用户名: 密码: 验证码:
豆粕固态发酵条件及其对断奶仔猪饲用效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究优化了豆粕(soybean meal, SBM)复合菌固态发酵的工艺条件,测定了其消化能、代谢能和氨基酸回肠末端消化率,检验了其在断奶仔猪日粮中替代豆粕的应用效果。论文共包括四部分试验:(1)试验一采用单因素试验设计研究初始含水量、发酵温度、发酵时间、含糖量、外源蛋白酶添加量和中性蛋白酶与酸性蛋白酶的比例对发酵豆粕(fermented soybean meal, FSBM)营养品质的影响,并得到优化的发酵豆粕的加工工艺条件。使用本实验室研发的呼吸袋厌氧发酵技术,由枯草芽孢杆菌(Bacillus subtilis) MA139、嗜热链球菌(Streptococcus thermophilus)和酿酒酵母(Saccharomyces cerevisae)组成复合菌种发酵豆粕。豆粕发酵最终优化方案为:初始含水量,40%;含糖量,0.5%;中性蛋白酶与酸性蛋白酶比例,3:1;外源蛋白酶添加量,0.3%;发酵温度,40℃;发酵时间,5d。(2)试验二选用24头三元杂交(杜×长×大)去势公猪(初始体重(body weight, BW)为32.2±1.7kg),随机分为4个处理,每个处理6个重复,应用全收粪法测定豆粕、发酵豆粕和市场发酵豆粕产品优补健的消化能(digestible energy,DE)和代谢能(metabolizable energy, ME)。结果表明,以干物质基础,豆粕的DE和ME值分别为16.94和16.56MJ/kg,发酵豆粕的DE和ME值分别为17.04和16.51MJ/kg,优补健的DE和ME值分别为17.12和16.54MJ/kg。发酵对豆粕的DE、ME、总能表观消化率及ME/DE均无显著影响,并且发酵豆粕和优补健的DE、ME、总能表观消化率及ME/DE之间差异不显著(P>0.05)。(3)试验三选用8头安装简单T型回肠瘘管的三元杂交(杜×长×大)去势公猪(初始体重为26.8±1.5kg),采用4×4双拉丁方试验设计,测定了豆粕、发酵豆粕和优补健表观和标准回肠末端氨基酸消化率。结果表明,除精氨酸和组氨酸外,发酵豆粕的标准回肠末端氨基酸消化率(standardized ileal digestibility, SID)均与豆粕差异不显著;除赖氨酸、天冬氨酸、甘氨酸和脯氨酸外,优补健的SID值均显著高于发酵豆粕(P<0.05)。(4)试验四利用猪实测的DE和可消化氨基酸的数据,研究发酵豆粕和优补健替代相同DE及可消化氨基酸水平日粮中的豆粕对断奶仔猪生长性能、营养物质全肠道表观消化率、腹泻率及血液指标的影响。试验选用144头(初始体重为8.8±1.2kg)28日龄断奶仔猪(杜×长×大),按照随机区组试验设计,分为4个处理,每个处理6个重复(公母各半),每个重复6头猪。4个处理组如下:1)对照组:玉米-豆粕基础日粮,含24%的豆粕;2)6%发酵豆粕组:用发酵豆粕替代对照组中25%的豆粕;3)12%发酵豆粕组:用发酵豆粕替代对照组中50%的豆粕;4)12%优补健组:用优补健替代对照组中50%的豆粕。结果表明,试验15~28d,与对照组相比,6%发酵豆粕组平均日增重(average daily gain, ADG)和平均日采食量(average daily feed intake, ADF1)显著增高(P<0.05),试验全期,6%发酵豆粕组ADG显著高于对照组和12%优补健组。6%发酵豆粕和12%发酵豆粕组干物质的全肠道表观消化率(apparent total tract digestibility, ATTD)显著高于对照组和12%优补健组(P<0.05),并且12%发酵豆粕组干物质的ATTD显著高于6%发酵豆粕组(P<0.05)。但各处理组之间粗蛋白质、总能、钙和总磷的ATTD差异不显著(P>0.05)。6%发酵豆粕组仔猪前期腹泻率具有降低的趋势(P<0.10),但12%发酵豆粕组和12%优补健组的仔猪前期腹泻率与对照组差异不显著。对照组、6%发酵豆粕组、12%发酵豆粕组和12%优补健组之间仔猪血液指标均无显著差异(P>0.05)。综上所述,以优化后的发酵条件发酵豆粕,营养价值得到改善,抗营养因子含量降低,小分子量蛋白质含量提高。发酵并不影响豆粕的DE、ME和氨基酸回肠末端消化率,替代断奶仔猪日粮中豆粕时,可以提高仔猪生长性能和干物质全肠道表观消化率,缓解仔猪腹泻。
In this research, the fermentation conditions of solid-state fermentated soybean meal (FSBM) were optimized, and concentration of DE and ME, apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids (AA) of FSBM were determined; then the effects of replacing soybean meal (SBM) with FSBM on growth performance, apparent total tract digestibility (ATTD) of nutrients and serum indexes for weaned piglets were further studied. There were four parts in this study:(1) An experiment was conducted to explore a new strategy of co-inoculating Bacillus subtilis MA139with Streptococcus thermophilus and Saccharomyces cerevisiae as starter strains to produce FSBM. Effects of initial moisture content, incubation temperature, incubation duration, sugar addition, and protease supplementation on the nutritional quality of FSBM were investigated. The optimal parameters for solid-state fermentation of SBM were initial moisture content,40%; sugar addition,0.5%; protease supplementation,0.3%; neutral protease to acid protease ratio,3:1; incubation temperature,40℃; incubation duration,5d.(2) Twenty-four barrows (Duroc x Landrace×Yorkshire, initial BW of32.2±1.7kg) were randomly allotted to1of4diets with6replicates per diet. A corn basal diet and3diets based on a mixture of corn and1of3soybean products (SBM, FSBM, and Suprotein(?)(a commercially available FSBM)) were formulated and the DE and ME contents were determined by the difference method. The DE and ME of SBM was16.94and16.56MJ/kg DM. The DE and ME of FSBM was17.04and16.51MJ/kg DM. The DE and ME of Suprotein(?) was17.12and16.54MJ/kg DM. The results showed that there were no differences in DE and ME between SBM and either FSBM product (P>0.05).(3) Eight barrows (initial BW of26.8±1.5kg) were fitted with ileal T-cannulaes and used in a replicated4×4Latin square design to determine the AID and SID of amino acids in SBM, FSBM and Suprotein(?). Three corn-starch-based diets were formulated using each of the3soybean products as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. The results showed that the SID of all AA except arginine and histidine was similar for FSBM and SBM (P>0.05), but Suprotein(?) had greater (P<0.05) SID of most AA except lysine, aspartate, glycine and proline than FSBM.(4) An experiment was conducted to evaluate the effects of replacing soyben meal with FSBM and Suprotein(?) in identical DE and SID of AA diet on performance, ATTD of nutrients and serum indexes of weaned piglets. A total of144piglets (initial BW of8.8±1.2kg) were blocked by weight and fed1of4diets including a control diet with24%SBM as well as diets containing6%and12%FSBM or12%Suprotein(?) added at the expense of SBM. During d15to28, replacing SBM with6%FSBM significantly improved ADG and ADFI (P<0.05) for weaned piglets. During the overall experiment, ADG of piglets fed diets containing6%FSBM was significantly greater (P<0.05) than that of piglets fed SBM. There was significant effect of replacing SBM with FSBM on ATTD of dry matter. Furthermore, ATTD of dry matter was significantly higher in12%FSBM group compared with the6%FSBM group. Compared with SBM group, the6%FSBM group had decreased diarrhea rate (P <0.10). Serum indexes of weaned piglets were not affected by dietary treatments. In conclusion, fermentation with the new strategy did not affect the energy content or the AID and the SID of AA in SBM. However, inclusion of6%FSBM in diets fed to weaned piglets improved performance and ATTD of dry matter and decreased diarrhea rate after weaning likely as a result of better nutritional status and reduced immunological challenge.
引文
程成荣,刘永坚.2004.杂交罗非鱼饲料中发酵豆粕替代鱼粉的研究.广东饲料,13(2):26-27.
    黄志刚,毛志怀.2003.转筒干燥器的现状及发展趋势.食品科学,24(8):185.187.
    李德发主编.2003.大豆抗营养因子.北京:中国科学技术出版社.pp 195-216.
    陆文清,胡起源.2008.猪用无抗生素饲料呼吸膜厌氧发酵生产技术.中国牧业通讯,14:39-40.
    罗智,刘永坚,麦康森,等.2004.石斑鱼配合饲料中发酵豆粕和豆粕部分替代白鱼粉的研究.水产学报,28(2):175-181.
    Paul W. E著,吴玉章等译.2003.基础免疫学.第一版.北京:科学出版社.pp 815-852.
    任平.不同油脂含量玉米干酒糟及其可溶物生长猪能量和氨基酸消化率测定:[硕士学位论文].北京:中国农业大学,2011.
    王娟,陈人人,杨公明,等.2007.高效节能的真空带式连续干燥设备介绍.农业工程学报,23(3):117-120.
    王艳,吴厚材.2009.振动流化床的特性与使用.工艺与设备,35:33-37.
    吴振强主编.2006.固态发酵技术与应用.北京:化学工业出版社.pp 72-73.
    易中华.水苏糖对肉鸡生长性能、肠道生理及免疫功能的影响:[博士学位论文].北京:中国农业大学,2006.
    中华人民共和国国家质量监督检验检疫总局.GB/T 13088-2006.饲料中铬的测定.北京:中国标准出版社,2006-09-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 15399-94.饲料中含硫氨丛酸测定方法-离子交换色谱法.北京:中国标准出版社,1995-07-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 18246-2000.饲料中氨基酸的测定.北京:中国标准出版社,2001-04-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 19541-2004.饲料用大豆粕.北京:中国标准出版社,2004-10-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 20806-2006.饲料中中性洗涤纤维(NDF)的测定.北京:中国标准出版社,2007-03-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6432-1994.饲料中粗蛋白的测定方法.北京:中国标准出版社,1995-01-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6433-2006.饲料中粗脂肪的测定方法.北京:中国标准出版社,2006-09-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6434-2006.饲料中粗纤维的含量测定.北京: 中国标准出版社,2006-11-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6435-2006.饲料水分和其他挥发性物质的测定.北京:中国标准出版社,2007-03-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6436-2002.饲料中钙的测定.北京:中国标准出版社,2002-07-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6437-2002.饲料中总磷的测定.北京:中国标准出版社,2002-07-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6438-2007.饲料中粗灰分的测定.北京:中国标准出版社,2007-09-01.
    中华人民共和国农业部.NY/T 1459-2007.饲料中酸性洗涤纤维的测定.北京:中国农业出版社,2008-03-01.
    中华人民共和国农业部.NY/T 2218-2012.饲料原料发酵豆粕.北京:中国农业出版社,2012-12-07.
    中华人民共和国农业部.NY/T 65-2004.猪饲养标准.北京:中国农业出版社,2004-09-01.
    Adeola, O.2001. Digestion and balance techniques in pigs. In:A. J. Lewis, and L. L. Southern (ed.) Swine Nutrition. New York:CRC Press, pp 903-916.
    Amadou, I., G. W. Le, Y. H. Shi, et al.2011. Optimized Lactobacillus Plantarum Lp6 solid-state fermentation and proteolytic hydrolysis improve some nutritional attributes of soybean protein meal. J. Food Biochem.,35:1686-1694.
    Bradford, M. M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana.l Biochem.,72:248-254.
    Cera, K. R., D. C. Mahan, R. F. Cross, et al.1988. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci.,66:574-584.
    Cervantes-Pahm, S. K., and H. H. Stein.2008. Effect of dietary soybean oil and soybean protein concentration on the concentration of digestible amino acids in soybean products fed to growing pigs. J. Anim. Sci.,86:1841-1849.
    Cervantes-Pahm, S. K., and H. H. Stein.2010. Heal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fishmeal, and casein fed to weanling pigs. J. Anim. Sci.,88:2674-83.
    Chen, C.. C, Y. C. Shih, P. W. S. Chiou, et al.2010. Evaluating nutritional quality of single stage-and two stage-fermented soybean meal. Asian-Aust. J. Anim. Sci.,23:598-606.
    Chiang, G, W. Q. Lu, X. S. Piao, et al.2010. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Aust. J. Anim. Sci.,23:263-271.
    Cho, J. H., B. J. Min, Y. J. Chen, et al.2007. Evaluation of FSP (fermented soy protein) to replace soybean meal in weaned pigs:growth performance, blood urea nitrogen and total protein concentrations in serum and nutrient digestibility. Asian-Aust. J. Anim. Sci.,20:1874-1879.
    Coma, J., D. Carrion, and D. R. Zimmerman.1995. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs. J. Anim. Sci.,73:472-481.
    Cranwell, P. D.1985. The development of the stomach in the pig:The effect of age and weaning. I. Stomach size, muscle and zones of mucosa. In:Proceedings of 3rd International Seminar on Digestive Physiology in the Pig. Denmark:Copenhagen, pp 112.
    Cromwell, G. L.2012. Soybean meal-an exceptional protein source http://www.soymeal.org Accessed Sep.5,2012.
    Dinarello, C. A.1996. Biologic basis for interleukin-1 in disease. Blood,87:2095-2147.
    Durum, S. K., J. A. Schmidt, and J. J. Oppenheim.1985. Interleukin 1:An immunological perspective. Ann. Rev. Immunol.,3:263-287.
    Egounletya, M., and O. C. Aworh.2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng.,56:249-254.
    Evans, R. J., and H. A. Butts.1948. Studies on heat inactivation of lysine in soy bean oil meal. J. Biol. Chem.,175:15-20.
    Feng, J., X. Liu, Z. R. Xu, et al.2007a. The effect of Aspergillns oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Tech.,134:295-303.
    Feng, J., X. Liu, Z. R. Xu, et al.2007b. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci.,52:1845-1850.
    Feng, J., X. Liu, Z. R. Xu, et al.2007c. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Tech., 134:235-242.
    Feng, J., X. Liu, Z. R. Xu, et al.2007d. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poultry Sci.,86:1149-1154.
    Fledderus, J.2005. Possibilities of soy concentrate in piglet feeds without AGP's. Schothorst Feed Research, pp 1-22.
    Frias, J., Y. S. Song, C. Martinez-Villaluenga, et al.2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem.,56:99-105.
    Gebru, E., J. S. Lee, J. C. Son, et al.2010. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. J. Anim. Sci.,88:3880-3886.
    Gervais, P., P. A. Marechal, and P. Molin.1996. Water relations of solid state fermentation. J. Sci. Ind. Res.,55:343-357.
    Gervais, P., and P. Molin.2003. The role of water in solid-state fermentation. Biochem. Eng. J., 13:85-101.
    Gilbert, E. R., E. A. Wong, and K. E. Webb Jr.2008. Peptide absorption and utilization:Implications for animal nutrition and health. J. Anim. Sci.,86:2135-2155.
    Goebel, K. P., and H. H. Stein.2011. Phosphorus digestibility and energy concentration of enzyme-treated and conventional soybean meal fed to weanling pigs. J. Anim. Sci.,89:764-772.
    Guo, X. H., D. F. Li, W. Q. Lu, et al.2006. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Anton. Leeuw.,90:139-146.
    Hibi, M., K. Nakajima, and T. Hirano.1996. IL-6 cytokine family and signal transduction:a model of the cytokine system. J. Mol. Med.,74:1-12.
    Hong, K. J., C. H. Lee, and S. W. Kim.2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food,7:430-435.
    Hu, J. K., W. Q. Lu, C. L. Wang, et al.2008. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-Aust. J. Anim. Sci., 21:1635-1641.
    Iji, P. A., and D. R. Tivey.1998. Natural and synthetic oligosaccharides in broiler chick diets. World's Poult. Sci. J.,54:129-143.
    Iyer, R., S. K. Tomar, T. Uma Maheswari, et al.2010. Streptococcus thermophiles strains: Multifunctional lactic acid bacteria. Int. Dairy J.,20:133-141.
    International Organization for Standardization. ISO 9831:1998. Animal feeding stuffs, animal products, and faeces or urine-Determination of gross calorific value-Bomb calorimeter method.1998-08-01.
    Jones, C. K., J. M. DeRouchey, J. L. Nelssen, et al.2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci.,88:1725-1732.
    Kader, M. A., S. Koshio, M. Ishikawa, et al.2011. Growth, nutrient utilization, oxidative condition, and element, composition of juvenile red sea bream Pagrus major fed with fermented soybean meal and scallop by-product blend as fishmeal replacement. Fish Sci.,77:119-128.
    Kader, M. A., S Koshio, M. Ishikawa, et al.2012. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquac. Res.,43:1427-1438.
    Kiers, J. L., A. E. A. Van laeken, F. M. Rombouts, et al.2000a. In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol.,60:163-169.
    Kiers, J. L., R. M. J. Nout, and F. M. Rombouts.2000b. In vitro digestibility of processed and fermented soya bean, cowpea and maize. J. Sci. Food Agric.,80:1325-1331.
    Kiers, J. L., J. C. Meijer, M. J. R. Nout, et al.2003. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J. Appl. Microbiol.,95:545-552.
    Kiers, J. L., M. J. R. Nout, F. M. Rombouts, et al.2006. Effect of processed and fermented soyabeans on net absorption in enterotoxigenic Escherichia coli-infected piglet small intestine. Brit. J. Nutr., 95:1193-1198.
    Kil, D. Y., L. G. Piao, H. F. Long, et al.2006. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weanling pigs. Asian-Aust. J. Anim. Sci.,19:252-261.
    Kim, Y. G., J. D. Lohakare, J. H. Yun, et al.2007. Effect of feeding levels of microbial fermented soy protein on the growth performance, nutrient digestibility and intestinal morphology in weaned piglets. Asian-Aust. J. Anim. Sci.,3:399-404.
    Kim, S. S., G. B. Galaz, M. A. Pham, et al.2009. Effects of dietary supplementation of a Meju, fermented soybean meal, and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus). Asian-Aust. J. Anim. Sci.,22:849-856.
    Kim, M. H., C. H. Yun, H. S. Kim, et al.2010a. Effects of fermented soybean meal on growth performance, diarrheal incidence and immune-response of neonatal calves. Anim. Sci. J., 81:475-481.
    Kim, S. W., E. van Heugten, F. Ji, et al.2010b. Fermented soybean meal as a vegetable protein source for nursery pigs:I. Effects on growth performance of nursery pigs. J. Anim. Sci.,88:214-224.
    Kim, M. H., C. H. Yun, C. H. Lee, et al.2012. The effects of fermented soybean meal on immunophysiological and stress-related parameters in Holstein calves after weaning. J. Dairy Sci. 95:5203-5212.
    Kishimoto, T., S. Akira, M. Narazaki, et al.1995. Interleukin-6 family of cytokines and gp130. Blood, 86:1243-254.
    Lalles, J. P., H. M. Tukur, R. Toullec, et al.1996. Analytical criteria for predicting apparent digestibility of soybean protein in preruminant calves. J. Dairy Sci.,79:475-482.
    Lenis, N. P., P. Bikker, J. van der Meulen, et al.1996. Effects of dietary neutral detergent fiber on ileal digestibility and portal flux of nitrogen an amino acids and on nitrogen utilization in growing pigs. J. Anim. Sci.,74:2687-2699.
    Li, D. F., J. L. Nelssen, P. G. Reddy, et al.1990. Transient hypersensitivity to soybean meal in the early weaned pig. J. Anim. Sci.,68:1790-1799.
    Li, D. F., J. L. Nelssen, P. G. Reddy, et al.1991. Measuring suitability of soybean products for early weaned pigs with immunological criteria. J. Anim. Sci.,69:3299-3307.
    Lio, J. Y, and T. Wang.2012. Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement. J. Agric. Food Chem.,60:7702-7709.
    Liu, X., J. Feng, Z. Xu, et al.2007. The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci.,31:341-345.
    Lu, W. Q., D. F. Li, and Y. B.Wu.2003. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb. Technol.,32:305-311.
    Ma, X., P. Sun, P. L. He, et al.2010. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem.,121:546-551.
    Maddaiah, V. T., A. A. Kurnick, and B. L. Reid.1964. Phytic acid studies. Proc. Soc. Exp. Biol. Med., 115:391-393.
    McCracken, B. A., M. E. Spurlock, M. A. Roos, et al.1999. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J. Nutr.,129:613-619.
    Miller, B. G., T. J. Newby, C. R. Stokes, et al.1984a. Influence of diet on postweaning malabsorption and diarrhea in the pigs. Res. Vet. Sci.,36:187-193.
    Min, B. J., J. W. Hong, O. S. Kwon, et al.2004. The effect of feeding processed soy protein on the growth performance and apparent ileal digestibility in weanling pigs. Asian-Aust. J. Anim. Sci., 17:1271-1276.
    Min, B. J., J. H. Cho, Y. J. Chen, et al.2009. Effects of replacing soy protein concentrate with fermented soy protein in starter diet on growth performance and ileal amino acid digestibility in weaned pigs. Asian-Aust. J. Anim. Sci.,22:99-106.
    Noblet, J., and Y. Henry.1993. Energy evaluation system for pig diets:A review. Livest. Prod. Sci., 36:121-141.
    NRC.1998. Nutrient Requirements of Swine,10th ed. National Academy Press, Washington, DC.
    NRC.2012. Nutrient Requirements of Swine.11th ed. National Academy Press, Washington, DC.
    Pandey, A.2003. Solid state fermentation. Biochem. Eng. J.,13:81-84.
    Parkouda, C., D. S. Nielsen, P. Azokpota, et al.2009. The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Crit. Rev. Microbiol.,35:139-156.
    Pierce, K. M., J. J. Callan, P. McCarthy, et al.2005. Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Anim. Sci.,80:313-318.
    Pluske, J. R., M. J. Thompson, C. S. Atwood, et al.1996. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows'whole milk after weaning. Br. J. Nutr.,76:409-422.
    Qiao, J. Y, B. Dong, Y. H. Li, et al.2009. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subiilis MA139 and its functional ex-pression in Escherichia coli. Appl. Biochem. Biotechnol., 152:334-342.
    Qiao, J. Y, Z. H. Rao, B. Dong, et al.2010. Expression of Bacillus subtilis MAI39 (3-mannanase in Pichia pastoris and the enzyme characterization. Appl. Biochem. Biotechnol.,160:1362-1370.
    Raghavarao, K. S. M. S., T. V. Ranganathan, and N. G Karanth.2003. Some engineering aspects of solid-state fermentation. Biochem. Eng. J.,13:127-135.
    Refstie, S., S. Sahlstrom, E. Brathen, et al.2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Saltno salar). Aquaculture,246:331-345.
    Rojas, O. J., and H. H. Stein.2012. Digestibility of phosphorus by growing pigs of fermented and conventional soybean meal without and with microbial phytase. J. Anim. Sci.,90:1506-1512.
    Rojas, O. J., and H. H. Stein.2013. Concentration of digestible, metabolizable, and net energy and digestibility of energy and nutrients in fermented soybean meal, conventional soybean meal, and fish meal fed to weanling pigs. J. Anim. Sci.,91:4397-4405.
    Roubos-van den Hil, P. J., M. J. R. Nout, R. R. Beumer, et al.2009. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. J. Appl. Microbiol.,106:1013-1021.
    Roubos-van den Hil, P. J., M. J. R. Nout, J. van der Meulen, et al.2010a. Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Food Microbiol.,27:638-644.
    Roubos-van den Hil P. J., H. A. Schols, M. J. R. Nout, et al.2010b. First characterization of bioactive components in soybean tempe that protect human and animal intestinal cells against Enterotoxigenic Escherichia coli (ETEC) infection. J. Agric. Food Chem.,58:7649-7656.
    SAS.1999. SAS user's guide:Statistics (Version 8.01). SAS Inst. Inc.. Cary, NC, USA.
    Schagger, H.2006. Tricine-SDS-PAGE. Nat. Protocols,1:16-22.
    Schulze, H., J. Huisman, M. W. A. Verstegen, et al.1993. Physiological effects of isolated soya trypsin inhibitors (sTI) on pigs. In:A. F. B. van der Poel, J. Huisman, and H. S. Saini (ed.) Recent advances of research in antinutritional factors in legume seeds. Wageningen:Wageningen Pers, pp 195-199.
    Song, Y. S., J. Frias, C. Martinez-Villaluenga, et al.2008. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem.,108:571-581.
    Song, Y. S., V. G. Perez, J. E. Pettigrew, et al.2010. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed Sci. Tech.,159:41-49.
    Stein, H. H., C. F. Shipley, and R. A. Easter.1998. Technical note:A technique for inserting a T-cannula into the distal ileum of pregnant sows. J. Anim. Sci.,76:1433-1436.
    Stein, H. H., B. Seve, M. F. Fulle, et al.2007. Invited review:amino acid bioavailability and digestibility in pig feed ingredients:terminology and application. J. Anim. Sci.,85:172-180.
    Sun, P., D. F. Li, Z. J. Li, et al.2008. Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine. J. Nutr. Biochem.,19:627-633.
    Teng, D., M. Y. Gao, Y. L.Yang, et al.2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol.,1:32-38.
    Urbaityte, R., R. Mosenthin, M. Eklund, et al.2009. Standardised ileal crude protein and amino acid digestibilities in protein supplements for piglets. Arch. Anim. Nutr.,63:356-378.
    Vohra, P., G A. Gray, and F. H. Kratzer.1965. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med., 120:447-449.
    Waldroup, P. W.2012. Soybean meal-Demand http://www.soymeal.org Accessed May 22,2012.
    West, J. L.2004. Modification of materials with bioactive peptides. In:A. P. Hollander, and P. V. Hatton (ed.) Methods in molecular biology. Totowa:Humana Pres, pp 113-121.
    Woodworth, J. C., M. D. Tokach, R. D. Goodband, et al.2001. Apparent ileal digestibility of amino acids and the digestible and metabolizable energy content of dry extruded-expelled soybean meal and its effects on growth performance of pigs. J. Anim. Sci.,79:1280-1287.
    Yamamoto, T, Y. Iwashita, H. Matsunari, et al.2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture,309:173-80.
    Yan, L., J. P. Wang, and I. H. Kim.2012. Effects of different fermented soy protein and apparent ileal digestible lysine levels on weaning pigs fed fermented soy protein-amended diets. Anim. Sci. J., 83:403-410.
    Yang, Y. X., Y. G. Kim, J. D. Lohakare, et al.2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility and intestinal morphology in weaned pigs. Asian-Aust. J. Anim. Sci.,20:775-783.
    Ying, W., R. Zhu, W. Lu, et al.2009. A new strategy to apply Bacillus subtilis MA139 for the production of solid-state fermentation feed. Lett. Appl. Microbiol.,49:229-234.
    Yoo, J. S., H. D. Jang, J. H. Cho, et al.2009. Effects of fermented soy protein on nitrogen balance and apparent fecal and ileal digestibility in weaned pigs. Asian-Aust. J. Anim. Sci.,22:1167-1173.
    You, J. M., D. F. Li, S. Y. Qiao, et al.2008. Development of a monoclonal antibody-based competitive ELISA for detection of β-conglycinin, an allergen from soybean. Food Chem.,106:352-360.
    Yun, J. H., I. K. Kwon, J. D. Lohakare, et al.2005. Comparative efficacy of plant and animal protein sources on the growth performance, nutrient digestibility, morphology, and caecal microbiology of early-weaned pigs. Asian-Aust. J. Anim. Sci.,18:1285-1293.
    Waibel, P. E., M. Cuperlovic, R. F. Hurrell, et al.1977. Processing dam age to lysine and other amino acids in the manufacture of blood meal. J. Agric. Food Chem.,25:171-175.
    Zhang, H. Y, J. Q. Yi, X. S. Piao, et al.2013. The metabolizable energy value, standardized ieal digestibility of amino acids in soybean meal, soy protein concentrate and fermented soybean meal, and the application of these products in early-weaned piglets. Asian-Aust. J. Anim. Sci.,26: 691-699.
    Zhang, L.Y., D. F. Li, S. Y. Qiao, et al.2003. Effects of stachyose on performance, diarrhoea incidence and intestinal bacteria in weaning pigs. Arch. Anim. Nutr.,57:1-10.
    Zhou, F., W. Song, Q. Shao, et al.2011. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. J. World Aquacult. Soc., 42:184-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700