用户名: 密码: 验证码:
喹烯酮致HepG2细胞毒性与凋亡的分子调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喹烯酮(Quinocetone)属喹噁啉-1,4-二氧化物,是我国首创的一类新兽药,具有抗菌、止泻和促生长作用,目前己广泛应用于养猪业中。同类药物中的卡巴氧和喹乙醇由于具有遗传毒性和潜在的致癌作用,己被世界上许多国家禁止或限用做动物饲料添加剂。具有相同母核结构的喹烯酮体内外实验均显示出一定的遗传毒性,但其毒性作用机理仍不清楚。本研究以体外培养的具有代谢酶活性的人肝癌HepG2细胞为模型,研究喹烯酮的细胞毒性作用及其产生机制,分析喹烯酮对HepG2细胞全基因组表达谱的影响,探讨喹烯酮诱导HepG2细胞凋亡的分子调控机理,为评估喹烯酮对食品动物和人的安全性提供理论依据。
     MTT试验结果表明喹烯酮能抑制HepG2细胞的增殖,24h和48h的IC50值分别为9.2μg/ml和6.7μg/ml。LDH释放试验显示喹烯酮能促使HepG2释放乳酸脱氢酶。流式细胞术检测发现喹烯酮对HepG2细胞具有显著的周期阻滞作用,低浓度喹烯酮使细胞阻滞于S期,高浓度时阻滞于Go/G1期。普通光学显微镜观察、Hoechst33342/PI染色观察及Annexin V-FITC/PI双染法流式检测结果表明喹烯酮能够诱导HepG2细胞凋亡。MDC染色、透射电子显微镜观察和流式细胞术检测证明喹烯酮诱导HepG2细胞发生自噬。以上结果表明喹烯酮具有明显的细胞毒性作用。
     应用特异性荧光染料DCFH-DA和DHE检测喹烯酮处理HepG2细胞内ROS含量的变化,结果表明喹烯酮能呈剂量依赖性地诱导细胞内ROS含量增加。同时,细胞免疫化学方法检测到喹烯酮染毒细胞内DNA氧化损伤标志物-8-OHdG的含量增加。抗氧化剂NAC和GSH能够降低喹烯酮诱导的ROS含量升高,提高药物染毒细胞的活力,缓解喹烯酮所致线粒体膜电位的下降,显著抑制喹烯酮诱导的细胞凋亡。Western Blot试验结果显示NAC能够抑制Caspase-8和-3、Bid及PARP-1前体蛋白的剪切以及Bax/Bcl-2比值的升高,对JNK和p38MAPK磷酸化水平也具有显著的抑制作用。表明喹烯酮的细胞毒性可能与氧化应激反应有关。
     采用Agilent公司人全基因组表达谱芯片检测喹烯酮处理HepG2细胞全基因组表达谱的改变,共筛选出6202个表达差异基因,其中表达上调3909个,表达下调2293个。差异基因所属GO条目4877个,pathway条目903个。结果显示喹烯酮的细胞毒性作用涉及多种代谢和信号途径,包括:细胞代谢、细胞周期、DNA复制与损伤修复、细胞凋亡、氧化应激、MAPK通路、p53信号途径、mTOR信号通路等。其中,与细胞凋亡调控有关的差异基因分布于外源性和内源性凋亡途径中,涉及对DNA损伤与修复的调节和细胞增殖相关基因的转录调控。
     最后,我们对喹烯酮诱导HepG2细胞凋亡的分子调控机理进行了研究。TUNEL法流式检测结果表明喹烯酮能使细胞DNA发生片段化。Western Blot、RT-PCR和Caspase活性检测结果显示,喹烯酮所致凋亡过程伴有Caspase-8、-9和-3的激活。流式检测结果也表明广泛性Caspase抑制剂及Caspase-3、8和-9特异性抑制剂显著地抑制喹烯酮诱导的细胞凋亡。线粒体凋亡途径相关试验研究结果发现,喹烯酮能使细胞线粒体膜电位下降,促进细胞色素C的释放,Bax mRNA和蛋白水平上升,Bcl-2mRNA和蛋白水平下降,PARP-1蛋白发生剪切;Western Blot结果显示TNFR1、TNF-α、Fas和FADD蛋白含量增加,Bid蛋白发生剪切。RT-PCR结果表明TfNFR1、 TNF-a和Fas的mRNA水平升高。TNFR1/Fc受体阻断剂能抑制喹烯酮诱导的细胞凋亡,表明死亡受体途径也参与调节喹烯酮诱导的细胞凋亡。Western Blot检测结果表明p53、p21、p-p38和p-JNK蛋白水平增加,参与对喹烯酮所致凋亡的调控。上述结果表明喹烯酮对HepG2细胞凋亡的调控过程涉及Caspase的激活,TNF-a和TNFR1的信号转导,Bcl-2家族蛋白的调节,以及p53,p38和JNK信号通路的参与。
     综上所述,喹烯酮对HepG2细胞具有细胞毒性,产生机制可能与氧化应激有关,可影响细胞内多种代谢通路,通过线粒体和死亡受体途径诱导细胞凋亡。
Quinocetone, a new quinoxaline1,4-dioxide derivative with antimicrobial, antidiarrhea and growth-promoting efficacy, has been classified as China's first class of new veterinary drug and widely used in swine industry. Similar drugs, such as carbadox and olaquindox, due to their genotoxic and potentially carcinogenic effects, have been banned or restricted to use as feed additives in many countries around the world. Having the same core chemical structure, quinocetone showed genetic toxicity in vivo and in vitro, but its mechanism of toxicity was still unclear. In this study, human hepatoma HepG2cells with the metabolic activity in vitro were used as a model to study quinocetone's toxicity and its mechanism of action, analyze quinocetone'impact on the genome-wide expression profiling of HepG2cells and investigate the molecular mechanisms regulating quinocetone-induced apoptosis in HepG2cells, in order to provide a theoretical basis for assessing the safety of quinocetone for food animals and human.
     MTT results showed quinocetone inhibited the proliferation of HepG2cells. Its IC50values for24h and48h were9.2μg/ml and6.7μg/ml, respectively. LDH release assay indicated quinocetone could induce the release of lactate dehydrogenase from HepG2cells. Flow cytometry found quinocetone significantly arrested cell cycle and low concentrations of quinocetone arrested cells in S phase, while high concentrations of quinocetone arrested cells in G0/G1phase. Quinocetone-induced apoptosis in HepG2cells were confirmed using optical microscope observation, Hoechst33342/PI staining and Annexin V-FITC/PI double staining methods. The results of MDC staining, transmission electron microscopy and flow cytometry proved quinocetone induced autophagy in HepG2cells. All the above results suggested that quinocetone was cytotoxic.
     Using specific fluorescent dyes DCFH-DA and DHE to detect intracellular ROS level changes, the results showed quinocetone increased the intracellular ROS levels in a dose-dependent manner. Simultaneously, the increased levels of8-OHdG, an intracellular oxidative DNA damage marker, were detected using immunocytochemistry after quinocetone exposure. NAC and GSH reduced ROS levels, improved the vitality of the cells, eased the disruption of mitochondrial membrane potential and inhibited quinocetone-induced apoptosis. Western blotting results showed NAC inhibited the cleavage of Caspase-8, Caspase-3, Bid and PARP-1precursor proteins, the elevation of Bax/Bcl-2ratio, as well as the phosphorylation levels of JNK and p38MAPK. These results showed quinocetone's cytotoxicity might be related to oxidative stress in HepG2cells.
     Utilizing the whole human genome microarray of Agilent company to detect genome-wide expression profiling changes of HepG2cells treated with quinocetone, data showed there were6202differentially expressed genes, including3909upregulated genes and2293downregulated genes. These genes belonged to4877GO entries and903pathway entries. The results showed that quinocetone's cytotoxicity involved a variety of metabolic and signaling pathways, including cell metabolism, cell cycle, DNA replication and repair, apoptosis, oxidative stress, MAPK pathway, p53signaling pathway, mTOR signaling pathway, et al.. Among them, the apoptosis-related differentially expressed genes were categorized into the extrinsic and intrinsic apoptosis pathways, and also involved in the regulation of DNA damage and repair as well as cell proliferation-related gene transcription.
     Finally, the molecular regulation mechanisms of apoptosis in quinocetone-treated HepG2cells were studied. TUNEL assay results showed quinocetone caused DNA fragmentation. Activation of Caspase-8,-9and-3in quinocetone-induced apoptosis were detected by Western blotting, RT-PCR and caspase activity assay. Flow cytometry results also showed pan caspase inhibitor and Caspase-3,-8and-9specific inhibitors significantly inhibited quinocetone-induced apoptosis. The mitochondrial apoptotic pathway relevant assay results found quinocetone disrupted mitochondrial membrane potential, promoted the release of cytochrome C, upregulated the mRNA and protein levels of Bax, downregulated the mRNA and protein levels of Bcl-2, and cleaved PARP-1protein. Western blotting results showed that TNFR1, TNF-a, Fas and FADD protein contents were increased and Bid was cleaved. The elevated mRNA levels of TNFR1, TNF-a and Fas were determined by RT-PCR. TNFRl/Fc chimera inhibited quinocetone-induced apoptosis, indicating that the death receptor pathway was also involved in the regulation of quinocetone-induced apoptosis. The protein levels of p53, p21, p-p38and p-JNK were increased, indicating their involvement in the regulation of quinocetone-induced apoptosis. Taken together, quinocetone induced apoptosis in HepG2cells via activation of caspase, interaction of TNF-a and TNFR1, modulation of the protein levels of Bid, Bax and Bcl-2, and involvement of the regulation of p53, p38and JNK.
     In summary, quinocetone was cytotoxic to HepG2cells. The mechanism of quinocetone-induced cytotoxicity might be associated with oxidative stress. Quinocetone affected a variety of metabolic pathways within HepG2cells and induced apoptosis through mitochondrial and death receptor pathway.
引文
[1]胡国成和张玉东.喹烯酮的研究现状及其在生产中的应用.饲料工业,2006,27(22):1-3
    [2]王道坤.国家一类新兽药——喹烯酮.兽药与饲料添加剂,2007,12(2):7-8
    [3]王玉春,严相林,赵荣材,等.新型药物饲料添加剂喹烯酮的一般毒性研究——Ⅰ.急性毒性试验.中兽医医药杂志,1992,(4):13-14
    [4]Wang X, Zhang W, Wang Y, et al. Acute and sub-chronic oral toxicological evaluations of quinocetone in Wistar rats. Regulatory Toxicology and Pharmacology.2010,58 (3):421-427
    [5]王玉春,严相林,赵荣材,等.新型饲料药物添加剂喹烯酮一般毒性研究——Ⅱ.蓄积毒性试验.中兽医医药杂志,1993,(2):14
    [6]王玉春,严相林,赵荣材,等.新型添加剂喹烯酮的一般毒性研究—Ⅳ、亚急性毒性试验.中兽医医药杂志,1994,(5):10-11
    [7]许建宁,王全凯,崔涛,等.新兽药喹烯酮亚慢性经口毒性研究.中国兽药杂志,2005,39(3):10-15
    [8]严相林,李金善,王玉春,等.喹烯酮的Ames试验.中兽医医药杂志,1998,(5):11-12
    [9]张伟,彭大鹏,黄玲利,等.喹烯酮遗传毒性的研究.毒理学杂志,2007,21(4):335
    [10]Ihsan A, Wang X, Zhang W, et al. Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food and Chemical Toxicology.2013,59:207-214
    [11]张伟.喹烯酮临床前毒理学研究:[硕士学位论文].湖北:华中农业大学,2007
    [12]严相林,李金善,王玉春,等.“喹烯酮”对小白鼠精子的畸变试验.中兽医医药杂志,1997,(5):13-14
    [13]涂宏刚,戴梦红,姚敏,等.喹喔啉类药物对V79细胞hgprt基因位点的突变效应.毒理学杂志,2007,21(4):335-335
    [14]涂宏刚.喹喔啉类药物对哺乳动物细胞的遗传毒性研究:[硕士学位论文].湖北:华中农业大学,2007
    [15]郝利华.穿梭质粒pSP189/哺乳动物Vero细胞诱变检测系统的研究及应用:[硕士学位论文].北京:中国农业大学,2004
    [16]Chen Q, Tang S, Jin X, et al. Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food and Chemical Toxicology.2009,47 (2):328-334
    [17]Jin X, Chen Q, Tang SS, et al. Investigation of quinocetone-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicology in Vitro.2009, 23 (7):1209-1214
    [18]陈倩,靳溪,邹家杰,等.喹烯酮致HepG2细胞线粒体损伤的机理.中国环境诱变剂学会第
    14届学术交流会议论文集:中国黑龙江哈尔滨.2009,130-131
    [19]靳溪,陈倩,邹家杰,等.喹烯酮致HepG2细胞DNA损伤效应的研究.中国环境诱变剂学会第14届学术交流会议论文集:中国黑龙江哈尔滨.2009,125-130
    [20]陈开跑,陈倩,靳溪,等.喹嗯啉类药物致HepG2细胞DNA损伤与修复.中国兽医杂志, 2010,46(5):90-92
    [21]班曼曼,张可煜,江善祥,等.喹烯酮和喹乙醇对人源肝细胞的毒性作用.中国兽医学报,2010,30(11):1517-1521
    [22]Zhang K, Ban M, Zhao Z, et al. Cytotoxicity and genotoxicity of 1,4-bisdesoxyquinocetone,3-
    methylquinoxaline-2-carboxylic acid (MQCA) in human hepatocytes. Research in Veterinary Science. 2012,93 (3):1393-1401
    [23]Wang D, Zhong Y, Luo X, et al. Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food and Chemical Toxicology.2011,49 (2):477-484
    [24]Zhang JH, Li LX, Li YB, et al. Convenient synthesis of quinocetone metabolites:Characterization, theoretical investigation, and cytotoxicity study. Journal of Molecular Structure.2012,1022:32-36
    [25]Yang W, Fu J, Xiao X, et al. Quinocetone triggers oxidative stress and induces cytotoxicity and genotoxicity in human peripheral lymphocytes of both genders. Journal of The Science of Food and Agriculture.2013,93 (6):1317-1325
    [26]王玉春,赵荣材,严相林,等.喹烯酮对大白鼠胚胎致畸性的研究.中国兽医科技,1993,23(8):31-32
    [27]王玉春和赵荣材.新型饲料药物添加剂喹烯酮的毒性研究:繁殖及致畸试验.中国兽医科技,1993,23(4):25-26
    [28]Wang X, Zhang W, Wang YL, et al. Two generation reproduction and teratogenicity studies of feeding quinocetone fed to Wistar rats. Food and Chemical Toxicology.2012,50 (5):1600-1609
    [29]王玉春,赵荣材,严相林,等.喹烯酮对小白鼠的致癌试验.中国兽医科技,1995,25(3):24-25
    [30]Elmore S. Apoptosis:a review of programmed cell death. Toxicologic Pathology.2007,35 (4):495-516
    [31]Vaux DL. Apoptosis timeline. Cell Death and Differentiation.2002,9 (4):349-354
    [32]Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. Journal of Pathology and Bacteriology.1965,90 (2):419-435
    [33]Kerr JF, Wyllie AH,Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer.1972,26 (4):239-257
    [34]Saraste A,Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research. 2000,45 (3):528-537
    [35]Tabas I,Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology.2011,13 (3):184-190
    [36]Gupta S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sciences. 2001,69 (25-26):2957-2964
    [37]Nikoletopoulou V, Markaki M, Palikaras K, et al. Crosstalk between apoptosis, necrosis and autophagy. Biochimica Et Biophysica Acta.2013,1833 (12):3448-3459
    [38]Wyllie AH. Apoptosis:cell death under homeostatic control. Archives of Toxicology.1987,11:3-10
    [39]Wyllie AH, Kerr JF,Currie AR. Cell death:the significance of apoptosis. Survey of Cell Biology. 1980,68:251-306
    [40]Roos WP,Kaina B. DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine. 2006,12 (9):440-450
    [41]Bragado P, Armesilla A, Silva A, et al. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis.2007,12 (9):1733-1742
    [42]Robertson JD,Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Critical Reviews in Toxicology.2000,30 (5):609-627
    [43]Orrenius S, Nicotera P,Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicological Sciences.2011,119 (1):3-19
    [44]Kroemer G,Reed JC. Mitochondrial control of cell death. Nature Medicine.2000,6 (5):513-519
    [45]Kozian D, Proulle V, Nitsche A, et al. Identification of genes involved in Ca2+ ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome. Bmc Genomics.2005,6:146
    [46]Mason RP. Calcium channel blockers, apoptosis and cancer:is there a biologic relationship? Journal of The American College of Cardiology.1999,34(7):1857-1866
    [47]Szalai G, Krishnamurthy R,Hajnoczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. Embo Journal.1999,18 (22):6349-6361
    [48]Fisher TC, Milner AE, Gregory CD, et al. Bcl-2 modulation of apoptosis induced by anticancer drugs-resistance to thymidylate stress is independent of classical resistance pathways. Cancer Research.1993, 53 (14):3321-3326
    [49]Schott AF, Apel IJ, Nunez G, et al. Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene.1995,11 (7):1389-1394
    [50]Syntichaki P,Tavernarakis N. Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? Embo Reports.2002,3 (7):604-609
    [51]Leist M,Jaattela M. Four deaths and a funeral:from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology.2001,2 (8):589-598
    [52]Proskuryakov SY, Konoplyannikov AG,Gabai VL. Necrosis:a specific form of programmed cell death? Experimental Cell Research.2003,283 (1):1-16
    [53]Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology.2005,1 (2):112-119
    [54]Kaczmarek A, Vandenabeele P,Krysko DV. Necroptosis:the release of damage-associated molecular patterns and its physiological relevance. Immunity.2013,38 (2):209-223
    [55]Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell.2012,150 (2):339-350
    [56]Klionsky DJ. Autophagy revisited:a conversation with Christian de Duve. Autophagy.2008,4 (6): 740-743
    [57]He C,Klionsky DJ. Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics.2009,43:67-93
    [58]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy.2008,4 (2):151-175
    [59]Bursch W, Karwan A, Mayer M, et al. Cell death and autophagy:cytokines, drugs, and nutritional factors. Toxicology.2008,254 (3):147-157
    [60]Scherz-Shouval R,Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology.2007,17 (9):422-427
    [61]Booth LA, Tavallai S, Hamed HA, et al. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cellular Signalling.2014,26 (3):549-555
    [62]Bolt AM,Klimecki WT. Autophagy in toxicology:self-consumption in times of stress and plenty. Journal of Applied Toxicology.2012,32 (7):465-479
    [63]Meikrantz W,Schlegel R. Apoptosis and the cell cycle. Journal of Cellular Biochemistry.1995,58 (2):160-174
    [64]Alenzi FQB. Links between apoptosis, proliferation and the cell cycle. British Journal of Biomedical Science.2004,61 (2):99-102
    [65]Harmon JM, Norman MR, Fowlkes BJ, et al. Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. Journal of Cellular Physiology.1979,98 (2):267-278
    [66]Ishigami T, Kim KM, Horiguchi Y, et al. Anti-IgM antibody-induced cell death in a human B lymphoma cell line, B104, represents a novel programmed cell death. Journal of Immunology.1992,148 (2):360-368
    [67]Vermeulen K, Berneman ZN,Van Bockstaele DR. Cell cycle and apoptosis. Cell Proliferation.2003, 36 (3):165-175
    [68]Conzen SD, Gottlob K, Kandel ES, et al. Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc:transrepression correlates with acceleration of apoptosis. Molecular and Cellular Biology.2000,20 (16):6008-6018
    [69]Gil-Gomez G, Berns A,Brady HJ. A link between cell cycle and cell death:Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. Embo Journal.1998,17 (24):7209-7218
    [70]Vermeulen K, Strnad M, Havlicek L, et al. Plant cytokinin analogues with inhibitory activity on cyclin-dependent kinases exert their antiproliferative effect through induction of apoptosis initiated by the mitochondrial pathway:determination by a multiparametric flow cytometric analysis. Experimental Hematology.2002,30 (10):1107-1114
    [71]Mazel S, Burtrum D,Petrie HT. Regulation of cell division cycle progression by bcl-2 expression:a potential mechanism for inhibition of programmed cell death. Journal of Experimental Medicine.1996, 183 (5):2219-2226
    [72]Oeckinghaus A, Hayden MS,Ghosh S. Crosstalk in NF-κB signaling pathways. Nature Immunology. 2011,12 (8):695-708
    [73]Peng Y, Gallagher SF, Haines K, et al. Nuclear factor-κB mediates Kupffer cell apoptosis through transcriptional activation of Fas/FasL. Journal of Surgical Research.2006,130 (1):58-65
    [74]Kim SG, Kim SN, Jong HS, et al. Caspase-mediated Cdk2 activation is a critical step to execute transforming growth factor-β1-induced apoptosis in human gastric cancer cells. Oncogene.2001,20 (10): 1254-1265
    [75]Golstein P. Controlling cell death. Science.1997,275 (5303):1081-1082
    [76]Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer.2002,2 (6):420-430
    [77]Chinnaiyan AM, O'Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science.1996,274 (5289):990-992
    [78]Naismith JH,Sprang SR. Modularity in the TNF-receptor family. Trends in Biochemical Sciences. 1998,23 (2):74-79
    [79]Denault JB,Salvesen GS. Caspases:keys in the ignition of cell death. Chemical Reviews.2002,102 (12):4489-4500
    [80]Lavrik IN, Golks A,Krammer PH. Caspases:pharmacological manipulation of cell death. Journal of Clinical Investigation.2005,115 (10):2665-2672
    [81]Mahmood Z,Shukla Y. Death receptors:targets for cancer therapy. Experimental Cell Research.2010, 316 (6):887-899
    [82]Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation. 2012,19(1):107-120
    [83]Wang C,Youle RJ. The role of mitochondria in apoptosis. Annual Review of Genetics.2009,43:95-118
    [84]Fischer U, Janicke RU,Schulze-Osthoff K. Many cuts to ruin:a comprehensive update of caspase substrates. Cell Death and Differentiation.2003,10 (1):76-100
    [85]Mcllwain DR, Berger T,Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology.2013,5 (4):a008656
    [86]Kumar S. Caspase function in programmed cell death. Cell Death and Differentiation.2007,14 (1): 32-43
    [87]Cohen GM. Caspases:the executioners of apoptosis. Biochemical Journal.1997,326:1-16
    [88]Soldani C,Scovassi Al. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis:an update. Apoptosis.2002,7 (4):321-328
    [89]Youle RJ,Strasser A. The Bcl-2 protein family:opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology.2008,9 (1):47-59
    [90]Ke N, Godzik A,Reed JC. Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. Journal of Biological Chemistry.2001,276 (16):12481-12484
    [91]Wang K, Yin XM, Chao DT, et al. BID:a novel BH3 domain-only death agonist. Genes & Development.1996,10 (22):2859-2869
    [92]Ola MS, Nawaz M,Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and Cellular Biochemistry.2011,351 (1-2):41-58
    [93]Lovell JF, Billen LP, Bindner S, et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell.2008,135 (6):1074-1084
    [94]Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science.2007,315 (5813):856-859
    [95]Villunger A, Michalak EM, Coultas L, et al. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science.2003,302 (5647):1036-1038
    [96]Pucci B, Kasten M,Giordano A. Cell cycle and apoptosis. Neoplasia.2000,2 (4):291-299
    [97]Agarwal ML, Taylor WR, Chernov MV, et al. The p53 network. Journal of Biological Chemistry. 1998,273(1):1-4
    [98]Bourdon JC, Laurenzi VD, Melino G, et al. p53:25 years of research and more questions to answer. Cell Death and Differentiation.2003,10 (4):397-399
    [99]Owenschaub LB, Zhang W, Cusack JC, et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/Apo-1 expression. Molecular and Cellular Biology.1995,15 (6):3032-3040
    [100]Chipuk JE,Green DR. Dissecting p53-dependent apoptosis. Cell Death and Differentiation.2006, 13 (6):994-1002
    [101]Miyashita T, Harigai M, Hanada M, et al. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research.1994,54 (12):3131-3135
    [102]Ehrnhoefer DE, Skotte NH, Ladha S, et al. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Human Molecular Genetics.2014,23 (3):717-729
    [103]Feuerstein GZ,Young PR. Apoptosis in cardiac diseases:stress-and mitogen-activated signaling pathways. Cardiovascular Research.2000,45 (3):560-569
    [104]Wada T,Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene.2004, 23 (16):2838-2849
    [105]Allan LA, Morrice N, Brady S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biology.2003,5 (7):647-654
    [106]Wang X, Martindale JL,Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. Journal of Biological Chemistry.2000,275 (50):39435-39443
    [107]Choi BK, Choi CH, Oh HL, et al. Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology.2004,25 (6):915-924
    [108]Liu J,Lin A. Role of JNK activation in apoptosis:a double-edged sword. Cell Research.2005,15 (1):36-42
    [109]Kyriakis JM,Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews.2001,81 (2):807-869
    [110]Liu ZG. Adding facets to TNF signaling. The JNK angle. Molecular Cell.2003,12 (4):795-796
    [111]Rao KM. MAP kinase activation in macrophages. Journal of Leukocyte Biology.2001,69 (1):3-10
    [112]Lin FL, Hsu JL, Chou CH, et al. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFRl/TNF-alpha and p53 pathways. European Journal of Pharmacology.2011,650 (1):120-129
    [113]Grethe S, Ares MP, Andersson T, et al. p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of BcI-XL. Experimental Cell Research.2004,298 (2):632-642
    [114]Park JG, Yuk Y, Rhim H, et al. Role of p38 MAPK in the regulation of apoptosis signaling induced by TNF-a in differentiated PC12 cells. Journal of Biochemistry and Molecular Biology.2002,35 (3): 267-272
    [115]Svensson C, Part K, Kunnis-Beres K, et al. Pro-survival effects of JNK and p38 MAPK pathways in LPS-induced activation of BV-2 cells. Biochemical and Biophysical Research Communications.2011, 406 (3):488-492
    [116]Droge W. Free radicals in the physiological control of cell function. Physiological Reviews.2002, 82 (1):47-95
    [117]Blokhina O, Virolainen E,Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of Botany.2003,91 (2):179-194
    [118]Avery SV. Molecular targets of oxidative stress. Biochemical Journal.2011,434 (2):201-210
    [119]Norbury CJ,Hickson ID. Cellular responses to DNA damage. Annual Review of Pharmacology and Toxicology.2001,41:367-401
    [120]Kannan K,Jain SK. Oxidative stress and apoptosis. Pathophysiology.2000,7 (3):153-163
    [121]Sinha K, Das J, Pal PB, et al. Oxidative stress:the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology.2013,87 (7):1157-1180
    [122]Bustamante J, Nutt L, Orrenius S, et al. Arsenic stimulates release of cytochrome c from isolated mitochondria via induction of mitochondrial permeability transition. Toxicology and Applied Pharmacology.2005,207 (2 S):110-116
    [123]Nakamura T,Sakamoto K. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells. Biochemical and Biophysical Research Communications.2001, 284(1):203-210
    [124]Hildeman DA, Mitchell T, Aronow B, et al. Control of Bcl-2 expression by reactive oxygen species. Proceedings of The National Academy of Sciences of The United States of America.2003,100 (25): 15035-15040
    [125]Mates JM, Segura JA, Alonso FJ, et al. Oxidative stress in apoptosis and cancer:an update. Archives of Toxicology.2012,86 (11):1649-1665
    [126]Manna SK, Zhang HJ, Yan T, et al. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-κB and activated protein-1. Journal of Biological Chemistry.1998,273 (21):13245-13254
    [127]Xia T, Jiang C, Li L, et al. A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro. Febs Letters.2002,510 (1-2):62-66
    [128]Ibuki Y,Goto R. The antiapoptotic effect of low-dose UVB irradiation in NIH3T3 cells involves caspase inhibition. Photochemistry and Photobiology.2003,77 (3):276-283
    [129]Hancock JT, Desikan R,Neill SJ. Does the redox status of cytochrome C act as a fail-safe mechanism in the regulation of programmed cell death? Free Radical Biology and Medicine.2001,31 (5):697-703
    [130]Zhang AY, Yi F, Zhang G, et al. Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension.2006,47 (1):74-80
    [131]Shen HM,Pervaiz S. TNF receptor superfamily-induced cell death:redox-dependent execution. Faseb Journal.2006,20 (10):1589-1598
    [132]Simon HU, Haj-Yehia A,Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis.2000,5 (5):415-418
    [133]Stewart JHt, Tran TL, Levi N, et al. The essential role of the mitochondria and reactive oxygen species in Cisplatin-mediated enhancement of fas ligand-induced apoptosis in malignant pleural mesothelioma. Journal of Surgical Research.2007,141 (1):120-131
    [134]Lee MW, Park SC, Kim JH, et al. The involvement of oxidative stress in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in HeLa cells. Cancer letters.2002, 182 (1):75-82
    [135]Jung EM, Lim JH, Lee TJ, et al. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis.2005,26 (11):1905-1913
    [136]Suzaki Y, Yoshizumi M, Kagami S, et al. Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC 12 cells:potential role in cell survival following oxidative insults. Journal of Biological Chemistry.2002,277 (11):9614-9621
    [137]McCubrey JA, Lahair MM,Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling.2006,8 (9-10):1775-1789
    [138]Haddad JJ,Land SC. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. British Journal of Pharmacology.2002,135 (2):520-536
    [139]Ki YW, Lee JE, Park JH, et al. Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells in response to fipronil. Toxicology Letters.2012,211 (1):18-28
    [140]Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. Embo Journal.1999,18 (5):1321-1334
    [141]Matsuzawa A,Ichijo H. Redox control of cell fate by MAP kinase:physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochimica Et Biophysica Acta.2008,1780 (11):1325-1336
    [142]Shen HM,Liu ZG. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology & Medicine.2006,40 (6):928-939
    [143]Yamamoto K, Ichijo H,Korsmeyer SJ. Bcl-2 is phosphorylated and inactivated by an ASKl/JunN-terminal protein kinase pathway normally activated at G2/M. Molecular and Cellular Biology.1999,19 (12):8469-8478
    [144]Hatai T, Matsuzawa A, Inoshita S, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)- induced apoptosis by the mitochondria-dependent caspase activation. Journal of Biological Chemistry. 2000,275 (34):26576-26581
    [145]陈倩.喹噁啉类药物致HepG2细胞氧化损伤及S期阻滞调控机理研究:[博士学位论文].北京:中国农业大学,2009
    [146]Aden DP, Fogel A, Plotkin S, et al. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature.1979,282 (5739):615-616
    [147]Knowles BB, Howe CC,Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science.1980,209 (4455):497-499
    [148]Rueff J, Chiapella C, Chipman JK, et al. Development and validation of alternative metabolic systems for mutagenicity testing in short-term assays. Mutation Research.1996,353 (1-2):151-176
    [149]Doostdar H, Grant MH, Melvin WT, et al. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HepG2 hepatoma cells. Biochemical Pharmacology.1993, 46 (4):629-635
    [150]Wilkening S, Stahl F,Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metabolism and Disposition.2003,31 (8): 1035-1042
    [151]Parini P, Angelin B, Lobie PE, et al. Growth hormone specifically stimulates the expression of low density lipoprotein receptors in human hepatoma cells. Endocrinology.1995,136 (9):3767-3773
    [152]Roe AL, Snawder JE, Benson RW, et al. HepG2 cells:an in vitro model for P450-dependent metabolism of acetaminophen. Biochemical and Biophysical Research Communications.1993,190 (1): 15-19
    [153]Mersch-Sundermann V, Knasmuller S, Wu XJ, et al. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology.2004,198 (1-3):329-340
    [154]Knasmuller S, Mersch-Sundermann V, Kevekordes S, et al. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants:current state of knowledge. Toxicology. 2004,198 (1-3):315-328
    [155]Dehn PF, White CM, Conners DE, et al. Characterization of the human hepatocellular carcinoma (HepG2) cell line as an in vitro model for cadmium toxicity studies, In Vitro Cellular & Developmental Biology-Animal.2004,40 (5-6):172-182
    [156]Furth EE, Sprecher H, Fisher EA, et al. An in vitro model for essential fatty acid deficiency:HepG2 cells permanently maintained in lipid-free medium. Journal of Lipid Research.1992,33 (11):1719-1726
    [157]Pinti M, Troiano L, Nasi M, et al. Hepatoma HepG2 cells as a model for in vitro studies on mitochondrial toxicity of antiviral drugs:which correlation with the patient? Journal of Biological Regulators and Homeostatic Agents.2003,17 (2):166-171
    [158]Ramaiahgari SC, den Braver MW, Herpers B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Archives of Toxicology.2014
    [159]Scheers EM, Ekwall B,Dierickx PJ. In vitro long-term cytotoxicity testing of 27 MEIC chemicals on HepG2 cells and comparison with acute human toxicity data. Toxicology In Vitro.2001,15 (2):153-161
    [160]Weyermann J, Lochmann D,Zimmer A. A practical note on the use of cytotoxicity assays. International Journal of Pharmaceutics.2005,288 (2):369-376
    [161]张可煜.喹烯酮体外细胞毒性机制解析:[博士学位论文].上海:中国农业科学院,2013
    [162]Decker T,Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods.1988,115 (1):61-69
    [163]杨春辉.喹噁啉类对肾上腺皮质醛固酮合成酶表达调控的影响:[硕士学位论文].湖北:华中农业大学,2012
    [164]Shapiro GI, Koestner DA, Matranga CB, et al. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clinical Cancer Research.1999,5 (10): 2925-2938
    [165]Ling YH, el-Naggar AK, Priebe W, et al. Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Molecular Pharmacology.1996,49 (5):832-841
    [166]班曼曼.喹噁啉类药物及其代谢物致人源肝细胞毒性研究:[硕士学位论文].南京:南京农业大学,2009
    [167]Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling:cell cycle arrest versus apoptosis. Toxicology.2002,181-182:475-481
    [168]Nowsheen S,Yang ES. The intersection between dna damage response and cell death pathways. Experimental Oncology.2012,34 (3):243-254
    [169]Zou J, Chen Q, Jin X, et al. Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells. Toxicology.2011,285 (3):104-113
    [170]Shen S, Kepp O, Michaud M, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene.2011,30 (45):4544-4556
    [171]赵东旭.喹乙醇诱导HepG2细胞自噬及其机制初探:[硕士学位论文].北京:中国农业大学,2013
    [172]Gump JM,Thorburn A. Autophagy and apoptosis:what is the connection? Trends in Cell Biology. 2011,21 (7):387-392
    [173]王迪.氧化应激介导的喹烯酮遗传毒性及普洱茶水提取液保护作用研究:[博士学位论文].湖北:华中科技大学,2011
    [174]Ryter SW, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling.2007,9 (1):49-89
    [175]Deavall DG, Martin EA, Homer JM, et al. Drug-induced oxidative stress and toxicity. Journal of Toxicology.2012
    [176]Circu ML,Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology & Medicine.2010,48 (6):749-762
    [177]Carta A, Corona P,Loriga M. Quinoxaline 1,4-dioxide:a versatile scaffold endowed with manifold activities. Current Medicinal Chemistry.2005,12 (19):2259-2272
    [178]Suter W, Rosselet A,Knusel F. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrobial Agents and Chemotherapy.1978,13 (5):770-783
    [179]张华海.喹噁啉类在大鼠和猪肝微粒体中脱氧速率与肝细胞中毒性的研究:[硕士学位论文].湖北:华中农业大学,2010
    [180]Evans MD.Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays.2004,26 (5):533-542
    [181]朴恩谊和徐立红.8-OHdG在医学领域的应用与研究进展.中国细胞生物学学报,2012,34(5):96-102
    [182]Wu LL, Chiou CC, Chang PY, et al. Urinary 8-OHdG:a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clinica Chimica Acta.2004,339 (1-2):1-9
    [183]Takahashi S, Hirose M, Tamano S, et al. Immunohistochemical detection of 8-hydroxy-2'-deoxyguanosine in paraffin-embedded sections of rat liver after carbon tetrachloride treatment. Toxicologic Pathology.1998,26 (2):247-252
    [184]Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology.2006,141 (2):312-322
    [185]Duh PD, Yen GC, Yen WJ, et al. Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry.2004,52 (26):8169-8176
    [186]Jie G, Lin Z, Zhang L, et al. Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells. Journal of Agricultural and Food Chemistry.2006, 54 (21):8058-8064
    [187]Lennon SV, Martin SJ,Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Proliferation.1991,24 (2):203-214
    [188]Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival. Antioxidants & Redox Signaling.2008,10 (8):1343-1374
    [189]Suzuki YJ, Forman HJ,Sevanian A. Oxidants as stimulators of signal transduction. Free Radical Biology & Medicine.1997,22 (1-2):269-285
    [190]Kamata H,Hirata H. Redox regulation of cellular signalling. Cellular Signalling.1999,11 (1):1-14
    [191]Rahman I, Marwick J,Kirkham P. Redox modulation of chromatin remodeling:impact on histone acetylation and deacetylation, NF-κB and pro-inflammatory gene expression. Biochemical Pharmacology. 2004,68 (6):1255-1267
    [192]Heneberg P,Draber P. Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Current Medicinal Chemistry.2005,12 (16):1859-1871
    [193]Poppek D.Grune T. Proteasomal defense of oxidative protein modifications. Antioxidants & Redox Signaling.2006,8 (1-2):173-184
    [194]Devries N,Deflora S. N-Acetyl-L-Cysteine. Journal of Cellular Biochemistry.1993:270-277
    [195]Ortega AL, Mena S,Estrela JM. Glutathione in cancer cell death. Cancers.2011,3 (1):1285-1310
    [196]Reed DJ. Glutathione:toxicological implications. Annual Review of Pharmacology and Toxicology. 1990,30(1):603-631
    [197]Pierce GB, Parchment RE,Lewellyn AL. Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation.1991,46 (3):181-186
    [198]Hampton MB,Orrenius S. Dual regulation of caspase activity by hydrogen peroxide:implications for apoptosis. Febs Letters.1997,414 (3):552-556
    [199]Buttke TM,Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunology Today.1994, 15(1):7-10
    [200]Benchekroun MN, Pourquier P, Schott B, et al. Doxorubicin-induced lipid peroxidation and glutathione peroxidase activity in tumor cell lines selected for resistance to doxorubicin. European Journal of Biochemistry.1993,211 (1-2):141-146
    [201]Xiao T, Choudhary S, Zhang W, et al. Possible involvement of oxidative stress in cisplatin-induced apoptosis in LLC-PK1 cells. Journal of Toxicology and Environmental Health-Part A.2003,66 (5):469-479
    [202]Circu ML,Aw TY. Glutathione and apoptosis. Free Radical Research.2008,42 (8):689-706
    [203]Ozben T. Oxidative stress and apoptosis:impact on cancer therapy. Journal of Pharmaceutical Sciences.2007,96 (9):2181-2196
    [204]Gupta SC, Hevia D, Patchva S, et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxidants& Redox Signaling.2012,16 (11):1295-1322
    [205]Talley AK, Dewhurst S, Perry SW, et al. Tumor necrosis factor a-induced apoptosis in human neuronal cells:protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Molecular and Cellular Biology.1995,15 (5):2359-2366
    [206]Cossarizza A, Franceschi C, Monti D, et al. Protective effect of N-acetylcysteine in tumor necrosis factor-a-induced apoptosis in U937 cells:the role of mitochondria. Experimental Cell Research.1995, 220 (1):232-240
    [207]Kim JY,Park JH. ROS-dependent caspase-9 activation in hypoxic cell death. Febs Letters.2003, 549 (1-3):94-98
    [208]Izeradjene K, Douglas L, Tillman DM, et al. Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Research.2005,65 (16):7436-7445
    [209]Byun JY, Kim MJ, Eum DY, et al. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Molecular Pharmacology.2009,76 (4):734-744
    [210]Oliver FJ, Menissier-de Murcia J,de Murcia G. Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. American Journal of Human Genetics.1999,64 (5): 1282-1288
    [211]Dhanasekaran DN,Reddy EP. JNK signaling in apoptosis. Oncogene.2008,27 (48):6245-6251
    [212]Mates JM, Segura JA, Alonso FJ, et al. Intracellular redox status and oxidative stress:implications for cell proliferation, apoptosis, and carcinogenesis. Archives of Toxicology.2008,82 (5):273-299
    [213]Harries HM, Fletcher ST, Duggan CM, et al. The use of genomics technology to investigate gene expression changes in cultured human liver cells. Toxicology in Vitro.2001,15 (4-5):399-405
    [214]陈忠斌.生物芯片技术.北京:化学工业出版社,2005
    [215]Xiang CC,Chen Y. cDNA microarray technology and its applications. Biotechnology Advances. 2000,18 (1):35-46
    [216]Kurian KM, Watson CJ,Wyllie AH. DNA chip technolgy. The Journal of Pathology.1999,187 (3): 267-271
    [217]Lemieux B, Aharoni A,Schena M. Overview of DNA chip technology. Molecular Breeding.1998, 4 (4):277-289
    [218]Li XM, Gu WK, Mohan S, et al. DNA microarrays:Their use and misuse. Microcirculation.2002, 9 (1):13-22
    [219]Waring JF, Jolly RA, Ciurlionis R, et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicology and Applied Pharmacology.2001,175 (1):28-42
    [220]Waring JF, Ciurlionis R, Jolly RA, et al. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicology Letters.2001,120 (1-3):359-368
    [221]Hamadeh HK, Bushel PR, Jayadev S, et al. Gene expression analysis reveals chemical-specific profiles. Toxicological Sciences.2002,67 (2):219-231
    [222]Liguori MJ, Anderson MG, Bukofzer S, et al. Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity induced by trovafloxacin. Hepatology.2005,41 (1):177-186
    [223]姜俊芳,宋雪梅,和蒋永清.抑制消减杂交联合基因芯片技术及其在动物基因差异表达研究中的应用.畜牧与饲料科学,2011,32(8):57-59
    [224]刘凤英,靳溪,汤树生,等.喹烯酮诱导HepG2细胞DNA复制相关基因表达水平的变化.癌变.畸变.突变,2011,23(5):325-329
    [225]Coux O, Tanaka K,Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry.1996,65:801-847
    [226]Collavoli A, Comelli L, Cervelli T, et al. The over-expression of the 02 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells. Journal of Biomedicine and Biotechnology.2011
    [227]Shuqing L, Jianmin Y, Chongmei H, et al. Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Experimental Hematology.2011,39 (12):1117-1118
    [228]Dubiel W, Ferrell K,Rechsteiner M. Tat-Binding Protein-7 Is a Subunit of the 26s Protease. Biological Chemistry Hoppe-Seyler.1994,375 (4):237-240
    [229]Qiao L, Paul P, Lee S, et al. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells. Biochemical and Biophysical Research Communications.2013,435 (2):295-299
    [230]Bouwmeester T, Bauch A, Ruflher H, et al. A physical and functional map of the human TNF-a/NF-κ B signal transduction pathway. Nature Cell Biology.2004,6 (2):97-105
    [231]Ko NL, Taylor JM, Bellon M, et al. PA28gamma is a novel corepressor of HTLV-1 replication and controls viral latency. Blood.2013,121 (5):791-800
    [232]Ciaccio PJ, Jaiswal AK,Tew KD. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics. Journal of Biological Chemistry.1994,269 (22):15558-15562
    [233]Stolz A, Hammond L, Lou H, et al. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. Journal of Biological Chemistry. 1993,268 (14):10448-10457
    [234]Zhouravleva G, Schepachev V, Petrova A, et al. Evolution of translation termination factor eRF3: is GSPT2 generated by retrotransposition of GSPTl'smRNA? IubmbLife.2006,58 (4):199-202
    [235]Chauvin C, Salhi S,Jean-Jean O. Human eukaryotic release factor 3a depletion causes cell cycle arrest at Gi phase through inhibition of the mTOR pathway. Molecular and Cellular Biology.2007,27 (16):5619-5629
    [236]Schneider P, Bodmer JL, Thome M, et al. Characterization of two receptors for TRAIL. Febs Letters. 1997,416 (3):329-334
    [237]Chaudhary PM, Eby M, Jasmin A, et al. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway. Immunity.1997,7 (6):821-830
    [238]Caulin C, Salvesen GS.Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. Journal of Cell Biology.1997,138 (6):1379-1394
    [239]Inada H, Izawa I, Nishizawa M, et al. Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. Journal of Cell Biology.2001,155 (3):415-426
    [240]Ku NO, Liao J,Omary MB. Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. Embo Journal.1998,17 (7):1892-1906
    [241]Starr JM, Shiels PG, Harris SE, et al. Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mechanisms of Ageing and Development.2008,129 (12):745-751
    [242]Emahazion T, Beskow A, Gyllensten U, et al. Intron based radiation hybrid mapping of 15 complex I genes of the human electron transport chain. Cytogenetics and Cell Genetics.1998,82 (1-2):115-119
    [243]Brandenberger R, Wei H, Zhang S, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnology.2004,22 (6):707-716
    [244]Povlsen LK, Beli P, Wagner SA, et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biology.2012,14 (10):1089-1098
    [245]Chu L, Su MY, Maggi LB, Jr., et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. Journal of Clinical Investigation.2012, 122 (8):2793-2806
    [246]Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell.2006,127 (3):635-648
    [247]Scherl A, Coute Y, Deon C, et al. Functional proteomic analysis of human nucleolus. Molecular Biology of The Cell.2002,13 (11):4100-4109
    [248]Nakayama K, Nakayama N, Wang TL, et al. NAC controls cell growth and survival by repressing transcription of Gadd45GIPl, a candidate tumor suppressor. Cancer Research.2007,67 (17):8058-8064
    [249]Horikoshi N, Cong J, Kley N, et al. Isolation of differentially expressed cDNAs fromp53-dependent apoptotic cells:activation of the human homologue of the Drosophila peroxidasin gene. Biochemical and Biophysical Research Communications.1999,261 (3):864-869
    [250]Ohiro Y, Garkavtsev I, Kobayashi S, et al. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). Febs Letters.2002,524 (1-3):163-171
    [251]Wu M, Xu LG, Su T, et al. AMID is a p53-inducible gene downregulated in tumors. Oncogene. 2004,23 (40):6815-6819
    [252]Celli CM, Tran N, Knox R, et al. NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Biochemical Pharmacology.2006,72 (3):366-376
    [253]Hsieh TC, Yang CJ, Lin CY, et al. Control of stability of cyclin D1 by quinone reductase 2 in CWR22Rvl prostate cancer cells. Carcinogenesis.2012,33 (3):670-677
    [254]Long DJ,Jaiswal AK. NRH:quinone oxidoreductase2 (NQO2). Chemico-Biological Interactions. 2000,129 (1-2):99-112
    [255]Cheong AW, Lee YL, Liu WM, et al. Oviductal microsomal epoxide hydrolase (EPHX1) reduces reactive oxygen species (ROS) level and enhances preimplantation mouse embryo development. Biology of Reproduction.2009,81 (1):126-132
    [256]Hassett C, Aicher L, Sidhu JS, et al. Human microsomal epoxide hydrolase:genetic polymorphism and functional expression in vitro of amino acid variants. Human Molecular Genetics.1994,3 (3):421-428
    [257]Laberge RM, Karwatsky J, Lincoln MC, et al. Modulation of GSH levels in ABCC1 expressing tumor cells triggers apoptosis through oxidative stress. Biochemical Pharmacology.2007,73 (11):1727-1737
    [258]Mitra P, Oskeritzian CA, Payne SG, et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proceedings of The National Academy of Sciences of The United States of America. 2006,103 (44):16394-16399
    [259]Leslie EM, Haimeur A,Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. Journal of Biological Chemistry. 2004,279 (31):32700-32708
    [260]Wool IG, Chan YL,Gluck A. Structure and evolution of mammalian ribosomal proteins. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire.1995,73 (11-12):933-947
    [261]Kenmochi N, Kawaguchi T, Rozen S, et al. A map of 75 human ribosomal protein genes. Genome Research.1998,8 (5):509-523
    [262]Uechi T, Tanaka T,Kenmochi N. A complete map of the human ribosomal protein genes:assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics.2001,72 (3):223-230
    [263]Greber BJ, Boehringer D, Leitner A, et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature.2014,505 (7484):515-519
    [264]De Valck D, Heyninck K, Van Criekinge W, et al. A20, an inhibitor of cell death, self-associates by its zinc finger domain. Febs Letters.1996,384 (1):61-64
    [265]He KL,Ting AT. A20 inhibits tumor necrosis factor (TNF) α-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Molecular and Cellular Biology.2002,22 (17):6034-6045
    [266]Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science.2000,289 (5488):2350-2354
    [267]Dong B, Lv G, Wang Q, et al. Targeting A20 enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications.2012,418 (2):433-438
    [268]Kumar D, Whiteside TL,Kasid U. Identification of a novel tumor necrosis factor-α-inducible gene, SCC-S2, containing the consensus sequence of a death effector domain of fas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein. Journal of Biological Chemistry.2000,275 (4):2973-2978
    [269]Miao Z, Zhao T, Wang Z, et al. SCC-S2 is overexpressed in colon cancers and regulates cell proliferation. Tumour Biology.2012,33 (6):2099-2106
    [270]Dong QZ, Zhao Y, Liu Y, et al. Overexpression of SCC-S2 correlates with lymph node metastasis and poor prognosis in patients with non-small-cell lung cancer. Cancer Science.2010,101 (6):1562-1569
    [271]Chittenden T, Harrington EA, O'Connor R, et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature.1995,374 (6524):733-736
    [272]Griffiths GJ, Dubrez L, Morgan CP, et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. Journal of Cell Biology.1999,144 (5):903-914
    [273]Leu JI, Dumont P, Hafey M, et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nature Cell Biology.2004,6 (5):443-450
    [274]Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes & Development.2000,14 (16):2060-2071
    [275]Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. Journal of Cell Biology.1999,144 (5):891-901
    [276]Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell.1998,94 (4):491-501
    [277]Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature.1999,400 (6747):886-891
    [278]Sax JK, Fei P, Murphy ME, et al. BID regulation by p53 contributes to chemosensitivity. Nature Cell Biology.2002,4 (11):842-849
    [279]Garcia-Perez C, Roy SS, Naghdi S, et al. Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling. Proceedings of The National Academy of Sciences of The United States of America.2012,109 (12):4497-4502
    [280]O'Connor L, Strasser A, O'Reilly LA, et al. Bim:a novel member of the Bcl-2 family that promotes apoptosis. Embo Journal.1998,17 (2):384-395
    [281]Sugiyama T, Shimizu S, Matsuoka Y, et al. Activation of mitochondrial voltage-dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene.2002,21 (32):4944-4956
    [282]Yu J,Zhang L. PUMA, a potent killer with or without p53. Oncogene.2008,27 (S1):S71-S83
    [283]Nakano K,Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell. 2001,7 (3):683-694
    [284]Reimertz C, Kogel D, Rami A, et al. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. Journal of Cell Biology.2003,162 (4):587-597
    [285]Nakajima K, Hirose H, Taniguchi M, et al. Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. Embo Journal.2004,23 (16):3216-3226
    [286]Zhang H, Heim J,Meyhack B. Novel BNIP1 variants and their interaction with BCL2 family members. Febs Letters.1999,448 (1):23-27
    [287]Wang P, Wu Y, Li Y, et al. A novel RING finger E3 ligase RNF186 regulate ER stress-mediated apoptosis through interaction with BNipl. Cellular Signalling.2013,25 (11):2320-2333
    [288]Tang F, Wang B, Li N, et al. RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIPl. PLoS One.2011,6 (9):e24367
    [289]Fei P, Wang W, Kim SH, et al. Bnip3L is induced by p53 under hypoxia, and its knockdown
    promotes tumor growth. Cancer Cell.2004,6 (6):597-609
    [290]Imazu T, Shimizu S, Tagami S, et al. Bcl-2/ElB 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-XL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene.1999,18 (32):4523-4529
    [291]Todt F, Cakir Z, Reichenbach F, et al. The C-terminal helix of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria. Cell Death and Differentiation.2013,20 (2):333-342
    [292]McNally MA, Soane L, Roelofs BA, et al. The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion.2013,13 (2):119-124
    [293]Hu Y, Benedict MA, Wu D, et al. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proceedings of The National Academy of Sciences of The United States of America. 1998,95 (8):4386-4391
    [294]Chattopadhyay A, Chiang CW,Yang E. BAD/BCL-XLheterodimerization leads to bypass of G0/G1 arrest. Oncogene.2001,20 (33):4507-4518
    [295]Takayama S, Sato T, Krajewski S, et al. Cloning and functional analysis of BAG-1:a novel Bcl-2-binding protein with anti-cell death activity. Cell.1995,80 (2):279-284
    [296]Takayama S, Bimston DN, Matsuzawa S, et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. Embo Journal.1997,16 (16):4887-4896
    [297]Stegh AH, Kesari S, Mahoney JE, et al. Bc12L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proceedings of The National Academy of Sciences of The United States of America.2008,105 (31):10703-10708
    [298]Stegh AH, Brennan C, Mahoney JA, et al. Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes & Development.2010,24 (19):2194-2204
    [299]Taghavi MS, Akbarzadeh A, Mahdian R, et al. Cisplatin downregulates BCL2L12, a novel apoptosis-related gene, in glioblastoma cells. In vitro cellular & developmental biology. Animal.2013, 49 (6):465-472
    [300]Dewind N, Dekker M, Berns A, et al. Inactivation of the Mouse Msh2 Gene Results in Mismatch Repair Deficiency, Methylation Tolerance, Hyperrecombination, and Predisposition to Cancer. Cell.1995, 82 (2):321-330
    [301]Pitsikas P, Lee D,Rainbow AJ. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2. Mutagenesis.2007,22 (3):235-243
    [302]Mellon I, Rajpal DK, Koi M, et al. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science.1996,272 (5261):557-560
    [303]Liu XS, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell.1997,89 (2):175-184
    [304]Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proceedings of The National Academy of Sciences of The United States of America.1998,95 (15):8461-8466
    [305]Mukae N, Enari M, Sakahira H, et al. Molecular cloning and characterization of human caspase-activated DNase. Proceedings of The National Academy of Sciences of The United States of America. 1998,95 (16):9123-9128
    [306]Baron BW, Hyjek E, Gladstone B, et al. PDCD2, a protein whose expression is repressed by BCL6, induces apoptosis in human cells by activation of the caspase cascade. Blood Cells Molecules & Diseases. 2010,45(2):169-175
    [307]Scarr RB,Sharp PA. PDCD2 is a negative regulator of HCF-1 (C1). Oncogene.2002,21 (34):5245-5254
    [308]Mangone M, Myers MP,Herr W. Role of the HCF-1 basic region in sustaining cell proliferation. PLoS One.2010,5 (2):e9020
    [309]Chen Q, Yan C, Yan Q, et al. The novel MGC13096 protein is correlated with proliferation. Cell Biochemistry and Function.2008,26 (2):141-145
    [310]Goke R, Gregel C, Goke A, et al. Programmed cell death protein 4 (PDCD4) acts as a tumor suppressor in neuroendocrine tumor cells. Gastroenteropancreatic Neuroendocrine Tumor Disease: Molecular and Cell Biological Aspects.2004,1014 (1):220-221
    [311]Wedeken L, Singh P,Klempnauer KH. Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. Journal of Biological Chemistry.2011,286 (50):42855-42862
    [312]Yang HS, Matthews CP, Clair T, et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Molecular and Cellular Biology.2006,26 (4):1297-1306
    [313]Palamarchuk A, Efanov A, Maximov V, et al. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Research.2005,65 (24):11282-11286
    [314]Kantari C,Walczak H. Caspase-8 and bid:caught in the act between death receptors and mitochondria. Biochimica Et Biophysica Acta.2011,1813 (4):558-563
    [315]Gross A, McDonnell JM,Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes & Development.1999,13 (15):1899-1911
    [316]Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell.2000,103 (2):239-252
    [317]Ryazantseva NV, Novitskii VV, Zhukova OB, et al. Role of NF-kB, p53, and p21 in the regulation of TNF-a mediated apoptosis of lymphocytes. Bulletin of Experimental Biology and Medicine.2010,149 (1):50-53
    [318]Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood.1997,89 (6):1845-1853
    [319]Wyllie AH. Glucocorticoid-Induced Thymocyte Apoptosis Is Associated with Endogenous Endonuclease Activation. Nature.1980,284(5756):555-556
    [320]Gavrieli Y, Sherman Y,Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology.1992,119 (3):493-501
    [321]Nicoletti I, Migliorati G, Pagliacci MC, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. Journal of Immunological Methods.1991, 139 (2):271-279
    [322]Negoescu A, Lorimier P, Labat-Moleur F, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. Journal of Histochemistry & Cytochemistry.1996,44 (9):959-968
    [323]Zhang JH,Xu M. DNA fragmentation in apoptosis. Cell Research.2000,10 (3):205-211
    [324]Nagata S. Apoptotic DNA fragmentation. Experimental Cell Research.2000,256 (1):12-18
    [325]Cowling V,Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway:absolute requirement for removal of caspase-6 prodomain. Cell Death and Differentiation.2002,9 (10):1046-1056
    [326]Salvesen GS. Caspases:opening the boxes and interpreting the arrows. Cell Death and Differentiation.2002,9 (1):3-5
    [327]Kaufmann SH, Desnoyers S, Ottaviano Y, et al. Specific proteolytic cleavage of poly(ADP-ribose) polymerase:an early marker of chemotherapy-induced apoptosis. Cancer Research.1993,53 (17):3976-3985
    [328]Herceg Z,Wang ZQ. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Molecular and Cellular Biology.1999,19 (7):5124-5133
    [329]Luo X,Kraus WL. On PAR with PARP:cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes & Development.2012,26 (5):417-432
    [330]Kroemer G, Galluzzi L,Brenner C. Mitochondrial membrane permeabilization in cell death. Physiological Reviews.2007,87 (1):99-163
    [331]Zamzami N,Kroemer G. p53 in apoptosis control:an introduction. Biochemical and Biophysical Research Communications.2005,331 (3):685-687
    [332]Vousden KH,Lu X. Live or let die:the cell's response to p53. Nature Reviews Cancer.2002,2 (8): 594-604
    [333]Bensaad K,Vousden KH. Savior and slayer:the two faces of p53. Nature Medicine.2005,11 (12): 1278-1279
    [334]Meek DW. The p53 response to DNA damage. Dna Repair.2004,3 (8-9):1049-1056
    [335]Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature.1995,376 (6535):37-43
    [336]Dulic V, Kaufinann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced Gi arrest. Cell.1994,76 (6):1013-1023
    [337]Waldman T, Kinzler KW,Vogelstein B. p21 Is Necessary for the p53-mediated G1\Arrest in Human Cancer Cells. Cancer Research.1995,55 (22):5187-5190
    [338]Niculescu AB, Chen X, Smeets M, et al. Effects of p21Cipl/Wafl at both the Gi/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Molecular and Cellular Biology.1998,18 (1):629-643
    [339]Ogryzko W, Wong P,Howard BH. WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Molecular and Cellular Biology.1997,17 (8):4877-4882
    [340]Yadav V, Sultana S, Yadav J, et al. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells viap21/p27/p53. PLoS One.2012,7 (10):e47796
    [341]Meldrum KK, Meldrum DR, Hile KL, et al. p38 MAPK mediates renal tubular cell TNF-α production and TNF-a-dependent apoptosis during simulated ischemia. American Journal of Physiology-Cell Physiology.2001,281 (2):C563-570
    [342]Ballard-Croft C, White DJ, Maass DL, et al. Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-a. American Journal of Physiology-Heart and Circulatory Physiology.2001,280 (5):H1970-1981
    [343]Waetzig GH, Seegert D, Rosenstiel P, et al. p38 Mitogen-Activated Protein Kinase Is Activated and Linked to TNF-α Signaling in Inflammatory Bowel Disease. Journal of Immunology.2002,168 (10): 5342-5351
    [344]Hoffmeyer A, Grosse-Wilde A, Flory E, et al. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor a gene expression in T lymphocytes. Journal of Biological Chemistry.1999,274 (7):4319-4327
    [345]Weston CR,Davis RJ. The JNK signal transduction pathway. Current Opinion in Cell Biology.2007, 19 (2):142-149
    [346]赵文霞.MAPK信号通路在喹乙醇诱导HepG2细胞凋亡中的作用研究:[硕士学位论文].北京:中国农业大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700