用户名: 密码: 验证码:
水稻钾离子通道OsAKT1及其调控因子参与水稻钾吸收的实验证据
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾(K+)是植物生长发育所必需的三大营养元素之一,在植物的生长发育过程中起着十分重要的作用。已有研究表明,植物通过钾离子通道和钾离子转运体蛋白从外界吸收K+,并在体内进行运输和分配。对于模式植物拟南芥,目前已有多个钾通道和钾转运体的生理功能得到了详细报道。AKT1是拟南芥根中最重要的钾离子通道之一,也是介导拟南芥根中K+吸收的主要途径之一,其活性受到上游多种调节因子的控制。然而,在作物中,虽然已经克隆了部分钾通道和转运体,但是这些钾通道和钾转运体在作物体内的生理功能仍然不清楚。本论文工作以水稻为材料,主要研究水稻钾离子通道OsAKT1的生理功能及其分子调控机制。
     氨基酸序列比对分析发现,水稻OsAKT1与拟南芥AKT1具有较高的序列相似性,预示它们可能具有类似的生理功能。将OsAKT1转入酵母钾吸收缺陷型菌株后,能够恢复缺陷型菌株在低钾培养基上的生长,说明OsAKT1具有K+转运活性。将OsAKT1转入拟南芥akt1突变体后,可以恢复akt1突变体冠部发黄的低钾敏感表型,说明OsAKT1在植物体内可能具有K+吸收功能。对水稻osakt1突变体进行低钾水培表型检测,结果显示,与野生型相比,osakt1突变体的生长受到显著抑制,叶片出现明显缺钾褐斑,植株K+含量显著下降。钾吸收动力学实验结果显示,osakt1突变体的K+吸收速率显著低于野生型,说明OsAKT1的功能缺失造成水稻K+吸收能力的下降,从而导致植株出现低钾敏感表型。土培实验还表明,osaktl突变体的抽穗期和灌浆期都滞后于野生型,并且结实也受到严重影响,产量显著降低。由此可知,OsAKT1作为一个钾离子通道,在水稻根部K+吸收过程中起着重要作用。
     本论文工作还对OsAKT1的调控因子进行了筛选和功能验证。拟南芥中的研究结果显示,AKT1活性受到钙感受器CBL1/9和蛋白激酶CIPK23的调控。由此推测OsAKT1的活性也可能受到水稻OsCBL1和OsCIPK23的调控。表达检测结果显示,OsCBL1和OsCIPK23在水稻根部均有表达,并且不同程度的受低钾诱导表达。酵母双杂交实验结果显示,OsCIPK23能够与OsAKT1互作,而OsCBLl又能够与OsCIPK23互作。OsCIPK23可以恢复拟南芥Iks1(cipk23)突变体的低钾敏感表型,同时OsCBLl可以恢复拟南芥cbll cbl9双突变体的低钾敏感表型。说明水稻OsCBL1和OsCIPK23可能具有与拟南芥CBLl和CIPK23类似的生理功能。此外,表型检测结果还显示,水稻OsCIPK23RNAi株系在低钾水培处理下也表现出与osakt1突变体类似的低钾敏感表型,说明OsCBL1和OsCIPK23应该与OsAKT1处于同一调控通路,参与调控OsAKT1介导的水稻K+吸收。
     本论文研究结果表明,OsAKT1介导水稻根细胞从土壤中吸收K+,从而控制水稻的钾营养性状,最终影响水稻的产量和品质。OsAKT1的活性受到钙感受器蛋白OsCBL1和蛋白激酶OsCIPK23的调控。在水稻中也存在和拟南芥中类似的钾营养分子调控通路。这些研究结果将为我们利用分子生物学手段改良水稻品质,提高水稻的K+吸收利用效率提供有力的理论依据。
Potassium (K+) is the most abundant monovalent cation in plant cells, and plays crucial roles in plant growth and development. Potassium in plants is mainly absorbed from soil, which is mediated by K+channels and K+transporters. In the model plant Arabidopsis, K+channel AKT1is identified as the important component involving in root K+uptake, whose activity is modulated by many different regulators. For the crops, some K+channels and K transporters were also cloned, however, their physiological functions in crops are still unclear. In this dissertation work, we analyzed the physiological function of K+channel OsAKT1in rice. In addition, the regulators of OsAKT1were screened, whose physiological functions were also verified in rice.
     Rice OsAKT1is the homolog of Shaker potassium channel AKT1from Arabidopsis. The amino acid sequence analysis showed that OsAKT1and AKT1are highly conserved, which indicated their similar physiological functions in plants. OsAKT1could complement the growth of yeast K+defect mutant strain R5421suggesting the K+transport activity of OsAKT1.In addition, OsAKT1could rescue the low-K+-sensitive phenotype of Arabidopsis aktl mutant. The phenotype analysis showed that the rice osaktl mutant plants displayed the obvious low-K+-sensitive phenotype compared with the wild-type rice plants. The osaktl mutant showed growth inhibition, leaf brown spots and reduction of K1content. The results of K--depletion experiments showed that the K+uptake rate in osaktl mutant plants was obviously slower than that in wild-type plants. These results demonstrated that the loss-of-function of OsAKT1led to the reduction of K+uptake in osaktl mutant, which caused the growth inhibition and K+-deficient symptom in mutant plants. Furthermore, the growth of osaktl mutant plants was inhibited during the whole development stages. The heading and grain-filling stages were delayed in osaktl mutant, and the grain yield was also impaired. These data demonstrate that the K+channel OsAKT1plays a crucial role in rice root K+uptake.
     Furthermore, we tried to screen the regulators of OsAKT1and verified the physiological functions of these regulators. According to the investigation of AKT1in Arabidopsis, the rice calcium sensor OsCBLl and protein kinase OsCIPK23are proposed as the regulators of OsAKT1. OsCBL1and OsCIPK23were both expressed in rice roots, and especially OsCIPK23could be induced by low-K+treatment. Yeast two-hybrid results showed that OsCIPK23could interact with OsAKT1as well as OsCBL1. Phenotype analysis indicated that OsCIPK23and OsCBL1could rescue the low-K'-sensitive phenotype of Arabidopsis Iksl (cipk23) and cbll cbl9mutants, respectively. Moreover, OsCIPK23RNAi rice plants displayed the similar low-K+-sensitive phenotype as osaktl mutant. These results indicated that OsAKT1-mediated K+uptake in rice roots is modulated by OsCBLl-OsCIPK23complex.
     All the data in this dissertation demonstrate that K+channel OsAKT1is an important component mediated K+uptake in rice roots. The activity of OsAKT1is regulated by the calcium sensor OsCBLl and protein kinase OsCIPK23. These results will provide the theoretical basis that would be used to improve the rice K+utilization efficiency via molecular biology methods.
引文
葛旦之和何电源(1994).土壤中的钾.见:中国南方土壤肥力与栽培植物施肥.北京:科学出版社.
    胡笃敬,董任瑞和葛旦之(2003).植物钾营养的理论与实践.长沙:湖南科学技术出版社.
    黄鸿翔(2005).我国土壤资源现状、问题及对策.土壤肥料1,1-6.
    金继运(1994).我国北方土壤缺钾和钾肥应用的发展趋势.见:北方土壤钾素和钾肥效益.北京:科学出版社.
    李共福(1985).耐低钾水稻品种筛选利用的研究:水稻不同品种在低钾条件下的产量差异及耐低钾品种对钾的吸收利用特点.湖南农业科学3,15-17.
    李庆逵(1989).我国土壤科学发展与展望.土壤学报26,207-216.
    刘亨官,刘振兴和刘放新(1987).水稻耐低钾品种(系)鉴定筛选及钾特性的研究.福建农科院学报2,10-17.
    刘实,赵小英,唐冬英,郭新红和刘选明(2007).拟南芥CIPK1基因的功能初步分析.西北植物学报27,1091-1095.
    刘英,王允青和况晶(2003).农田钾素肥力状况与油菜施钾效应研究.安徽农业科学31,547-548.
    鲁如坤(1989).我国土壤氮磷钾的基本状况.土壤学报26,280-286.
    马天利(2012).水稻响应低钾胁迫的转录组分析及拟南芥蛋白激酶CIPK18参与LiCl胁迫的实验证据.博士学位论文,中国农业大学.
    亓果宁(2011).植物钾通道OsAKT1钾吸收生理功能分析及AtAKT1受AtCBL10调节的电生理实验证据.博士学位论文,中国农业大学.
    唐劲驰和曹敏建(2001).作物耐低钾营养研究进展.沈阳农业大学学报 32,382-385.
    谢少平和倪晋山(1987,).空心莲子草、大豆和向日葵根部K+(86Rb+)的吸收和通量分析.植物生理学报13,410-417.
    Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R.G., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett.486,93-98.
    Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KTIKUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol.134,1135-1145.
    Albrecht, V., Ritz, O., Linder, S., Harter, K., Kudla, J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+ -regulated kinases. EMBO J.20,1051-1063.
    Albrecht, V., Weinl, S., Blazevic, D., D'Angelo, C., Batistic, O., Kolukisaoglu,U., Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J.36,457-470.
    Allen, G.J., and Sanders, D. (1995). Calcineurin, a type 2B protein phosphatase, modulates the Ca2+ -permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7,147-1483.
    Amtmann, A., Troufflard, S., and Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum 133,682-691.
    An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J., and Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J.49,718-728.
    Apel, K., and Hirt, H. (2004). REACTIVE OXYGEN SPECIES:Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55,373-399.
    Apse, M.P., Sottosanto, J.B., and Blumwald, E. (2003). Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J.36,229-239.
    Armengaud, P., Sulpice, R., Miller, A.J., Stitt, M., Amtmann, A., and Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol.150,772-785.
    Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies:a role for potassium transport proteins. J. Exp. Bot.57,425-436.
    Assmann, S.M. (1993). Signal transduction in guard cells. Annu. Rev. Cell Biol.9,345-375.
    Balague, C., Lin, B.Q., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., Pelletier, G., Gaymard, F., and Roby, D. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15, 365-379.
    Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol.130,784-795.
    Banuelos, M.A., Klein, R.D., Alexander-Bowman, S.J., and Rodriguez-Navarro, A. (1995). A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J.14,3021-3027.
    Barber, S.A. (1985). Potassium availability at the soil-root interface and factors influencing potassium uptake. In Munson, R.D. ed. Potassium in agriculture. Madison, Wisconsin, USA:Am. Soc. Agron. pp.309-324.
    Basset, M., Conejero, G., Lepetit, M., Fourcroy, P., and Sentenac, H. (1995). Organization and expression of the gene coding for the potassium transport system AKTI of Arabidopsis thaliana. Plant Mol. Biol.29,947-958.
    Batelli, G., Verslues, P.E., Agius, F., Qiu, Q.S., Fujii, H., Pan, S.Q., Schumaker, K.S., Grillo, S., and Zhu, J.K. (2007). SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell. Biol.27,7781-7790.
    Batistic, O., and Kudla, J. (2004). Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 279,915-924.
    Batistic, O., and Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica. et Biophysica. Acta.1820,1283-1293.
    Batistic, O., Waadt, R., Steinhorst, L., Held, K., and Kudla, J. (2010). CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J.61, 211-222.
    Beachy, R.N., Thompson, J.F., and Madison, J.T. (1978). Isolation of polyribosomes and messenger RNA active in in vitro synthesis of soybean seed proteins. Plant Physiol.61,139-144.
    Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., Carpaneto, A., Dietrich, P., Roelfsema, M.R.G, Voelker, C., et al. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca+- dependent manner. Proc. Natl. Acad. Sci. USA 101,15621-15626.
    Belova, L.P., Velikanov, G.A., and Ilina, T.M. (2005). The role of proton pump and potassium channels of plasma membrane in regulation of cellulose synthesis in plants. Tsitologiia 47,649-653.
    Besford, R.T. (1978). Effect of replacing nutrient potassium by sodium on uptake and distribution of sodium in tomato plants. Plant Soil 50,399-409.
    Bijlmakers, M.-J., and Marsh, M. (2003). The on-off story of protein palmitoylation. Trends Cell Biol. 13,32-42.
    Blatt, M.R. (1992). K+ channels of stomatal guard cells:Characteristics of the inward rectifier and its control by pH. J. Gen. Physiol.99,615-644.
    Blevins, D.G., Barnett, N.M., and Frost, W.B. (1978). Role of potassum and malate in nitrate uptake and translocation by wheat seedlings. Plant Physiol.62,784-788.
    Borsics, T., Webb, D., Andeme-Ondzighi, C., Andrew Staehelin, L., and Christopher, D.A. (2007). The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225,563-573.
    Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A.J., Amtmann, A., and Fricke, W. (2009). Potassium channels in barley:cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ.32,1761-1777.
    Brett, C.L., Donowitz, M., and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol.288, C223-C239.
    Brown, A.D. (1976). Microbial water stress. Bacteriol. Rev.40,803-846.
    Buschmann, P.H., Vaidyanathan, R., Gassmann, W., and Schroeder, J.I. (2000). Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K1 channel transcripts by K+ starvation in wheat root cells. Plant Physiol.122,1387-1397.
    Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J.39,834-846.
    Cuellar, T., Pascaud, F., Verdeil, J.L., Torregrosa, L., Adam-Blondon, A.F., Thibaud, J.B., Sentenac, H., and Gaillard, I. (2010). A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J.61,58-69.
    Cuellar, T., Azeem, F., Andrianteranagna, M., Pascaud, F., Verdeil, J.L., Sentenac, H., Zimmermann, S., and Gaillard, I. (2013). Potassium transport in developing fleshy fruits:the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Plant J.73,1006-1018.
    Chen, L., Wang, Q.Q., Zhou, L., Ren, F., Li, D.D., and Li, X.B. (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep.40,4759-4767.
    Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol.129, 469-485.
    Cheong, Y.H., Kim, K.-N., Pandey, GK., Gupta, R., Grant, J.J., and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833-1845.
    Cheong, Y.H., Pandey, GK., Grant, J.J., Batistic, O., Li, L.G, Kim, B.-G, Lee, S.-C., Kudla, J, and Luan, S. (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J.52,223-239.
    Cheong, Y.H., Sung, S.J., Kim, B.-G., Pandey, G.K., Cho, J.-S., Kim, K.-N., and Luan, S. (2010). Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol. Cells 29,159-165.
    Cherel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J.-B. (2002). Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14,1133-1146.
    Chikano, H., Ogawa, M., Ikeda, Y., Koizumi, N., Kusano, T., and Sano, H. (2001). Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana:differential accumulation of AtSRl and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol. Gen. Genet.264,674-681.
    Christopher, D.A., Borsics, T., Yuen, C.Y., Ullmer, W., Andeme-Ondzighi, C., Andres, M.A., Kang, B.-H., and Staehelin, L.A. (2007). The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol.7,1-13.
    Claussen, M., Liithen, H., Blatt, M., and Bottger, M. (1997). Auxin-induced growth and its linkage to potassium channels. Planta 201,227-234.
    Czempinski, K., Frachisse, J.-M., Maurel, C., Barbier-Brygoo, H., and Mueller-Roeber, B. (2002). Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1. Plant J.29, 809-820.
    Czempinski, K., Zimmermann, S., Ehrhardt, T., and Miiller-Rober, B. (1997). New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16,2565-2575.
    Czempinski, K., Gaedeke, N., Zimmermann, S., and Miiller-Rober, B. (1999). Molecular mechanisms and regulation of plant ion channels. J. Exp. Bot.50,955-966.
    D'Angelo, C., Weinl, S., Batistic, O., Pandey, G.K., Cheong, Y.H., Schultke, S., Albrecht, V., Ehlert, B., Schulz, B., Harter, K., et al. (2006). Alternative complex formation of the Ca2+ regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J.48,857-872.
    Daram, P., Urbach, S., Gaymard, F., Sentenac, H., and Cherel,1. (1997). Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J.16,3455-3463.
    Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216,334-344.
    Demidchik, V., and Maathuis, F.J.M. (2007). Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development. New Phytol.175,387-404.
    DeWitt, N.D., Hong, B., Sussman, M.R., and Harper, J.F. (1996) Targeting of two Arabidopsis H+-ATPase isoforms to the plasma membrane. Plant Physiol.112,833-844.
    Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R. (1998). The structure of the potassium channel:molecular basis of K' conduction and selectivity. Science 280,69-77.
    Drerup, M.M., Schlucking, K., Hashimoto, K., Manishankar, P., Steinhorst, L., Kuchitsu, K., and Kudla, J. (2013). The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol. Plant 6,559-569.
    Duby, G., Hosy, E., Fizames, C., Alcon, C., Costa, A., Sentenac, H., and Thibaud, J.-B. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J.55, 115-123.
    Dunkel, M., Latz, A., Schumacher, K., Muller, T., Becker, D., and Hedrich, R. (2008). Targeting of vacuolar membrane localized members of the TPK channel family. Mol. Plant 1,938-949.
    Eckert, C., Offenborn, J.N., Heinz, T., Armarego-Marriott, T., Schultke, S., Zhang, C.X., Hillmer, S., Heilmann, M., Schumacher, K., Bock, R., et al. (2014). The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana. Plant J.78,146-156.
    Ehrhardt, T., Zimmermann, S., and Muller-Rober, B. (1997). Association of plant K+in channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett.409,166-170.
    Elumalai, R.P., Nagpal, P., and Reed, J.W. (2002). A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14,119-131.
    Epstein, E., Rains, D.W., and Elzam, O.E. (1963). Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49,684-692.
    Evans, H.J., and Sorger, G.J. (1966). Role of mineral elements with emphasis on the univalent cations. Annu. Rev. Plant Physiol.17,47-76.
    Evans, H.J., and Wildes, R.A. (1971). Potassium and its role in enzyme activation. Proceedings of 8th International Potash Institute Colloquia, Bern. pp.13-39.
    Farazi, T.A., Waksman, G., and Gordon, J.I. (2001). The biology and enzymology of protein N-myristoylation. J. Biol. Chem.276,39501-39504.
    Figdore, S.S., Gerloff, G.C., and Gabelma, W.H. (1989). The effect of increasing NaC1 levels on the potassium utilization efficiency of tomatoes grown under low-K stress. Plant Siol 119,295-303.
    Fluegel, M.J., and Hanson, J.B. (1981). Mechanisms of passive potassium influx in corn mitochondria. Plant Physiol.68,267-271.
    Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104,14531-14536.
    Fu, H.H. and Luan, S. (1998). AtKUP1:A dual-affinity K+ transporter from Arabidopsis. Plant Cell 10, 63-73.
    Fuchs, I., Stolzle, S., Ivashikina, N., and Hedrich, R. (2005). Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221,212-221.
    Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q.S., Song, C.P., Kristiansen, K.A., Bych, K., Schulz, A., Shabala, S., Schumaker, K.S., et al. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19,1617-1634.
    Gassmann, W., Rubio, F., and Schroeder, J.I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J.10,869-882.
    Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R. (1999). The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. Proc. Nat1. Acad. Sci. USA 96,1480-1485.
    Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferriere, N., Thibaud, J.-B., and Sentenac, H. (1998). Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94,647-655.
    Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers, M., Anschuetz, U., Dreyer, I., Kudla, J., and Hedrich, R. (2009). Heteromeric AtKC1-AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J. Biol. Chem.284,21288-21295.
    Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K.A.S., Grill, E., et al. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl. Acad. Sci. USA 107,8023-8028.
    Geiger, D.R., and Giaquinta, R.T. (1982). Translocation of photosynthate. In Photosynthesis, development, carbon metabolism, and plant productivity, Vpl. II (New York:Academic Press).
    Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol.137,1105-1114.
    Gierth, M., and Maser, P. (2007). Potassium transporters in plants-Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett.581,2348-2356.
    Glass, A.D.M., and Perley, J.E. (1980). Varietal differences in potassium uptake by barley. Plant Physiol.65,160-164.
    Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K., and Maathuis, F.J.M. (2007). The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl. Acad. Sci. USA 104,10726-10731.
    Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R., and Bohnert, H.J. (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol. Biol.57,71-81.
    Gong, D.M., Gong, Z.Z., Guo, Y., and Zhu, J.K. (2002). Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. Plant Physiol.129,225-234.
    Grabov, A. (2007). Plant KT/KUP/HAK potassium transporters:single family-multiple Functions. Ann. Bot.99,1035-1041.
    Grefen, C., Chen, Z.H., Honsbein, A., Donald, N., Hills, A., and Blatt, M.R. (2010). A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell 22,3076-3092.
    Gu, Z.M., Ma, B.J., Jiang, Y., Chen, Z.W., Su, X., and Zhang, H.S. (2008). Expression analysis of the calcineurin B-like gene family in rice(Oryza sativa L.) under environmental stresses. Gene 415, 1-12.
    Guo, Y., Halfter, U., Ishitani, M., and Zhu, J.K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13, 1383-1399.
    Halfter, U., Ishitani, M., and Zhu, J.K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97, 3735-3740.
    Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci.5,154-159.
    Harper, J.F., Surowy, T.K., and Sussman, M.R. (1989). Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 86,1234-1238.
    Hartje, S., Zimmermann, S., Klonus, D., and Mueller-Roeber, B. (2000). Functional characterisation of LKT1, a K1 uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210,723-731.
    Hartt, C.E. (1970). Effect of potassium deficiency upon translocation of 14C in detached blades of sugarcane. Plant Physiol.45,183-187.
    Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratge-Faillie, C., Offenborn, J.N., Lacombe, B., Dreyer, I., and Thibaud, J.-B., et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res.21,1116-1130.
    Hetherington, A.M., and Woodward, F.I. (2003). The role of stomata in sensing and driving environmental change. Nature 424,901-908.
    Hirsch, R.E., Lewis, B.D., Spalding, E.P., and Sussman, M.R. (1998). A role for the AKT1 potassium channel in plant nutrition. Science 280,918-921.
    Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138,1184-1194.
    Homann, U., and Thiel, G. (1999). Unitary exocytotic and endocytotic events in guard-cell protoplasts during osmotically driven volume changes. FEBS Lett.460,495-499.
    Hong-Hermesdorf, A., Brux, A., Griiber, A., Griiber, G., and Schumacher, K. (2006). A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett.580,932-939.
    Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Paneque, M., Chen, Z.H., Johansson, I., and Blatt, M.R. (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21,2859-2877.
    Horie, T., Brodsky, D.E., Costa, A., Kaneko, T., Lo Schiavo, F., Katsuhara, M., and Schroeder, J.I. (2011). K+ transport by the OsHKT2;4 transporter from rice with atypical Na+transport properties and competition in permeation of K+over Mg2+ and Ca2+ Ions. Plant Physiol.156,1493-1507.
    Horie, T., Costa, A., Kim, T.H., Han, M.J., Horie, R., Leung, H.-Y., Miyao, A., Hirochika, H., An, G, and Schroeder, J.I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J.26,3003-3014.
    Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Chio, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.132,666-680.
    Hsiao, T.C., and Lauchli, A. (1986). A role of potassium in plant-water relations. In Advances in Plant Nutrition, Tinker, B. and Laiichli, A. ed. Volume 2 (New York:Praeger Publishers), pp.281-311.
    Hu, H.C., Wang, Y.Y., and Tsay, Y.F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J.57,264-278.
    Huang, C.L., Ding, S., Zhang, H., Du, H., and An, L.Z. (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci.181,57-64.
    Hwang, Y.-S., Bethke, P.C., Cheong, Y.H., Chang, H.-S., Zhu, T., and Jones, R.L. (2005). A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol.138,1347-1358.
    Isayenkov, S., Isner, J.-C., and Maathuis, F.J.M. (2011). Rice two-pore K+ Channels are expressed in different types of vacuoles. Plant Cell 23,756-768.
    Ishitani, M., Liu, J.P., Halfter, U., Kim, C.-S., Shi, W.M., and Zhu, J.K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12,1667-1677.
    Ivashikina, N., Becker, D., Ache, P., Meyerhoff, O., Felle, H.H., and Hedrich, R. (2001). K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett.508,463-469.
    Jabnoune, M., Espeout, S., Mieulet, D., Fizames, C., Verdeil, J.-L., Conejero, G., Rodriguez-Navarro, A., Sentenac, H., Guiderdoni, E., and Abdelly, C., et al. (2009). Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol.150,1955-1971.
    Jeong, H.J., Jwa, N.-S., and Kim, K.-N. (2005). Identification and characterization of protein kinases that interact with the CBL3 calcium sensor in Arabidopsis. Plant Sci.169,1125-1135.
    Jung, J.-Y., Shin, R., and Schachtman, D.P. (2009). Ethylene mediates response and tolerance to potassium feprivation in Arabidopsis. Plant Cell 21,607-621.
    Kachmar, J.F., and Boyer, P.D. (1953). Kinetic analysis of enzyme reactions:II. The potassium activation of pyruvic phosphoferase. J. Biol. Chem.200,669-682.
    Kader, M.A., Seidel, T., Golldack, D., and Lindberg, S. (2006). Expressions of OsHKTl, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J. Exp. Bot 57,4257-4268.
    Kahle, K.T., Ring, A.M., and Lifton, R.P. (2008). Molecular physiology of the WNK kinase. Annu. Rev. Physiol.70,329-355.
    Kaiser, W.M., Urbach, W., and Gimmler, H. (1980). The role of monovalent cations for photosynthesis of isolated intact chloroplasts. Planta 149,170-175.
    Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E.P., Sato, Y., Goshima, S., and Uozumi, N. (2001). Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc. Natl. Acad. Sci. USA 98,6488-6493.
    Kim, B.-G., Waadt, R., Cheong, Y.H., Pandey, G.K., Dominguez-Solis, J.R., Schiiltke, S., Lee, S.C., Kudla, J., and Luan, S. (2007). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J.52,473-484.
    Kim, E.J., Kwak, J.M., Uozumi, N., and Schroeder, J.I. (1998). AtKUPl:an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10,51-62.
    Kim, K.-N., Cheong, Y.H., Grant, J.J., Pandey, G.K., and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15,411-423.
    Kim, K.-N., Cheong, Y.H., Gupta, R., and Luan, S. (2000). Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol.124,1844-1853.
    Kim, M.J., Ciani, S., and Schachtman, D.P. (2010). A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant 3,420-427.
    Kirkby, E.A., and Armstrong, M.J. (1980). Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol.65,286-290.
    Kohler, C., and Neuhaus, G. (2000). Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett.4710,133-136.
    Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases:Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol.134,43-58.
    Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Nat1. Acad. Sci. USA 96, 4718-4723.
    Kurusu, T., Hamada, J., Nokajima, H., Kitagawa, Y., Kiyoduka, M., Takahashi, A., Hanamata, S., Ohno, R., Hayashi, T., and Okada, K., et al. (2010). Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol.153,678-692.
    Lacombe, B., Pilot, G., Michard, E., Gaymard, F., Sentenac, H., and Thibaud, J.-B. (2000). A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12,837-851.
    Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., and Grignon, C. (1996). Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J.9,195-203.
    Lanyi, J.K. (1974). Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev.38,272-290.
    Laohavisit, A., Shang, Z.L., Rubio, L., Cuin, T.A., Very, A.-A., Wang, A.H., Mortimer, J.C., Macpherson, N., Coxon, K.M., and Battey, N.H., et al. (2012). Arabidopsis annexinl mediates the radical-activated plasma membrane Ca2+ -and K+-permeable conductance in root cells. Plant Cell 24,1522-1533.
    Latz, A., Becker, D., Hekman, M., Miiller, T., Beyhl, D., Marten, I., Eing, C., Fischer, A., Dunkel, M., and Bertl, A., et al. (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J.52,449-459.
    Lebaudy, A., Very, A.-A., and Sentenac, H. (2007). K+ channel activity in plants:Genes, regulations and functions. FEBS Lett.581,2357-2366.
    Lee, S.C., Lan, W.Z., Buchanan, B.B., and Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Nat1. Acad. Sci. USA 106, 21419-21424.
    Lee, S.C., Lan, W.Z., Kim, B.-G., Li, L.G., Cheong, Y.H., Pandey, G.K., Lu, G.H., Buchanan, B.B., and Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc. Nat1. Acad. Sci. USA 104,15959-15964.
    Leigh, R.A., and Wyn Jones, R.G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol.97,1-13.
    Leng, Q., Mercier, R.W., Yao, W.Z., and Berkowitz, G.A. (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol.121,753-761.
    Li, J.X., Julie Lee, Y.R., and Assmann, S.M. (1998). Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol.116,785-795.
    Li, L.G., Kim, B.-G., Cheong, Y.H., Pandey, G.K., and Luan, S. (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 12625-12630.
    Li, Z.Y., Xu, Z.S., Chen, Y., He, G.Y., Yang, G.X., Chen, M., Li, L.C., and Ma, Y.Z. (2013). A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. Plos One 8,1-12.
    Lin, H.X., Yang, Y.Q., Quan, R.D., Mendoza, I., Wu, Y.S., Du, W.M., Zhao, S.S., Schumaker, K.S., Pardo, J.M., and Guo, Y. (2009). Phosphorylation of SOS3-Like Calcium Binding Protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21,1607-1619.
    Liu, J.P., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97, 3730-3734.
    Liu, J.P., and Zhu, J.K. (1998). A calcium densor homolog required for plant salt tolerance. Science 280, 1943-1945.
    Liu, L.L., Ren, H.M., Chen, L.Q., Wang, Y., and Wu, W.H. (2012). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol.161, 266-277.
    Luan, S., Kulda, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002) Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants. Plant Cell suppl.14, S389-S400.
    Ma, W., Smigel, A., Walker, R.K., Moeder, W., Yoshioka, K., and Berkowitz, G.A. (2010). Leaf senescence signaling:The Ca2+ -conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol.154,733-743.
    Maathuis, F.J.M. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol.12, 250-258.
    Maathuis, F.J.M., and Sanders, D. (1994). Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 91,9272-9276.
    Mahs, A., Steinhorst, L., Han, J.P., Shen, L.K., Wang, Y., and Kudla, J. (2013). The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Mol. Plant 6,1149-1162.
    Marschner, H. (1995). Part I. Nutritional physiology. In Mineral Nutrition of Higher Plants. Marschner, H. ed. (London:Academic Press Limited) pp.18-30,313-363.
    Maresova, L., and Sychrova, H. (2006). Arabidopsis thaliana CHX17 gene complements the khal deletion phenotypes in Saccharomyces cerevisiae. Yeast 23,1167-1171.
    Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K.A., Hoshi, T., and Hedrich, R. (1999). AKT3, a phloem-localized K+ channel, is blocked by protons. Proc. Natl. Acad. Sci. USA 96,7581-7586.
    Martinez-Atienza, J., Jiang, X.Y., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., and Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol.143, 1001-1012.
    Maser, P., Gierth, M., and Schroeder, J.I. (2002). Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247,43-54.
    Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol.126,1646-1667.
    McCormick, J.A., and Ellison, D.H. (2011). The WNKs:a typical protein kinases with pleiotropic actions. Trends Plant Sci.10,383-389.
    Meckel, T., Hurst, A.C., Thiel, G., and Homann, U. (2004). Endocytosis against high turgor:intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1. Plant J.39,182-193.
    Mengel, K., and Kirkby, E.A. (1987). Principles of plant nutrition.4th Edition. International Potash Institute, Bern, Switzerland, pp.687.
    Mengel, K., and Kirkby, E.A. (2001). Potassium. In Principles of Plant Nutrition. Norwell, MA, USA: Kluwer Academic Publishers, pp.503-509.
    Mengel, K., Secer, M., and Koch, K. (1981). Potassium effect on protein formation and amino acid turnover in developing wheat grain. Agron. J.73,74-78.
    Michard, E., Lima, P.T., Borges, R, Silva, A.C., Portes, M.T., Carvalho, J.E., Gilliham, M., Liu, L.H., Obermeyer, G, and Feij6, J.A. (2011). Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332,434-437.
    Mori, I.C., and Schroeder, J.I. (2004). Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol.135,702-708.
    Moshelion, M., Becker, D., Czempinski, K., Mueller-Roeber, B., Attali, B., Hedrich, R., and Moran, N. (2002). Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol.128,634-642.
    Mouline, K., Very, A.A., Gaymard, F., Boucherez, J., Pilot, G., Devic, M., Bouchez, D., Thibaud, J.-B., and Sentenac, H. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Gene Dev.16,339-350.
    Munson, R.D. (1985). Potassium in Agriculture. Am. Soc. Agron., Crop Sci. Soc. Am., Siol Sci. Soc. Am., Madison, Wisconsin.
    Nagae, M., Nozawa, A., Koizumi, N., Sano, H., Hashimoto, H., Sato, M., and Shimizu, T. (2003). The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J. Biol. Chem.278,42240-42246.
    Nieves-Cordones, M., Chavanieu, A., Jeanguenin, L., Alcon, C., Szponarski, W., Estaran, S., Cherel, I., Zimmermann, S., Sentenac, H., and Gaillard, I. (2014). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol.164,1415-1429.
    Nieves-Cordones, M., Miller, A.J., Aleman, F., Martinez, V., and Rubio, F. (2008). A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol. Biol.68,521-532.
    Nitsos, R.E., and Evans, H.J. (1969). Effects of univalent cationis on the activity of particulate starch synthetase. Plant Physiol.44,1260-1266.
    Nozawa, A., Koizumi, N., and Sano, H. (2001). An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. Plant Cell Physiol.42,976-981.
    Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A., and Tanaka, Y. (2007). Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol.144, 1978-1985.
    Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K. (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Nat1. Acad. Sci. USA 100, 11771-11776.
    Ottschytsch, N., Raes, A., Van Hoorick, D., and Snyders, D.J. (2002). Obligatory heterotetramerization of three previously uncharacterized Kv channel a-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99,7986-7991.
    Palmgren, M.G. (2001). Plant Plasma Membrane H+ -ATPases:Powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol.52,817-845.
    Pandey, G.K., Cheong, Y.H., Kim, K.-N., Grant, J.J., Li, L.G., Hung, W., D'Angelo, C., Weinl, S., Kudla, J., and Luan, S. (2004). The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16,1912-1924.
    Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.-G., Li, L.G., and Luan, S. (2008). Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol. Plant 1,238-248.
    Pettersson, S., and Jensen, P. (1983). Variation among species and varieties in uptake and utilization of potassium. Plant Soil 72,231-237.
    Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C.S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., et al. (1999). Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 96,12186-12191.
    Piao, H.L., Xuan, Y.H., Park, S.H., Je, B.I., Park, S.J., Park, S.H., Kim, C.M., Huang, J., Wang, G.K., Kim, M.J., et al. (2010). OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol. Cells 30,19-27.
    Pier, P.A., and Berkowitz, G.A. (1987). Modulation of water stress effects on photosynthesis by altered leaf K+. Plant Physiol.85,655-661.
    Pierce, W.S., and Higinbotham, N. (1970). Compartments and fluxes of K, Na+ and Cl- in Avena coleoptile cells. Plant Physiol.46,666-673.
    Pilot, G., Lacombe, B., Gaymard, F., Cherel, I., Boucherez, J., Thibaud, J.B., and Sentenac, H. (2001). Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem.276,3215-3221.
    Pilot, G., Gaymard, F., Mouline, K., Cherel, I., and Sentenac, H. (2003). Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol.51,773-787.
    Pretty, K.M., and Stangel, P.J. (1985). Current and future use of world potassium. In Potassium in Agriculture.. Am. Soc. Agron., Crop Sci. Soc. Am., Siol Sci. Soc. Am., Madison, WI, pp.99-128.
    Pyo, Y.J., Gierth, M., Schroeder, J.I., and Cho, M.H. (2010). High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol.153,863-875.
    Qi, Z., and Spalding, E.P. (2004). Protection of plasma membrane K+ transport by the salt overly sensitivel Na+-H+ antiporter during salinity stress. Plant Physiol.136,2548-2555.
    Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., and Zhu, J.K. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J. Biol. Chem.279,207-215.
    Quan, R.D., Lin, H.X., Mendoza, I., Zhang, Y.G., Cao, W.H., Yang, Y.Q., Shang, M., Chen, S.Y., Pardo, J.M., and Guo, Y. (2007). SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19,1415-1431.
    Quintero, F.J., and Blatt, M.R. (1997). A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett.415,206-211.
    Ramirez-Silva, L., Ferreira, S.T., Nowak, T., Gomez-Puyou, M.T., and Gomez-Puyou, A. (2001). Dimethylsulfoxide promotes K+ -independent activity of pyruvate kinase and the acquisition of the active catalytic conformation. Eur. J. Biochem.268,3267-3274.
    Reintanz, B., Szyroki, A., Ivashikina, N., Ache, P., Godde, M., Becker, D., Palme, K., and Hedrich, R. (2002). AtKC1, a silent Arabidopsis potassium channel a-subunit modulates root hair K+ influx. Proc. Natl. Acad. Sci. USA 99,4079-4084.
    Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., and Wu, W.H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K. Plant J.74, 258-266.
    Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K.A., Grabov, A., Dolan, L., and Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13,139-151.
    Roberts, D.M., and Harmon, A.C. (1992). Calcium-modulated proteins:targets of intracellular calcium signals in higher plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol.43,375-414.
    Romeis, T., Ludwig, A.A., Martin, R., and Jones, J.D.G. (2001). Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J.20,5556-5567.
    Rubio, F., Gassmann, W., and Schroeder, J.I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270,1660-1663.
    Rudd, J.J., and Franklin-Tong, V.E. (2001). Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol.151,7-33.
    Rus, A., Lee, B., Munoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.K., Bressan, R.A., and Hasegawa, P.M. (2004). AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol.136, 2500-2511.
    Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11, 691-706.
    Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarroa, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9,2281-2289.
    Schachtman, D.P., and Shin, R. (2007). Nutrient sensing and signaling:NPKS. Annu. Rev. Plant Biol. 58,47-69.
    Schachtman, D.P., and Schroeder, J.I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370,655-658.
    Schleyer, M., and Bakker, E.P. (1993). Nucleotide sequence and 3'-end deletion studies indicate that the K+ -uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J. Bacter.175,6925-6931.
    Schrempf, M., Satter, R.L., and Galston, A.W. (1976). Potassium-linked chloride fluxes during rhythmic leaf movement of Albizzia julibrissin. Plant Physiol.58,190-192.
    Schroeder, J.I., and Fang, H.H. (1991). Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc. Natl. Acad. Sci. USA 88,11583-11587.
    Schuurink, R.C., Shartzer, S.F., Fath, A., and Jones, R.L. (1998). Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc. Natl. Acad. Sci. USA 95,1944-1949.
    Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F., and Grignon, C. (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663-665.
    Shi, H.Z., Ishitani, M., Kim, C., and Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97,6896-6901.
    Shi, J.R., Kim, K.-N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., Luan, S., and Kudla, J. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11,2393-2405.
    Shin, R., Berg, R.H., and Schachtman, D.P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol.46, 1350-1357.
    Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101,8827-8832.
    Snedden, W.A., and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol.151,35-66.
    Song, C.P., Guo, Y., Qiu, Q.S., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101,10211-10216.
    Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., Camoni, L., Aducci, P., Marra, M., Abenavoli, A., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem,281,35735-35741.
    Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R., and Lewis, B.D. (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity:Inhibition by ammonium and stimulation by sodium. J. Gen. Physiol.113,909-918.
    Sparks, D.L., and Huang, P.M. (1985). Physical chemistry of soil potassium. Am. Soc. Agron., Crop Sci. Soc. Am., Siol Sci. Soc. Am., Madison, WI, pp.201-276.
    Strynadka, N.C.J., and James, M.N.G (1989). Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem.58,951-998.
    Su, H., Golldack, D., Zhao, C.S., and Bohnert, H.J. (2002). The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol.129,1482-1493.
    Suelter, C.H. (1970). Enzymes activated by monovalent cations. Science 168,789-795.
    Sutter, J.U., Campanoni, P., Tyrrell, M., and Blatt, M.R. (2006). Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18, 935-954.
    Szczerba, M.W., Britto, D.T., Ali, S.A., Balkos, K.D., Kronzucker, H.J. (2008). NH4+-stimulated and-inhibited components of K+ transport in rice(Oryza sativa L.). J. Exp. Bot.59,3415-3423.
    Sze, H., Padmanaban, S., Cellier, F., Honys, D., Cheng, N.H., Bock, K.W., Conejero, G., Li, X.Y., Twell, D., Ward, J.M., et al. (2004). Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol. 136,2532-2547.
    Talbott, L.D., and Zeiger, E. (1998). The role of sucrose in guard cell osmoregulation. J. Exp. Bot.49, 329-337.
    Tang, R.J., Liu, H., Yang, Y., Yang, L., Gao, X.S., Garcia, V.J., Luan, S., and Zhang, H.X. (2012). Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res.22,1650-1665.
    Tester, M., and Blatt, M.R. (1989). Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol.91,249-252.
    Tester, M., and Leigh, R.A. (2001). Partitioning of nutrient transport processes in roots. J. Exp. Bot.52, 445-457.
    Towler, D.A., Adams, S.P., Eubanks, S.R., Towery, D.S., Jackson-Machelski, E., Glaser, L., and Gordon, J.I. (1988). Myristoyl CoA:protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J. Biol. Chem.263, 1784-1790.
    Tripathi, V, Syed, N., Laxmi, A., and Chattopadhyay, D. (2009). Role of CIPK6 in root growth and auxin transport. Plant Signal. Behav.4,663-665.
    Ueda, J., Miyamoto, K., and Aoki, M. (1994). Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments:a possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol.35,1065-1070.
    Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., and Schroeder, J.I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis Oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol.122, 1249-1259.
    Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W., Ali, R., Berkowitz, GA., and Yoshioka, K. (2007). The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca+ dependent manner. Plant Mol. Biol.65,747-761.
    Very, A.-A., and Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol.54,575-603.
    Very, A.-A., and Sentenac, H. (2002). Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci.7,168-175.
    Voelker, C., Schmidt, D., Mueller-Roeber, B., and Czempinski, K. (2006). Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J.48,296-306.
    Walker, D.J., Leigh, R.A., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93,10510-10514.
    Wang, Y., He, L., Li, H.D., Xu, J., and Wu, W.H. (2010). Potassium channel a-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res. 20,826-837.
    Wang, Y., and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol.64,451-416.
    Ward, J.M., and Pei, Z.M. Schroeder, J.I. (1995). Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7,833-844.
    White, P.J., and Broadley, M.R. (2003). Calcium in Plants. Ann. Bot.92,487-511.
    Wild, A., Skarlou, V., and Clement, C.R. (1974). Comparison of potassium uptake by plant species grown in sand and in flowing solution culture. J. Appl. Ecol.11,801-812.
    Woodend, J.J., Glass, A.D.M., and Person, C.O. (1987). Genetic variation in the uptake and utilization of potassium in wheat (Triticum aestivum L.) varieties grown under potassium stress. Dev. Plant Soil Sci.27,383-391.
    Wu, S.J., Ding, L., and Zhu, J.K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8,617-627.
    Wyn Jones, R.G., Brady, C.J., and Speirs, J. (1979). Ionic and osmotic relations in plant cells. In Laidman, D.L. and Wyn Jones, R.G., ed. Recent Advances in the Biochemistry of Cereals (London: Academic Press).
    Wyn Jones, R.G, and Pollard, A. (1983). Protein, enzymes and inorganic ions. In A Lauchli, R. L. and Bieleski ed. Inorganic Plant Nutrition (Berlin:Springer-Verlag).
    Xiang, Y., Huang, Y.M., and Xiong, L.Z. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol.144,1416-1428.
    Xiong, L.M., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell suppl. S165-S183.
    Xu, I, Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125,1347-1360.
    Yanai, J., Linehan, D.J., Robinson, D., Young, I.M., Hackett, C.A., Kyuma, K., and Kosaki, T. (1996). Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize. Plant Soil 180,1-9.
    Yang, W.Q., Kong, Z.S., Omo-Ikerodah, E., Xu, W.Y., Li, Q., and Xue, Y.B. (2008). Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J. Genet. Genomics 35,531-543.
    Yao, X., Horie, T., Xue, S.W., Leung, H.Y., Katsuhara, M., Brodsky, D.E., Wu, Y, and Schroeder, J.I, (2010). Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol.152,341-355.
    Zhao, J., Cheng, N.H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., and Hirschi, K.D. (2008). AtCHX13 is a plasma membrane K+ transporter. Plant Physiol.148,796-807.
    Zielinski, R.E. (1998). Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol.49,697-725.
    Zimmermann, S., Talke, I., Ehrhardt, T., Nast, G., and Muller-Rober, B. (1998). Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiol.116,879-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700