用户名: 密码: 验证码:
玉米/花生间作改善花生铁营养的分子生态调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生(Arachis hypogaea L.)是我国重要的油料作物,在石灰性土壤上种植容易出现缺铁黄化现象,而与玉米(Zea mays L.)间作可以有效缓解这种现象。玉米/花生田间和盆栽间作试验都证明间作能够改善花生铁营养这一生理现象,并且确定了麦根酸在间作改善花生铁营养过程中起到重要作用,而在分子水平上也对花生中铁吸收和转运基因进行了初步研究。尽管如此,间作体系调控花生铁营养的机制仍不清楚。本文通过研究花生铁吸收和转运基因生物学功能解析玉米/花生间作体系中花生铁吸收和转移的分子生物学机制,进而阐明玉米/花生间作改善花生铁营养的分子生态调控机制。
     为确定花生铁吸收和转移相关基因的分子生物学功能,对石灰性土壤条件下生长的花生AhIRT1转基因烟草和水稻以及AhNRAMP1、AhFRO1、AhYSL3.1转基因水稻株系进行了分析。结果表明,石灰性土壤条件下转基因植株的生长状况和铁营养状况明显好于非转基因植株,表明诱导表达花生铁吸收转运相关基因在植物中发挥作用能够提高植物耐缺铁能力;同时,在玉米/花生间作体系中应用抑制性差减杂交的方法获得AhOPT1基因,它在花生根系和叶片都受到缺铁诱导上调表达,酵母功能互补试验证明AhOPT1能够吸收铁。
     玉米/花生间作盆栽试验表明间作体系有效降低花生根际pH,促进根际铁活化,根际有效铁含量较单作显著升高,而有效氮、磷养分显著降低,减少其对铁的螫合作用;而玉米/花生间作田间试验结果也表明间作后花生根际有效铁、锌养分含量在整个生育期呈上升趋势。综上说明间作动态调控了花生根际环境。通过对田间盆栽条件下单间作花生根系铁吸收相关基因表达分析确定间作效应在开花期调控AhNRAMP1、AhFRO1、AhYSL1基因高效表达进行Fe(Ⅱ)和Fe(Ⅲ)的吸收,在结荚期主要调控AhYSL1基因高效表达进行Fe(Ⅲ)的吸收,在饱果期间作效应不再调控花生铁吸收基因表达,而AhIRT1基因在花生全生育期都受到花生铁营养状况调控,由此可以说明,间作体系中花生铁吸收是由间作效应和花生铁营养状况共同调控的。
     通过对玉米/花生间作田间试验花生地上部铁分配的研究发现,间作后花生不同生育期铁分配发生明显的改变,而这种变化与不同时期花生各部位铁营养需求相一致。而在田间和盆栽试验中通过对单间作花生铁转运基因AhYSL3.1、AhFRDL1以及AhOPT1表达差异分析发现,间作后花生铁转运基因在不同部位不同时期表达发生变化,而这种变化调整了花生铁转移从而满足不同时期各部位花生铁营养需求。
Peanut (Arachis hypogaea L.) is an important oil crop in China and it easily shows iron deficiency-induced chlorosis in calcareous soils. This phenomenon can be effectively improved when peanut intercropped with maize (Zea mays L.). The peanut/maize intercropping system can improve iron nutrition of peanut, which has been identified at physiological level via both field and pot experiments, and the DMA has been proved playing an important role in improving peanut iron nutrition in intercropping system. Besides, the preliminary studies of iron absorption and transport genes have been reported. Even so, the mechanism involved in this process remains unclear. In this study, by investigation the biological functions of iron-related genes of peanut the molecular mechanism of iron absorption and translocation in intercropped peanut was elucidated. Moreover, the molecular and ecological mechanism of peanut/maize intercropping improving iron nutrition of peanut was unraveled.
     To indentify the biological functions of iron-related genes of peanut, the transgenic tobacco and rice plants of induced expression of peanut AhIRT1gene and the transgenic rice plants by induced expression of AhNRAMP1, AhFRO1and AhYSL3.1genes in calcareous soils were investigated. The results showed that the growth and nutrient status of transgenic plants were obviously better than that of non-transgenic plants, suggesting induced expression of peanut iron-related genes in plants conferred enhanced tolerance to iron deprivation. Meanwhile, AhOPT1gene was isolated by suppression subtractive hybridization from the roots of monocropped and intercropped peanut. The mRNA level of AhOPT1was obviously induced by iron deficiency in both roots and leaves. Moreover, yeast complementation assays implied that AhOPT1encoded a functional iron transporter.
     In the pot experiments, compared with monocropping system, the pH of rhizosphere in intercopping system had been reduced in most peanut growth period while the available iron increased remarkably. Meanwhile, the concentration of soil Olsen-P and total nitrogen significantly decreased in intercopping system, which reduced chelation of iron and thus improved the availability of iron in rhizosphere. And the results from the field experiments also indicated that the concentration of available iron and zinc of rhizosphere tended to increase in intercopping system during the whole growth stages. In conclusion, peanut/maize intercropping dynamically regulated the rhizosphere environment. The mRNA levels of peanut iron absorption-related genes in intercropping and monocorpping were analyzed. The results showed AhNRAMP1, AhFRO1and AhYSL1genes were highly expressed in intercropped peanut during anthesis, which may result in effectively uptake of Fe(Ⅱ) and Fe(Ⅲ). Only AhYSLl gene was still highly expressed in intercropped peanut for absorption of Fe(Ⅲ) during pod-setting stage. No gene was regulated by intercropping system in pod filling stage. Besides, AhIRT1gene was regulated by peanut iron status in the whole growth period. Therefore, we concluded that the uptake of iron in intercropping peanut was affected by both intercropping system and the iron status of peanut.
     In field experiment, the iron distribution of peanut shoots in monocropping and intercropping system was investigated and it demonstrated that the iron distribution in intercropped peanut was remarkably changed during different growth stages, which is consistent with the demand of iron in peanut. The expression levels of peanut iron transport genes AhYSL3.1, AhFRDLl and AhOPT1from both field and pot experiments indicated that intercropping regulated the expression of these genes in different parts of peanut during different growth stages, which modified the translocation of iron and thus meet the iron demands of peanut in various growth periods.
引文
房增国.(2004).豆科/禾本科间作的氮铁营养效应及对结瘤固氮的影响:[博士学位论文].北京:中国农业大学.
    何绪生.(2002).铁肥及其使用:磷肥与复肥.17(4):69-71.
    简自强,王培秋,刘洪海,周成建,蒋志文,田中华.(2011).花生各生育期需肥特性与推荐施肥技术.吉林农业:学术版,(5):170-172.
    刘彩云,冯春成,陈学忠,杨合斌,赵永涛,王建光.(2004).花生黄叶病的发生原因及防治措施.河南农业科学,10:90.
    刘均霞,陆引罡,远红伟,崔保伟,张振中.(2007).玉米大豆间作条件下磷素的吸收利用.山地农业生物学报,26(4):288-291.
    吴存浩.(1996).中国农业史.北京:警官教育出版社.
    熊宏春.(2012).花生玉米间作系统中麦根酸改善花生铁营养的分子机制研究:[博士学位论文].北京:中国农业大学.
    朱其清,傅积平.(1987).土壤中微量元素的供给及其与植物生长的关系,黄淮海平原区域治理技术体系研究.北京:科学出版社,121.
    左元梅,李晓林,张福锁.(1998).石灰性土壤上玉米/花生间作对花生根系形态变化和生理反应的影响.作物学报,24(5):558-563.
    左元梅,刘永秀,张福锁.(2004).玉米/花生混作改善花生铁营养对根瘤碳氮代谢和固氮的影响.生态学报,24:2584-2590.
    左元梅,张福锁.(2004).不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响.应用生态学报,02:221-225.
    Agegnehu G, Ghizaw A, Sinebo W. (2006). Crop productivity and land-use efficiency of a teff/faba bean mixed cropping system in a tropical highland environment. Experimental Agriculture,42:495-504.
    Akinnifesi FK, Makumba W, Kwesiga FR. (2006). Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Experimental Agriculture,42:441-457.
    Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Nishizawa, NK. (2009). OsYSL18 is a rice iron(Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology,70:681-692.
    Azo WM, Lane GPF, Davies WP, Cannon ND. (2012). Bi-cropping white lupins(Lupinus albus L.) with cereals for wholecrop forage in organic farming:The effect of seed rate and harvest dates on crop yield and quality. Biological Agriculture & Horticulture,28:86-100.
    Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Friml J, Vert G. (2011). Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences,108:450-458.
    Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Nishizawa NK. (2011). The rice mitochondrial iron transporter is essential for plant growth. Nature Communications, 2:322.
    Bernard DG, Cheng YF, Zhao YD, Balk J. (2009). An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiology,151: 590-602.
    Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P. (2012). Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemsity,46:181-190.
    Blaser BC, Singer JW, Gibson LR. (2007). Winter cereal, seeding rate, and intercrop seeding rate effect on red clover yield and quality. Agronomy Journal,99:723-729.
    Brown JC, Chaney RL. (1971). Effect of iron on the transport of citrate into the xylem of soybean andtomatoes. Plant Physiology,47:836-40.
    Bughio N, Yamaguchi H, Nishizawa NK. (2002). Cloning an iron regulated metal transporter from rice. Journal of Experimental Botany,53:1677-1682.
    Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF. (2006). Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. The Plant Journal,48(6):873-882.
    Cesco S, Rombola AD, Tagliavini M, Varanini Z, Pinton R. (2006). Phytosiderophores released by graminaceous species promote 59Fe-uptake in citrus. Plant and Soil,287(1-2):223-233.
    Chen S, Sanchez-Fernandez R, Lyver ER, Dancis A, Rea PA. (2007). Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. Journal of Biology Chemsity,282: 21561-21571.
    Chowdhury MK, Rosario EL. (1992). Utilization efficiency of applied nitrogen as related to yield advantage in maize/mungbean intercropping. Field Crops Research,30:41-51.
    Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL. (2010). Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE 1 and YELLOW STRIPE-LIKE3 metalnicotianamine transporters in both vegetative and reproductive structures. Plant Physiology,154:197-210.
    Cohen CK, Fox TC. (1998). The role of iron deficiency stress responses in stimulating heavy metal transport in plants. Plant Physiology,116:1063-1072.
    Colangelo EP, Guerinot ML. (2004). The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell,16:3400-3412.
    Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology,133:1102-1110.
    Connolly EL, Fett JP, Guerinot ML. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell,14:1347-1357.
    Conte S, Stevenson D, Furner I, Lloyd A. (2009). Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiology,151: 559-573.
    Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF. (2000). Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal,347:749-755.
    Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Mari S. (2009). Metal movement within the plant:contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany,103:1-11.
    DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL. (2004). Arabidopsis Yellow Stripe-Like 2 (YSL2):a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant Journal,39:403-14.
    Ding H, Duan LH, Li J, Yan HF, Zhao M, Zhang FS, Li WX. (2010). Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize. Journal of Plant Physiology,167(12):996-1002.
    Ding H, Duan LH, Wu HL, Yang R, Ling HQ, Li WX, ZhangFS. (2009). Regulation of AhFRO1, an Fe (Ⅲ)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Physiologia Plantarum,136(3):274-283.
    Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C. (2013). The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. The Plant Cell,25(3):1040-1055.
    Dordas CA, Lithourgidis AS. (2011). Growth, yield and nitrogen performance of faba bean intercrops with oat and triticale at varying seeding ratios. Grass and Forage Science,66: 569-577.
    Durrett TP, Gassmann W, Rogers EE. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology,144:197-205.
    Duy D, Wanner G, Meda AR, von Wiren N. (2007). PIC 1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. The Plant Cell,19(3):986-1006.
    Eckhardt U, Mas Marques A, Buckhout TJ. (2001). Two iron regulated cation transporters from tomato complement metal uptake deficient yeast mutants. Plant Molecular Biology,45: 437-448.
    Gendre D, Czernic P, Cone je'ro G, Pianelli K, Briat JF, Lebrun M, Mari S. (2007). TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. The Plant Journal,49:1-15.
    Gharsalli M, Hajji M. (2002). Comparison of physiological responses of peach and almond seedlings to iron deficiency. Journal of Plant Nutrition,25(5):1139-1154.
    Gooding MJ, Kasyanova E, Ruske R, Hauggaard-Nielsen H, Jensen ES, Dahlmann C, Launay M. (2007). Intercropping with pulses to concentrate nitrogen and sulphur in wheat. Journal of Agricultural Science,145:469-479.
    Grusak MA, Dellapenna D. (1999). Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Biology,50(1):133-161.
    Guerinot ML, Yi Y. (1994). Iron:Nutritious, noxious, and not readily available. Plant Physiology, 104:815-820.
    Hansch R, Mendel RR. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology,12:259-266.
    Hardter R, Horst WJ. (1991). Nitrogen and phosphorus use in maize sole cropping and maize/cowpea mixed cropping systems on an Alfisol in the northern Guinea Savanna of Ghana. Biology and Fertility of Soils,10(4):267-275.
    Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES. (2009). Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research,113:64-71.
    Hell R, Stephan UW. (2003). Iron uptake, trafficking and homeostasis in plants. Planta,216: 541-5.
    Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology,50:587-597.
    Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phosiderophores. Plant Physiology,119:470-480.
    Hind MN, Guerinot ML. (2012). Getting a sense for signals, regulation of the plantiron deficiency response. Biochimica et Biophysica Acta-Molecular Cell Research,1823:1521-1530.
    Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC. (2006). Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie,88:1767-1771.
    Hu YT, Ming F, Chen WW, Yan JY, Xu ZY, Li GX, Xu CH, Yang JL, Zheng SJ. (2012). TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PloS One,7(6):e38535.
    Inal A, Gunes A. (2008). Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between intercropped grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. Journal of Plant Physiology,165 (5):490-503.
    Inal A, Gunes A, Zhang FS, Cakmak I. (2007). Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology Biochemistry,45: 350-356.
    Inoue H, Kobayashi T, Nozoye T,Takahashi M, Kakei Y, Suzuki K, Nishizawa NK. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Journal of Biological Chemistry,284:3470-3479.
    Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Nishizawa NK. (2011). A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. Journal of Biological Chemistry,286:24649-55.
    Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. (2007). Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proceedings of the National Academy of Sciences,104:7373-7378.
    Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nishizawa NK. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal,62:379-90.
    Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. (2006). Rice plants take up iron as a Fe3+-phytosiderophore and as Fe2+. The Plant Journal,45:335-346.
    Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, IshikawaS, Arao T, Nakanishi H, Nishizawa NK. (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports,2:286.
    Jain A, Connolly EL. (2013). Mitochondrial iron transport and homeostasis in plants. Frontiers in Plant Science,4:348.
    Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML. (2008). Chloroplast Fe(Ⅲ) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proceedings of the National Academy of Sciences,105:10619-1062.
    Jeong J, Connolly EL. (2009). Iron uptake mechanisms in plants:functions of the FRO family of ferric reductases. Plant Science,176(6):709-714.
    Jeong J, Guerinot ML. (2008). Biofortified and bioavailable:The gold standard for plant-based diets. Proceedings of the National Academy of Sciences,6:1777-1778.
    Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. (2012). OsYSL16 plays a role in the allocation of iron. Plant Molecular Biology,79(6):583-594.
    Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK. (2009). A highly sensitive, quick, and simple quantification method for nicotianamine and 2-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiology,50:1988-1993.
    Kamal K, Hagagg L, Awad F. (2000). Improved Fe and Zn acquisition by guava seedlings grown in calcareous soils intercropped with graminaceous species. Journal of Plant Nutrition, 23(11-12):2071-2080.
    Kim SA, Guerinot ML. (2007). Mining iron:iron uptake and transport in plants. FEBS Letters, 581:2273-2280.
    Kobayashi T, Nishizawa NK. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology,63:131-152.
    Kobayashi T, Nishizawa NK, Mori S. (2006). Molecular analysis of iron-deficient graminaceous plants. In:Barton LL, Abadia J, eds. Iron nutrition in plants and rhizospheric microorganisms. Netherlands:Springer.395-435.
    Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. (2004). OsYSL2 is a rice metalnicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal,39:415-24.
    Kosegarten H, Schwed U, Wilson G, Mengel K. (1998). Comparative investigation on the susceptibility of faba bean (Vicia faba L.) and sunflower (Helianthus annuus L.) to iron chlorosis. Journal of Plant Nutrition,21(7):1511-1528.
    Kruger C, Berkowitz O, Stephan UW, Hell R. (2002). A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. Journal of Biological Chemistry,277(28):25062-25069.
    Landsberg EC. (1994). Transfer cell formation in sugar beet roots induced by latent Fe deficiency. Plant and Soil,165(2):197-205.
    Le Jean M, Schikora A, Mari S, Briat JF, Curie C. (2005). A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal,44:769-82.
    Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. (2009). Disruption of OsYSL15 leads to iron in efficiency in rice plants. Plant Physiology,150:786-800.
    Lee S, Ryoo N, Jeon JS, Guerinot ML, An G. (2012). Activation of rice Yellow Stripel-Like 16 (OsYSL16) enhances iron efficiency. Molecules and Cells,33(2):117-126.
    Li L, Cheng X, Ling HQ. (2004). Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Molecular Biology,54:125-136.
    Li L, Sun JH, Zhang FS, Li XL, Rengel Z, Yang SC. (2001b). Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research,71:173-181.
    Li L, Sun JH, Zhang FS, Li XL, Yang SC, Rengel Z. (2001a). Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Research,71:123-137.
    Li L, Yang SC, Li XL, Zhang FS, Christie P. (1999).Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant and Soil,212:105-114
    Li P, Qi JL, Wang L, Huang QN, Han ZH, Yin LP. (2006). Functional expression of MxIRT1 from Malus xiaojinens, complements an iron uptake deficient yeast mutant or plasma membrane targeting via membrane. Plant Science,171:52-59.
    Ling HQ, Koch G, Baumlein H, Ganal MW. (1999). Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proceedings of the National Academy of Sciences,96:7098-7103.
    Ma G, Ying J, Li YP, Zhai F, Kok FJ, Jacobsen E, Yang XG. (2008). Iron and zinc deficiencies in China:what is a feasible and cost-effective strategy. Public Health Nutrition,11:632-638.
    Ma JF, Nomoto K. (1993). Two related biosynthetic pathways of mugineic acids in gramineous plants. Plant Physiology,102(2):373-378.
    Ma JF, Taketa S, Chang YC, Iwashita T, Matsumoto H, Takeda K, Nomoto K. (1999). Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta,207:590-596.
    Maliandi MV, Busi MV, Turowski VR, LeadenL, ArayaA, Gomez-Casati DF. (2011). The mitochondrial protein frataxin is essential for heme biosynthesis in plants. FEBS Journal, 278(3):470-481.
    Marschner H. (1995). Mineral Nutrition of Higher Plants.2nd ed. Boston:Academic press.
    Marschner H, Rohmeld V (1994) Strategies of plants for acquisition of iron. Plant and Soil,165: 375-388.
    Marschner H, Treeby M, RSmheld V. (1989). Role of root-induced changes in the rhizosphere for iron acquisition in higher-plants. Zeitschrift fur Pflanzenernahrung und Bodenkunde,152: 197-204.
    Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK. (2003). Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiology,132(4):1989-1997.
    Mori S. (1999). Iron acquisition by plants. Current Opinion in Plant Biology,2:250-253.
    Mori S, Nishizawa N. (1987). Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant Cell Physiology,28:1081-1092.
    Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Guerinot ML. (2009). The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell, 21:3326-3338.
    Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T. (2006). A specific transporter for Fe(Ⅲ)-phytosiderophore in barley roots. The Plant Journal,46:563-572.
    Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK. (2002). cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. The Plant Journal, 30(1):83-94.
    Nomoto K, Sugiura Y, Takagi S. (1987). Mugineic acids, studies on phytosiderophores. In: Winkelmann G, van der Helm D, Neilands JB, eds. Iron Transport in Microbes, Plants and Animals. Weinheim:VCH publishers.401-425.
    Nouet C, Motte P, Hanikenne M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science,16(7):395-404.
    Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. (2014). Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. The Plant Journal,77(2):246-260.
    Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Nishizawa NK. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry,286(7):5446-5454.
    Nozoye T, Nakanishi H, Nishizawa NK. (2013). Characterizing the Crucial Components of Iron Homeostasis in the Maize Mutants ys1 and ys3. PloS One,8(5):e62567.
    Olsen RA, Clark RB, Bennett JH. (1981). The enhancement of soil fertility by plant roots. American Scientist,69:378-384.
    Rella'n-A'lvarez R, Giner-Martinez-Sierra J, Orduna J, Orera I, Rodriguez-Castrillon JA, Garcia-Alonso JI, Alvarez-Fernandez A. (2010). Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron:new insights into plant iron long-distance transport. Plant Cell Physiology,51:91-102.
    Roberts LA, Pierson AJ, Panaviene Z, Walker EL. (2004). Yellow Stripe 1 Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiology,135:112-120.
    Robinson NJ, Procter CM, Connolly EL, Guerinot ML. (1999). A ferric-chelate reductase for iron uptake from soils. Nature,397:694-697.
    Rogers EE, Guerinot ML. (2002). FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. The Plant Cell,14:1787-99.
    Romheld V. (1991). The role of phytosiderophores in acquisition of iron and othermicronutrients in graminaceous species:An ecological approach. Plant and Soil,130:127-134.
    Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H(+)-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiology Biochemistry, 43(3):287-292.
    Santi S, Schmidt W. (2009). Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist,183(4):1072-1084.
    Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T von Wiren N. (2004). ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals. Journal of Biological Chemistry,279:9091-9096.
    Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, von Wiren N. (2005). A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiology,46:762-774.
    Sharma AR, Behera UK. (2009). Recycling of legume residues for nitrogen economy and higher productivity in maize (Zea mays)-wheat (Triticum aestivum) cropping system. Nutrient Cycling in Agroecosystems,83:197-210.
    Shen HY, Xiong HC, Guo XT, Wang PF, Duan PG, Zhang LX, Zhang FS, Zuo YM. (2014). AbDMT1, a Fe2+ transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils. Planta, doi: 10.1007/s00425-014-2033-2.
    Shi R, Weber G, Koster J, Reza-Hajirezaei M, Zou C, Zhang F, von Wiren N. (2012). Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants. New Phytologist,195(2):372-383.
    Shimoni-Shor E, Hassidim M, Yuval-Naeh N, Keren N. (2010). Disruption of Napl4, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell and Environment,33(6):1029-1038.
    Stacey MG, Koh S, Becker J, Stacey G. (2002). AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. The Plant Cell,14(11): 2799-2811.
    Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. (2008). The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology,146(2):589-601.
    Szumigalski A, V'Acker R. (2005). Weed suppression and crop production in annual intercrops. Weed Science,53:813-825.
    Takagi S. (1976). Naturally occurring iron-chelating compounds in oat-and rice-root washing. I. Activity measurement and preliminary characterization. Soil Science and Plant Nutrition,22: 423-433.
    Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell,15:1263-80.
    Tiffin LO. (1966). Iron translocation:Ⅱ. Citrate/iron ratios in plant stem exudates. Plant Physiology,41:515-518.
    Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK. (2009). Fe translocation in barley as monitored by a positron emitting tracer imaging system (PETIS):evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiology,50:48-57.
    Ueno D, Iwashita T, Nomoto K, Rombola AD, Ma JF. (2004). Identification of two new phytosiderophores secreted from perennial grasses. New Phytologist,174(2):304-310.
    Vandermeer J. (1989). The ecology of intercropping. Cambridge:Cambridge University Press. pp: 1-13,29-84,50-51.
    Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal,31:589-599.
    Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell,14:1223-1233.
    Vigani G. (2012). Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. Journal of Plant Physiology,169(1):1-11.
    Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation.Trends in Plant Science,18(6):305-311.
    Waddington SR, Mekuria M, Siziba S, Karigwindi J. (2007). Long-term yield sustainability and financial returns from grain legume-maize intercrops on a sandy soil in subhumid north central Zimbabwe. Experimental Agriculture,43:489-503.
    Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG. (2008). The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology,147: 1181-1191.
    Waters BM, Blevins DG, Eide DJ. (2002). Characterization of FRO 1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiology,129:85-94.
    Waters BM, Chu HH, Didonato RJ Roberts LA, Eisley RB, Lahner B, Walker EL. (2006). Mutations in Arabidopsis yellow stripe-likel and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology,141:1446-1458.
    Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Perez-Vicente R. (2007). Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRTl genes in cucumber plants. Plant Physiology Biochemisty,45(5):293-301.
    Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen HY, Zhang FS, Nishizawa NK, Zuo YM. (2013). Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell and Environment,36(10):1888-1902.
    Xiong H, Kobayashi T, Kakei Y, Senoura T, Nakazono M, Takahashi H, Nakanishi H, Shen HY, Duan PG, Guo XT, Nishizawa NK, ZuoYM. (2012). AhNRAMPl iron transporter is involved in iron acquisition in peanut. Journal of Experimental Botany,63(12):4437-4446.
    Yen MR, Tseng YH, Saier Jr MH. (2001). Maize Yellow Stripel, an iron phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology,147: 2881-2883.
    Yi Y, Guerinot ML. (1996). Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency. The Plant Journal,10:835-844.
    Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiology,149:297-305.
    Yordem BK, Conte SS, Ma JF, Yokosho K, Vasques KA, Gopalsamy SN, Walker EL. (2011). Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses:phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters. Annals of Botany,108(5):821-833.
    Zhang FS, Li L. (2003). Using competitive and facilitative interactions in intercropping systems enhanced crop productivity and nutrient-use efficiency. Plant and Soil,248:305-312.
    Zhang FS, Shen JB, Zhang JL, Zuo YM., Li L, Chen XP. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity:implications for China. Advances in Agronomy,107:1e32.
    Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology,151:262-274.
    Zuo YM, Zhang FS. (2008). Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil,306:23-26.
    Zuo Y, Li X, Cao Y, Zhang F, Christie P. (2003). Iron nutrition of peanut enhanced by mixed cropping with maize:possible role of root morphology and rhizosphere microflora. Journal of Plant Nutrition,26:2093-2110.
    Zuo Y, Zhang F, Li XL, Cao YP. (2000). Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil,220:13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700