用户名: 密码: 验证码:
苹果果实发育及成熟进程中乙烯发生的信号转导机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果树果实发育和成熟调控是果树学科的核心问题之一。多年来的研究表明,跃变型果实的成熟是由植物激素乙烯操纵的,但对果实中乙烯信号起源的机制却几乎没有深入了解。苹果是重要的果树品种之一,也是典型的呼吸跃变型果实。本论文以‘金冠’苹果为试材,从细胞信号转导的角度,对果实发育过程中乙烯信号起源的机制进行了研究。主要结果和结论如下:
     1.通过生物信息学分析,在苹果中共鉴定9个蔗糖非酵解型蛋白激酶SnRK2s亚家族成员。该亚家族成员均含有ATP结合位点及Ser/Thr激酶结构域,属于PKc类蛋白激酶。对SnRK2s亚家族全部成员的时空表达分析表明,MdSnRK2.4的表达特征与果实发育和成熟进程尤为一致,意味着MdSnRK2.4在苹果果实发育和成熟过程中可能起着重要作用。
     2. MdSnRK2.4在番茄'Micro Tom'中的稳定表达不仅可以促进果实发育还可以影响植物的一系列形态建成,如植株矮化、叶绿素含量上升、叶绒毛变长、叶肉细胞膨大及密度降低等。这些特征都与乙烯调控有关,说明MdSnRK2.4是操纵乙烯信号起源的上游信号蛋白。
     3. MdSnRK2.4在苹果果实愈伤中瞬时表达促进了乙烯合成关键酶MdACO1基因的表达及乙烯的释放,相反,MdSnRK2.4的RNAi沉默抑制了MdACO1的表达及乙烯的释放。MdSnRK2.4在番茄果实中异源过表达可显著促进乙烯合成及番茄果实成熟进程。进一步研究表明,在玉米原生质体中,MdSnRK2.4的瞬时表达可促进MdACO1启动子驱动的LUC报告基因的表达。这些数据表明,MdSnRK2.4为操纵MdACO1基因表达的上游信号蛋白,因而在乙烯合成及果实成熟调控中起着重要作用。
     4.通过酵母双杂交、双分子荧光互补及Pull-down检测证明,MdSnRK2.4与MdACO1转录因子MdHB存在物理互作,互作区域发生在MdSnRK2.4功能域STKC (Ser/Thr protein kinase c)与MdHB功能域HD (Homeobox domain)之间。利用原核菌株表达体系及磷酸化位点质谱检测发现,MdSnRK2.4与MdHB之间的互作导致MdHB蛋白磷酸化,磷酸化位点位于MdHB中HD结构域的三个苏氨酸位点,即T82、T95、T131。酵母双杂交、酵母单杂交检测发现,点突变该三个苏氨酸位点后MdHB与MdSnRK2.4互作强度及其对MdACO1启动子的启动活性下降。表明,MdSnRK2.4对MdHB的功能调控是通过磷酸化修饰机制。
     综上所述,本研究揭示了MdSnRK2.4为操纵乙烯信号产生的重要信号蛋白,其分子机制在于,MdSnRK2.4可以通过与MdACO1转录因子MdHB的直接互作,对MdHB功能域进行磷酸化修饰以调控MdHB的活性,进而调控MdACO1的表达,因而最终操纵了乙烯的产生。该研究不仅解析了苹果果实发育过程中乙烯信号产生的分子机制,对今后苹果分子改良也具有重要的指导意义。
Regulation of fruit development and ripening is one of the most important questions in pomology science. It has been well established that ripening of climacteric fruit is controlled by phytohormone ethylene, but mechanisms of the signal production for ethylene production is largely unknown. Apple is well known to be one of the most important, and also, typical climacteric species of fruit tresses. Using'Golden Delicious'apple as material, this study aims to probe into the mechanisms of signal transduction for the ethylene production during apple fruit development and ripening. The major results are summarized as follows:
     1. Bioinformatics analysis identified nine members of sucrose non-fermenting protein kinase subfamily, SnRK2s, in 'Golden Delicious' apple. The SnRK2s consists of nine members, all of which contain ATP-binding sites and the Ser/Thr catalytic domain of PKc. Analysis for the temporospatial characteristics of the gene expression of SnRK2s indicated that, MdSnRK2.4is closely correlated to apple fruit development and ripening, implying that MdSnRK2.4may play an important role in the regulation of apple fruit development and ripening.
     2. Stable transformation of MdSnRK2.4driven by CaM35S in 'Micro Tom' not only promoted fruit ripening, but also affected plant phenotypes, e.g. plant dwarfing, increase in chlorophyll contents, long epidermal hairs and lower cell density and so on. All these phenotypes are correlated with function of ethylene, demonstrating a role of MdSnRK2.4in the regulation of ethylene production.
     3. Over-expression of MdSnRK2.4promoted ethylene production and the expression of MdACOl, a gene encoding the key enzyme in ethylene biosynthesis pathway, in apple fruit callus, and by contrast, inhibition of MdSnRK2.4by RNAi inhibited ethylene production and the expression of MdACO1. Additionally, transient expression of MdSnRK2.4in 'micro torn' fruit also promoted ethylene production and fruit ripening. Maize protoplast transient expression analysis demonstrated that expression of MdSnRK2.4dramatically promoted the activity of the reporter gene GUS driven by MdACO1protmoter. All these results strongly indicated that MdSnRK2.4is a key signal controlling MdACO1expression thereby controlling ethylene production.
     4. Yeast two-hybrid, BiFC and full-down experiments all demonstrated that MdSnRK2.4could physically interact with MdACO1, and more over, the interaction domain took place between MdSnRK2.4catalytic domain STKC and MdHB functional Homeobox domain. Using prokaryotic expression system and mass spectrum analysis, it was demonstrated that MdSnRK2.4phosphorylated MdHB at three sites of Thr, i.e. T82, T95and T131. Mutation of those three phosphorylation sites in MdHB caused a decrease of interaction strength between MdHB and MdSnRK2.4in the yeast two-hybrid, and failed to activate transcription for MdACO1promoter detected by the yeast one-hybrid. Those showed that the expression regulation of MdSnRK2.4to MdHB is through phosphorylation mechanism.
     Collectively, this study demonstrated that MdSnRK2.4is a key signal controlling ethylene production. The mechanisms for the MdSnRK2.4-contrlled ethylene production is that MdSnRK2.4could phosphorylate MdHB transcription factor thereby regulating MdACO1expression and finally controlling the ethylene production. The present study is of great significance not only in the understanding of the molecular basis of ethylene signal origination but also in the molecular breeding of apple trees.
引文
陈娜娜,刘金义,蔡斌,王刚,王敏,程宗明.苹果SnRK2基因家族的鉴定和生物信息学分析.中国农学通报.2013;29:120-127.
    董月菊,张玉刚,梁美霞,戴洪义.苹果果实品质主要评价指标的选择.华北农学报.2011;26:74-79.
    李红兀,冯双庆.ABA和乙烯对冬枣果实成熟衰老的调控.食品科学2003;24:147-150.
    李琳,柳参奎SnRK蛋白激酶家族及其成员SnRK2的功能.分子植物育种.2010;8:547-555.
    李明,郝建军,于洋,付淑杰,李云鹏,吴建丽.脱落酸(ABA)对苹果果实着色相关物质变化的影响.沈阳农业大学学报.2006;36:189-193.
    梁晓娟.果实质量与补钙.山西果树.2009:43-44.
    孙建设,章文才.富士苹果果皮色泽形成的需光特性研究.园艺学报.2000;27:213-215.
    王贵平,王金政.苹果抗逆性研究进展与鉴定方法.江苏农业科学.2013;41:151-153.
    王永波,高世庆,唐益苗,刘美英,郭丽香,张朝,等.植物蔗糖非发酵-1相关蛋白激酶家族研究进展.生物技术通报.2010;11:7-18.
    魏钦平,程述汉,丁殿东.苹果品质评价因素的选择.中国果树.1997;4:14-15.
    魏钦平,李嘉瑞.苹果品质与生态因子关系的研究.山东农业大学学报:自然科学版.1998;29:532-536.
    杨振伟.气象因子与国光苹果品质关系的研究.华北农学报.2000;15:148-152
    尹蓉.苹果属植物幼苗对盐胁迫的耐性评价及生理响应[硕士学位论文].西北农林科技大学;2010.
    于巧平.苹果ACO1转录因子MdHB-1基因的克隆及其在酵母细胞中的表达[硕士学位论文].西北农林科技大学;2012.
    赵进春,韩振海.生态因子对苹果果实Ca、K含量及其品质的影响.辽宁农业科学.2002:9-11.
    张光伦.生态因子对果实品质的影响.果树科学.1994;11:120-124.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science.2006;311:91-94.
    Alayon-Luaces P, Pagano EA, Mroginski LA, Sozzi GO. Four glycoside hydrolases are differentially modulated by auxins, cytokinins, abscisic acid and gibberellic acid in apple fruit callus cultures. Plant cell, tissue and organ culture.2008;95:257-263.
    Alexander L, Grierson D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. Journal of experimental botany.2002;53:2039-2055.
    Aloni R, Schwalm K, Langhans M, Ullrich CI. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta.2003;216:841-853.
    Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science.1999;284:2148-2152.
    Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS. Apple ACC-oxidase and polygalacturonase:ripening-specific gene expression and promoter analysis in transgenic tomato. Plant molecular biology.1998;38:449-460.
    Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature.2007;448:938-942.
    Bealing F. Carbohydrate metabolism in Hevea latex--availability and utilisation of substrates. Rubber Res Inst Malaya J.1969;21:445-455.
    Beattie GA, Lindow SE. Bacterial colonization of leaves:a spectrum of strategies, phytopathology. 1999;89:353-359.
    Belin C, de Franco P-O, Bourbousse C, Chaignepain S, Schmitter J-M, Vavasseur A, et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant physiology.2006;141:1316-1327.
    Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Annual review of cell and developmental biology.2000;16:1-18.
    Blume B, Grierson D. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. The Plant Journal. 1997;12:731-746.
    Bose J, Xie Y, Shen W, Shabala S. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. Journal of experimental botany.2013;64:471-481.
    Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. The Journal of biological chemistry.2004;279:41758-41766.
    Brewer C, Smith W. Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell & Environment.1997;20:1-11.
    Cabello JV, Arce AL, Chan RL. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. The Plant Journal.2012;69:141-153.
    Cao W-H, Liu J, He X-J, Mu R-L, Zhou H-L, Chen S-Y, et al. Modulation of ethylene responses affects plant salt-stress responses. Plant physiology.2007; 143:707-719.
    CAO WH, Liu J, ZHOU QY, CAO YR, ZHENG SF, DU BX, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant, cell & environment. 2006;29:1210-1219.
    Chae M-J, Lee J-S, Nam M-H, Cho K, Hong J-Y, Yi S-A, et al. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant molecular biology.2007;63:151-169.
    Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, et al. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica.2005;141:181-190.
    DeSilva TM, Veglia G, Porcelli F, Prantner AM, Opella SJ. Selectivity in heavy metal-binding to peptides and proteins. Biopolymers.2002;64:189-197.
    Ehleringer J, Werk K. Modifications of solar-radiation absorption patterns and implications for carbon gain at the leaf level. On the economy of plant form and function:proceedings of the Sixth Maria Moors Cabot Symposium:Cambridge [Cambridgeshire]:Cambridge University Press.1986.
    Fluhr R, Mattoo AK, Dilley DR. Ethylene biosynthesis and perception. Critical reviews in plant sciences.1996;15:479-523.
    Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature.2009;462:660-664.
    Fujii H, Verslues PE, Zhu J-K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell Online.2007; 19:485-494.
    Gong D, Zhang C, Chen X, Gong Z, Zhu J-K. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. Journal of Biological Chemistry. 2002;277:42088-42096.
    Guo H, Ecker JR. The ethylene signaling pathway:new insights. Current opinion in plant biology. 2004;7:40-49.
    Haiford N, Hey S, Jhurreea D, Laurie S, McKibbin R, Paul M, et al. Metabolic signalling and carbon partitioning:role of Snfl-related (SnRK1) protein kinase. Journal of experimental botany.2003;54:467-475.
    Halford NG, Hardie DG. SNF1-related protein kinases:global regulators of carbon metabolism in plants? Plant molecular biology.1998;37:735-748.
    Hanzlowsky A, Jelencic B, Jawdekar G, Hinkley CS, Geiger JH, Henry RW. Co-expression of multiple subunits enables recombinant SNAPC assembly and function for transcription by human RNA polymerasesⅡ and Ⅲ. Protein expression and purification.2006;48:215-223.
    Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant physiology.2003; 132:666-680.
    Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, et al. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant cell reports.2008;27:1861-1868.
    Ikeda Y, Koizumi N, Kusano T, Sano H. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant physiology.1999; 121:813-820.
    Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus:EIN2 bridges the gap in ethylene signaling. Molecular plant.2013;6:11-14.
    Johnson HB. Plant pubescence:an ecological perspective. The Botanical Review.1975; 41:233-258.
    Kupper H, Lombi E, Zhao F-J, McGrath SP. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta. 2000;212:75-84.
    Kende H. Ethylene biosynthesis. Annual review of plant biology.1993;44:283-307.
    Kennedy GC, Matsuzaki H, Dong S, Liu W-m, Huang J, Liu G, et al. Large-scale genotyping of complex DNA. Nature biotechnology.2003;21:1233-1237.
    Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant Journal.2007;51:458-467.
    Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, et al. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. The Plant Cell Online.2003a; 15:2707-2718.
    Kim K-J, Park C-J, Ham B-K, Choi SB, Lee B-J, Paek K-H. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum. Plant cell reports.2006;25:359-364.
    Kim K-N, Cheong YH, Grant JJ, Pandey GK, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell Online.2003b;15:411-423.
    Kinoshita E, Kinoshita-Kikuta E, Koike T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature protocols.2009;4:1513-1521.
    Klee HJ. Ethylene signal transduction. Moving beyond Arabidopsis. Plant physiology. 2004;135:660-667.
    Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latche A, Giovannoni JJ, et al. LeCTRl, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant physiology.2002;130:1132-1142.
    Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. The Plant Journal. 2008;55:301-310.
    Liu Y, Schiff M, Dinesh-Kumar S. Virus-induced gene silencing in tomato. The Plant Journal. 2002;31:777-786.
    Lu C-A, Lin C-C, Lee K-W, Chen J-L, Huang L-F, Ho S-L, et al. The SnRKIA protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. The Plant Cell Online.2007; 19:2484-2499.
    Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNFl-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Journal of experimental botany.2010;61:683-696.
    Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey RE. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. The Plant Cell Online.2001;13:1205-1219.
    Oh H, Irvine KD. In vivo regulation of Yorkie phosphorylation and localization. Development. 2008;135:1081-1088.
    Peng H-P, Lin T-Y, Wang N-N, Shih M-C. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant molecular biology.2005;58:15-25.
    Polge C, Thomas M. SNFl/AMPK/SnRKl kinases, global regulators at the heart of energy control? Trends in plant science.2007;12:20-28.
    Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, et al. EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins:EBF1 and EBF2. Cell.2003;115:679-689.
    Purcell PC, Smith AM, Halford NG. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. The Plant Journal.1998;14:195-202.
    Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K. Regulation of SOS 1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences.2002;99:8436-8441.
    Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science.1999;283:996-998.
    Sahu BB, Shaw BP. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC plant biology.2009;9:69.
    Schaffer RJ, Friel EN, Souleyre EJ, Bolitho K, Thodey K, Ledger S, et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant physiology.2007;144:1899-1912.
    Shi H-Y, Zhang Y-X. Pear ACO genes encoding putative I-aminocyclopropane-1-carboxylate oxidase homologs are functionally expressed during fruit ripening and involved in response to salicylic acid. Molecular biology reports.2012;39:9509-9519.
    Shi H, Ishitani M, Kim C, Zhu J-K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the national academy of sciences.2000; 97: 6896-901.
    Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell Online.2012;24:2578-2595.
    Shukla V, Mattoo AK. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2):a family of protein kinases involved in hyperosmotic stress signaling. Physiology and molecular biology of plants.2008; 14:91-100.
    Strader LC, Chen GL, Bartel B. Ethylene directs auxin to control root cell expansion. The Plant Journal.2010;64:874-884.
    Sugden PH, Clerk A.'Stress-responsive'mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circulation research. 1998;83:345-352.
    Sun L, Wang Y-P, Chen P, Ren J, Ji K, Li Q, et al. Transcriptional regulation of S1PYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of experimental botany.2011;62:5659-5669.
    Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in plant science.2000;5:214-219.
    Thomma BP, Eggermont K, Tierens KF-J, Broekaert WF. Requirement of Functional Ethylene-Insensitive 2 Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea. Plant physiology.1999;121:1093-1101.
    Tieman DM, Taylor MG, Ciardi JA, Klee HJ. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences.2000;97:5663-5668.
    Tolia NH, Joshua-Tor L. Strategies for protein coexpression in Escherichia coli. Nature methods. 2006;3:55-64.
    Traw MB, Feeny P. Glucosinolates and trichomes track tissue value in two sympatric mustards. Ecology.2008;89:763-772.
    Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, et al. Expression analysis of anthocyanin biosynthetic genes in apple skin:effect of UV-B and temperature. Plant Science. 2006;170:571-578.
    Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America.2004;101:17306-17311.
    Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, et al. Transcriptional activation of OsDERFl in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PloS one.2011;6:e25216.
    Wang KL-C, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. The Plant Cell Online. 2002;14:S131-S151.
    Wang R-K, Li L-L, Cao Z-H, Zhao Q, Li M, Zhang L-Y, et al. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant molecular biology.2012a;79:123-135.
    Wang X, Peng F, Li M, Yang L, Li G. Expression of a heterologous SnRKl in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. Journal of plant physiology.2012b;169:1173-1182.
    Werker E. Trichome diversity and development. Advances in botanical research.2000;31:1-35.
    Wollenweber E, Schneider H. Lipophilic exudates of Pteridaceae-chemistry and chemotaxonomy. Biochemical systematics and ecology.2000;28:751-777.
    Ying S, Zhang D-F, Li H-Y, Liu Y-H, Shi Y-S, Song Y-C, et al. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant cell reports.2011;30:1683-1699.
    Yoon H, Kim M, Shin P, Kim J, Kim C, Lee S, et al. Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Molecular and General Genetics MGG.1997;255:359-371.
    Zhang H, Liu W, Wan L, Li F, Dai L, Li D, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic research.2010a;19:809-818.
    Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta.2010b;232:765-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700