius muscle of crossbred broiler chickens. Br. J. Nutr,2007.98(2):p.310-9.
    175. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival:modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods,1986.89(2):p.271-277.
    176. Packer L, Cadenas E. Lipoic acid:energy metabolism and redox regulation of transcription and cell signaling. J. Clin. Biochem. Nutr,2011.48(1):p.26.
    177. Michikoshi H, Nakamura T, Sakai K, et al. a-Lipoic acid-induced inhibition of proliferation and met phosphorylation in human non-small cell lung cancer cells. Cancer Lett,2013.335(2):p.472-478.
    178. Feuerecker B, Pirsig S, Seidl C, et al. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol.Ther,2012.13(14):p.1425-1435.
    179. Bernini R, Crisante F, Merendino N, et al. Synthesis of a novel ester of hydroxytyrosol and a-lipoic acid exhibiting an antiproliferative effect on human colon cancer HT-29 cells. Eur. J. Med. Chem,2011.46(1):p.439-446.
    180. Liu L, Zhu Y, Xu Y, et al. Melatonin delays cell proliferation by inducing G1 and G2/M phase arrest in a human osteoblastic cell line hFOB 1.19. J. Pineal Res,2011.50(2):p. 222-231.
    181. von Maltzahn J, Jones AE, Parks RJ, et al. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc. Natl. Acad. Sci,2013.110(41):p. 16474-16479.
    182. Aperia A. New roles for an old enzyme:Na, K-ATPase emerges as an interesting drug target. J. Intern.Med,2007.261(1):p.44-52.
    183. Nakanishi C, Toi M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer,2005.5(4):p.297-309.
    184. Tapscott SJ. The circuitry of a master switch:Myod and the regulation of skeletal muscle gene transcription. Development,2005.132(12):p.2685-2695.
    185. Ludolph DC, Konieczny SF. Transcription factor families:muscling in on the myogenic program. FASEB J,1995.9(15):p.1595-1604.
    186. Molkentin JD, Olson EN. Defining the regulatory networks for muscle development. Curr. Opini. Genet. Dev,1996.6(4):p.445-453.
    187. Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J. Biol. Chem,2002.277(51):p.49831-49840.
    188. Andres V, Walsh K. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell Biol,1996.132(4):p.657-666.
    189. Offer G. Modelling of the formation of pale, soft and exudative meat:Effects of chilling regime and rate and extent of glycolysis. Meat Sci,1991.30(2):p.157-184.
    190. 张国强,日粮肌苷酸、β-丙氨酸和组氨酸对肉鸡肉品质的营养调控.2008.[博士学位论文].北京:中国农业大学.
    191. Everts M, Clausen T. Activation of the Na-K pump by intracellular Na in rat slow-and fast-twitch muscle. Acta Physiol. Scand,1992.145(4):p.353-362.
    192. Surai PF. Natural antioxidants in poultry nutrition:New developments in 16th European Symposium on Poultry Nutrition.,2006 p.669-676.
    193. Agag B. Mycotoxins in foods and feeds:1-aflatoxins. Ass. Univ. Bull. Environ. Res,2004. 7(1):p.176-206.
    194. Chaytor AC, See MT, Hansen JA, et al. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J Anim. Sci,2011.89(1):p.124-35.
    195. Matur E, Ergul E, Akyazi I, et al. Effects of Saccharomyces cerevisiae extract on haematological parameters, immune function and the antioxidant defence system in breeder hens fed aflatoxin contaminated diets. Br. Poult. Sci,2011.52(5):p.541-550.
    196. Surai P. Natural antioxidants and mycotoxins, in Natural Antioxidants in Avian Nutrition and Reproduction.1st ed. Nottingham University Press, Nottingham, UK.2002. p. 455-509.
    197. Muller C, Diinschede F, Koch E, et al. a-Lipoic acid preconditioning reduces ischemia-reperfusion injury of the rat liver via the PI3-kinase/Akt pathway. Am. J. Physiol. Gastrointest. Liver Physiol,2003.285(4):p. G769-G778.
    198. Packer L. a-Lipoic acid:a metabolic antioxidant which regulates NF-κB signal transduction and protects against oxidative injury. Drug Metab.Rev,1998.30(2):p. 245-275.
    199. Rogers SA. Lipoic acid as a potential first agent for protection from mycotoxins and treatment of mycotoxicosis. Arch. Environ. Health.,2003.58(8):p.528-532.
    200. Trucksess MW, Stack ME, Nesheim S, et al. Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1, and G2 in corn, almonds, brazil nuts, peanuts, and pistachio nuts:collaborative study. J. AOAC. Int.,1994.77(6):p. 1512-1521.
    201. Wang L, Han Y, Kim CS, et al. Resistance of SHP-null mice to bile acid-induced liver damage, J. Biol. Chem,2003,278(45). p.44475-44481.
    202. Hong YH, Lillehoj HS, Lee SH, et al. Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-< i> a factor (LITAF). Dev. Comp. Immunol,2006. 30(10):p.919-929.
    203. Druyan S, Cahaner A, Ashwell CM. The expression patterns of hypoxia-inducing factor subunit α-1, heme oxygenase, hypoxia upregulated protein 1, and cardiac troponin T during development of the chicken heart. Poult.Sci,2007.86(11):p.2384-2389.
    204. Ames B.N. Dietary carcinogens and anticarcinogens oxygen radicals and degenerative diseases. Science,1983.221(4617):p.1256-1264.
    205. Ho YS, Lai CS, Liu HI, et al. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochem. Pharmacol,2007.73(11):p.1786-1795.
    206. Odabasoglu F, Halici Z, Aygun H, et al. a-Lipoic acid has anti-inflammatory and anti-oxidative properties:an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br. J. Nutr,2011.105(1):p.31-43.
    207. Miazzo R, Peralta MF, Magnoli C, et al. Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poult. Sci,2005.84(1):p.1-8.
    208. Magnoli AP, Monge MP, Miazzo RD, et al. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poult. Sci,2011.90(1):p.48-58.
    209. Oguz H, Kurtoglu V, Coskun B. Preventive efficacy of clinoptilolite in broilers during chronic aflatoxin (50 and 100ppb) exposure. Res. Vet. Sci,2000.69(2):p.197-201.
    210. Hill AS, Werner JA, Rogers QR, et al. Lipoic acid is 10 times more toxic in cats than reported in humans, dogs or rats. J. Anim.Physiol. Anim.Nutr,2004.88(3-4):p. 150-156.
    211. Cremer DR, Rabeler R, Roberts A, et al. Long-term safety of alpha-lipoic acid (ALA) consumption:A 2-year study. Regul. Toxicol. Pharmacol,2006.46(3):p.193-201.
    212. Shi YH, Xu ZR, Feng JL, et al. Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim. Feed Sci. Technol,2006.129:p. 138-148.
    213. Shi Y, Xu Z, Sun Y, et al. Effects of two different types of montmorillonite on growth performance and serum profiles of broiler chicks during aflatoxicosis. Turk. J. Vet. Anim. Sci,2009.33(1):p.15-20.
    214. Abdel-Wahhab MA, Aly SE. Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J. Agric. Food. Chem,2003.51(8):p. 2409-2414.
    215. Gowda NK, Ledoux DR, Rottinghaus GE, et al. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br. J. Nutr,2009.102(11):p.1629.
    216. Abdelhamid AM, Dorra TM, Mansy SE, et al. Effect of raising dietary protein, amino acids and/or energy levels as an attempt to alleviate severity of the chronic aflatoxicosis by broiler chicks.2. Biochemical characteristics. Arch. Tierernahr,1994.46:p.347-355.
    217. Abdel-Zaher AO, Abdel-Hady RH, Mahmoud MM, et al. The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage. Toxicology, 2008.243(3):p.261-270.
    218. Pari L, Murugavel P. Protective effect of a-lipoic acid against chloroquine-induced hepatotoxicity in rats. J. Appl. Toxicol,2004.24(1):p.21-26.
    219. Czaja MJ. Cell signaling in oxidative stress-induced liver injury. Semin. Liver Dis,2007. 27(4):p.378-389.
    220. Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J. hepatol, 2001.35(2):p.297-306.
    221. Larsson P, Busk L, Tjalve H. Hepatic and extrahepatic bioactivation and GSH conjugation of aflatoxin B1 in sheep. Carcinogenesis,1994.15(5):p.947-955.
    222. Shay KP, Moreau RF, Smith EJ, et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta,2009.1790(10): p.1149-1160.
    223. Reyes-Gordillo K, Segovia J, Shibayama M, et al. Curcumin protects against acute liver damage in the rat by inhibiting NF-κB, proinflammatory cytokines production and oxidative stress. Biochim. Biophys. Acta,2007.1770(6):p.989-996.
    224. Kodama M, Inoue F, Akao M. Enzymatic and non-enzymatic formation of free radicals from aflatoxin B1. Free Radic. Res. Commun,1990.10(3):p.137-142.
    225. Dwivedi N, Flora G, Kushwaha P, et al. Alpha-lipoic acid protects oxidative stress, changes in cholinergic system and tissue histopathology during co-exposure to arsenic-dichlorvos in rats. Environ. Toxicol. Pharmacol,2013.
    226. Wu D, Cederbaum Al. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health,2003.27:p.277-284.
    227. Akahori M, Takatori A, Kawamura S, et al. No regional differences of cytochrome P450 expression in the liver of Cynomolgus monkeys (Macaca fascicularis). Exp. Anim,2005. 54(2):p.131-136.
    228. Hari Kumar KB, Kuttan R. Inhibition of drug metabolizing enzymes (cytochrome P450) in vitro as well as in vivo by Phyllanthus amarus Schum & Thonn. Biol. Pharm. Bull, 2006.29(7):p.1310-1313.
    229. Hamilton JW, Louis CA, Doherty KA, et al. Preferential alteration of inducible gene expression in vivo by carcinogens that induce bulky DNA lesions. Mol. Carcinog,1993. 8(1):p.34-43.
    230. Haas S, Pierl C, Harth V, et al. Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas. Int. J. cancer,2006.119(8):p. 1785-1791.
    231. Yip SS, Coulombe RA. Molecular cloning and expression of a novel cytochrome P450 from turkey liver with aflatoxin B1 oxidizing activity. Chem. Res. Toxicol,2006.19(1):p. 30-37.
    232. Tiedge M, Lortz S, Munday R, et al. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes,1998.47(10):p.1578-1585.
    233. Tiemersma EW, Omer RE, Bunschoten A, et al. Role of genetic polymorphism of glutathione-S-transferase T1 and microsomal epoxide hydrolase in aflatoxin-associated hepatocellular carcinoma. Cancer Epidemiol. Biomarker,2001.10(7):p.785-791.
    234. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin. Rev. Allergy. Immunol,2009.36(1):p.4-12.
    235. Choy WN. A review of the dose-response induction of DNA adducts by aflatoxin B1 and its implications to quantitative cancer-risk assessment. Mutat. Res,1993.296(3):p. 181-198.
    236. Hinton DM, Myers MJ, Raybourne RA, et al. Immunotoxicity of aflatoxin B1 in rats: effects on lymphocytes and the inflammatory response in a chronic intermittent dosing study. Toxicol. Sci,2003.73(2):p.362-377.
    237. Park EJ, Lee JH, Yu GY, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell,2010.140(2):p. 197-208.
    238. Zhang Y, Han P, Wu N, et al. Amelioration of lipid abnormalities by alpha-lipoic acid through antioxidative and anti-inflammatory effects. Obesity,2011.19(8):p.1647-53.
    239. van den Berg R, Haenen GR, van den Berg H, et al. Transcription factor NF-κB as a potential biomarker for oxidative stress. Br. J. Nutr,2001.86(S1):p. S121-S127.
    240. Jeong WS, Kim IW, Hu R, et al. Modulatory properties of various natural chemopreventive agents on the activation of NF-κB signaling pathway. Pharm. Res,2004. 21(4):p.661-670.
    241. Zhang WJ, Wei H, Hagen T, et al. a-Lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc. Natl. Acad. Sci,2007.104(10):p.4077-4082.
    242. Sass G, Koerber K, Bang R, et al. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J. Clin. Invest,2001.107(4):p.439-447.
    243. Liang JF, Akaike T. Inhibition of nitric oxide synthesis in primary cultured mouse hepatocytes by a-lipoic acid. Chem. Biol. Interact,2000.124(1):p.53-60.
    244. Dugyala RR, Sharma RP. The effect of aflatoxin B, on cytokine mRNA and corresponding protein levels in peritoneal macrophages and splenic lymphocytes. Int. J. Immunopharmacol,1996.18(10):p.599-608.
    245. Moon EY, Rhee DK, Pyo S. In vitro suppressive effect of aflatoxin B1 on murine peritoneal macrophage functions. Toxicology,1999.133(2):p.171-179.
    246. OLAH I, VERVELDE L. Structure of the avian lymphoid system, In:Davison F, Kaspers B, Schat KA, editors. Avian Immunology. London:Academic Press.,2008 p.13-49
    247. Meissonnier GM, Pinton P, Laffitte J, et al. Immunotoxicity of aflatoxin B1:impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol,2008.231(2):p.142-149.
    248. Ellinger-Ziegelbauer H, Stuart B, Wahle B, et al. Characteristic expression profiles induced by genotoxic carcinogens in rat liver. Toxicol. Sci,2004.77(1):p.19-34.
    249. Maczurek A, Hager K, Kenklies M, et al. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Adv. Drug Deliv. Rev,2008.60(13-14): p.1463-1470.
    250. Kang KP, Kim DH, Jung YJ, et al. Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol. Dial. Transplant,2009. 24(10):p.3012-20.
    251. Ramyaa P, Krishnaswamy R, Padma VV. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells-up regulation of Nrf2 expression and down regulation of NF-kappaB and COX-2. Biochim. Biophys. Acta,2014.1840(1):p.681-92.
    252. Chou TC. The Protective Effect of Alpha-Lipoic Acid in Lipopolysaccharide-Induced Acute Lung Injury Is Mediated by Heme Oxygenase-1. Evid. Based Complement. Alternat. Med,2013.2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700