用户名: 密码: 验证码:
根系分区交替灌溉系统的设计及其流动特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交替灌溉配套的设备存在配水均匀性差、结构复杂等问题。本文通过室内、田间试验,设计交替灌溉田间应用系统、实现交替灌溉的分配阀、为保证灌水均匀性的可调开度灌溉阀。为便于研究,将交替灌溉配水问题转化为多孔管出流问题。
     (1)交替灌溉多孔出流管输水能力的比较分析,设计不同孔口开度、水源水头、铺设坡度、管道长度,试验比较输水能力:得出输水管的自由出流条件下管道出流量Qz总是大于多孔出流管总出流量Q0。铺设长度L、压力水头H、管道铺设坡度i及孔间距S等任何一个因素的变化都将会对单孔出流量产生重要影响,进而影响多孔管的总出流量Q0。随着管道铺设长度L的增大总出流量增大,单孔平均出流量减小;随着压力水头H的增大,总出流量和平均单孔出流量均增大;随着铺设坡度i的增大总出流量和平均单孔出流量均增大;随着孔间距S的增大,总出流量减少,平均单孔出流量增加。分析多孔管流量折减系数ψ与无量纲数开孔比η长径比E、坡度i之间的关系,进行公式拟合。
     (2)建立了变孔径、变管径多孔管的数学模型,分别设计了变孔径和变管径多孔管。运用FLUENT软件研究不同入口速度,不同末孔直径对配水均匀度的影响。结果证明,变孔径、变管径多孔管相对于等孔径、等管径多孔管,可以提高配水均匀度。对于变孔径多孔管,入口速度越大,配水均匀度越高;对于DN25的PVC管道,末孔直径为10mm时配水均匀度最高;对于变管径多孔管,入口速度越小,配水均匀度越高。(3)研究设计了可调开度灌溉阀和交替灌溉分配阀。通过计算推导可调开度灌溉阀旋转转数与过水截面积的关系,并用以指导灌溉,应用FLUENT软件模拟了可调式出水口在不同开度,不同水头下的流量特性。应用可调式出水口和交替灌溉分配阀,搭建了单管和双管两种隔沟交替灌溉系统,用于田间试验,结果证明能够保证灌溉均匀度。
     (4)搭建兼做温室爬蔓绳的有芯微管微灌系统,并进行规划设计。以种植黄瓜为例,根据黄瓜不同生长期灌水定额,发芽期0.13L/株、幼苗期0.227L/株、初花期1.53L/株、结果期2.56L/株。对系统各级管道进行水力特征分析,经试验和计算比对选择系统主管为φ32塑料硬管、支管选择φ16塑料硬管,有芯微管芯材选择渗透系数K=0.249的丙纶丝绳。通过温室试验区与常规沟灌和滴灌比对,得出该系统灌水均匀度达93.3%,有芯微管灌水有效率96.6%,比常规有效灌水率80.5%提高近20%。单位面积投资为280元/亩,具有良好的经济效益。
Currently alternative irrigation equipments have poor water distribution uniformity, complex structure and other issues. Through the laboratory, field experiment, designing alternate irrigation system and distribution valve, adjustable opening irrigation valve in order to ensure the irrigation uniformity. For the convenience of studying, transforming the alternative irrigation water allocation problem into the porous pipe flowing model.
     (1)Through the comparison and analysis on water capacity of the interval furrow alternative irrigation porous pipe, designing different orifice opening, water head, laying slope, pipe length, the result of the test:The free total flow Qz is always greater than the flow of porousQ0.Changes of laying slope I and hole spacing of S length L, pipeline pressure head H, any one factor will be on a single orifice flow have an important impact, thereby affecting Qo the total discharge of perforated pipe. Along with the pipeline laying length L increases the total flow increases, single hole average flow rate decreases; with increasing pressure head H, the total flow rate and the average single hole flow increased; with the laying slope I increases the total flow and the average single hole flow increased; with the hole spacing S increases, the total the flow is reduced, the average single hole flow increase. Flow reduction coefficient and the number of opening ratio, dimensionless length E, slope ratio between I size analysis of porous pipe, fitting formula.
     (2) Establishing a mathematical model of variable aperture, variable diameter perforated pipe, and designed them. Using the FLUENT software to study the impact of different inlet velocity, different pore diameter at the end on water distribution uniformity. Results show that variable aperture, variable diameter perforated pipe can improve water distribution uniformity. For the variable aperture perforated pipe, the higher the inlet velocity, the greater the water distribution uniformity; For the PVC pipes of DN25, when the diameter of end hole is10mm, the water distribution uniformity is highest. For the variable diameter perforated pipe, the lower the inlet velocity, the greater the water distribution uniformity; The smaller the aperture at the end, the greater the water distribution uniformity.
     (3) Having researched and designed the adjustable opening irrigation valve and alternate irrigation distribution valve. The calculation of adjustable open relation degree of irrigation valve rotation number and water area, and used to guide irrigation, application of FLUENT software to simulate the adjustable outlet at different opening, flow characteristics under different water head. Application of adjustable outlet and alternate irrigation distribution valve, builds single and double pipe two alternate furrow irrigation system, used for field test, results show that can guarantee the uniformity of irrigation water.
     (4) Build the core of micro irrigation system with microtubule and greenhouse vine climbing rope, and planning and design. To the cultivation of cucumber as an example, according to the different cucumber growth period irrigation quota, germination stage, seedling stage0.13L/strain0.227L/strain,1.53L/strain, the early flowering period2.56L/strain. Hydraulic characteristic analysis for all levels of the pipeline system, the test and calculation system supervisor of (p32plastic pipe, pipe selection of φ16hard plastic tube, core microtubule core material selection of polypropylene rope permeability coefficient K=0.249. Through greenhouse experiment area and conventional furrow irrigation and drip irrigation on irrigation uniformity, it is concluded that the system is up to93.3%, the core of microtubule irrigation efficiency than the conventional96.6%, the effective irrigation rate of80.5%increased by20%. Unit area investment is280yuan/mu, with good economic benefit.
引文
[1]迟道才.节水灌溉理论与技术[M].北京:中国水利水电出版社,2009,1-5.
    [2]文明.浅谈我国水资源的可持续利用战略[J].资源与环境,2007(6):147148.
    [3]祁泉松.我国水资源现状及其水资源管理中的问题和对策[J].中国水运,2008.,8(2):180-181.
    [4]康绍忠,张建华,梁宗锁等.控制性交替灌溉—一种新的农田节水调控思路.干旱地区农业研究,1997,15(1):1-6.
    [5]Dry P.R,Loveys B.R. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grab and Wine Research,1998,(4):140-148.
    [6]Loveys B.R,Stoll M.,Dry P.R.,et al.Partial root-zone drying stimulates stress responses in grapevine to improve water use efficiency while maintaining crop yield and quality. Australian Grapegrower and Winemaker,1998,414,Technical issue:108-114.
    [7]Gu S L, David Z., Simon G, et al. Effect of partial rootzone drying on vine water relations, vegetative growth, mineral nutrition, yield and fruit quality in field-grown mature sauvignon blanc grapevines[R]. Research Notes,# 000702, California Agricultural Technology Institute, California State University.Fresno.2000.
    [8]Claudia R. de Souza, Joao P. Maroco, Tiago P. dos Santos et al. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-growngrapevines (Vitis vinifera cv. Moscatel)[J]. FunctionalPlant Biology,2003,30(6):653-662.
    [9]Claudia R. de Souza, Joao P. Maroco, Tiago P. dos Santos et al.Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars.Agriculture.Ecosystems and Fnvironment,2005,(106):261-274.
    [10]Tiago P. dos Santos, Carlos M. Lopes, M. Lucilia Rodrigues, et al., Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera)[J]. Functional Plant Biology,2003,30(6):663-671.
    [11]Cifre J.,Bota J.,Escalona J.M.et al.Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.)An open gate to improve water-use efficiency? Agriculture,Ecosystems and Environment,2005,(106):159-170.
    [12]Zegbe J A, Behboudian M.H.,Liang A et al.Deficit irrigation and partial rootzoon drying maintain fruit dry mass and enhance fruit quality in 'Petopride' processing tomato (Lycopersicon esculentum,Mill).Scientia Horticulturae,2003,(98):505-510
    [13]Zegbe J A, Behboudian M H, Clothier B E. Partial rootzone drying is a feasible option for irrigating processing tomatoes [J]. Agricultural Water Management,2004,(68):195-206.
    [14]Mingo D.M.,Theobald J.C.,Bacon M.A.,et al.Biomass allocation in tomato (Lycopersicon esculentum)plants growth under partial rootzoon drying:enhancement of root growth. Functional Plant Biology,2004,319(10):971 -978.
    [15]Kirda C, Cetin M, Dasgan Y, et al. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation [J]. Agricultural Water Management,2004,69:191-201.
    [16]Wakrim R.,Wahbi S.,Tahi H.,et al.Comparative effects of partial root drying(PRD)and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus L.)Agriculture,Ecosystems and Environment,2005,(106):215-281.
    [17]Wang L.,Kroon H.de,Bogemann GM., et al.Partial root drying effects on biomass production in Brassica napus and the significance of root responses. Plant and Soil,2005,(276):313-326
    [18]Wahbi S.,Wakrim R.,Aganchich B.,et al.Effects of partial rootzone drying(PRD)on adult olive tree (Oleaeuropaea)in field conditions under arid climate I.Physiological and agronomic responses. Agriculture.Ecosystems and Environment,2005,(106):289-301.
    [19]Centritto M.,Wahbi S.,Serraj R,et al.Effects of partial rootzone drying(PRD)on adult olive tree (Olea europaea)in field conditions under arid climate Ⅱ.Photosynthetic response. Agriculture.Ecosystems and Environment,2005,(106):303-311.
    [20]Dorji K.,Behboudian M.H.,Zegbe-Dominguez JA.Water relations,growth,yield,and fruit quality of hot pepper under deficit irrigation and partial rootzone drying.Scientia Horticulturae,2005,(104):137-149.
    [21]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论及实践.北京:中国农业出版社,2002.
    [22]Kang S.Z.,Zhang J.Controlled alternate partial rootzone irrigation:its physiological consequences and impact on water use efficiencyJournal of Experimental Botany,2004,55(407):2437 2446.
    [23]杜太生.干旱荒漠绿洲区作物根系分区交替灌溉的节水机理与模式研究:[博士学位论文].北京:中国农业大学,2006.
    [24]Brian Loveys, Jim Grant, Peter Dry, et al. Progress in the development of partial rootzone drying[J]. http://www.geoflow.com/agriculture/prdi.htm.2003-10-26.[25]李锡录,王玉太,张涛等.果树皿灌技术研究[J].灌溉排水,1994,13(1):15-20.
    [26]李永泽,赵锦忠等.山坡丘陵地果树皿灌器的研制及应用效果[J].中国果树,1996,(4):1-3.
    [27]Kang Shaozhong, Shi Wenjuan, Cao Hongxia, et al.Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays) [J]. Field Crops Research,2002,77:31-41.
    [28]杜太生,康绍忠,胡笑涛等.果树根系分区交替灌溉研究进展[J].农业工程学报,2005,2(21):175.
    [29]Dtiring H, Loveys B R,Dry P R.Root signals affect water use efficiency and shoot growth [J].Acta Horticulture,1997(427):1-13.
    [30]Dry P R,Loveys B R, Stoll M,et al.Partial root zone drying-an update[J].Australian Grape grower and Winemaker,2000(438):35-39.
    [31]Loveys B R.What use is a knowledge of ABA physiology for crop Scientific Publishers,1991,245-259.
    [32]Loveys B R,Dry P R,McCarthy M GUsing plant physiology to improve the water use efficiency of horticulture crops [J].Acta Horticulture,1999(537):187-199.
    [33]Loveys B R,Grant W J R,Dry P R,et al.Progress in the development of partial root-zone drying[J].The Australian Grape grower and Winemaker,1997(403):18-20.
    [34]康绍忠,粟晓玲,杜太生,等.西北旱区流域尺度水资源转化规律及其节水调控模式——以甘肃石羊河流域为例[M].北京:中国水利水电出版社,2009,611-615.
    [35]梁宗锁.分根区交替灌溉提高玉米水分利用效率的生理学机制[D].杨凌:西北农业大学,1999.
    [36]梁宗锁,康绍忠,胡炜,等.控制性分根交替灌溉的节水效应[J].农业工程学报,1997,13(4):58-63.
    [37]高明霞,王国栋,胡田田,等.不同灌溉方式下娄土玉米根际硝态氮的分布[J].西北植物学报,2004,24(5):881-885.
    [38]谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报,2005,11(4):442-448.
    [39]段爱旺,肖俊夫,张寄阳,等.控制交替沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766-771.
    [40]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1-5.
    [41]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J]水利学报,2002,33(3),64-68.
    [42]康绍忠,杜太生,等.一种果树根区交替滴灌的灌溉系统.中国专利,CN200420041661.0,2005-5-4.
    [43]杜太生,康绍忠,等.一种灌溉装置及其灌溉方法.中国专利,N200810112192.X,2008-10-8.
    [44]李益农,杨继富,等.闸管灌技术及其田间工程系统设计[J].节水灌溉.2003(1):8.
    [45]邢长山.用于大田果树的地下分区交替灌溉系统及其渗灌方法.中国专利,CN201010229935.9,2010-12-8.
    [46]康绍忠,张富仓,等.交替灌溉给水机构.中国专利,CN200310122230.7,2004-12-22.
    [47]康绍忠,张富仓,胡笑涛,等.一种地表间隔灌溉装置.中国专利,CN03219010.7,2004-6-2.
    [48]康绍忠,胡笑涛,张富仓,等.一种根系分层灌溉装置.中国专利,CN03219009.3,2004-6-2.
    [49]康绍忠,胡笑涛,张富仓,等.一种适用于交替灌溉的灌水管.中国专利,CN200410025908.4,2005-9-7.
    [50]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [51]钱焕群.工程流体力学(水力学)精讲精练[M].北京:化学工业出版社,2010.
    [52]Cowan I R. Stomata behavior and environment [J].Advances of Botany esearch,1988,4:117-228.
    [53]Bates LM, Hall A E. Stomatal closure with soil water depletion not associated with change in bulk leaf water stress [J]. Oecologia,1981,50:62-65.
    [54]Davies W J, Zhang J. Root signals and the regulation of grown and development of plants in drying soil [J].Ann Rev Plant Physiolmol Biol,1991,42,55-76.
    [55]Jones H G Stomatal control of photo synthesis and transpiration [J]. Journal of Experimental Botany,1998,49 (special Issue):387-398.
    [56]Gollan T, Passioura J B,Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves [J]. Australian Journal of Plant Physiology,1986,13:459-464.
    [57]Turner D W, Menzel C M, Simpson D R. Short term drying of half the root system reduces growth but not water status or photosynthesis in leaves of passionfruit (Passiflora sp.)[J]. Scientia Horticulturae,1996,65:25-36.
    [58]Zhang J, Davies W J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil [J]. Plant, Cell and Environment,1989(12):73-81.
    [59]梁建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯,1998,34(5):329-338.
    [60]Liang J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? [J]. Plant and Cell Physiology,1997,38:10-16.
    [61]康绍忠,胡笑涛,Goodwin I,等.地下水位较高条件下不同根区湿润方式对梨树根与茎液流及其水分平衡的影响[J].农业工程学报,2001,17(3):15-23.
    [62]康绍忠,张建华,石培泽,等.控制性作物根系分区交替灌溉的理论与实验[J].水利学报,2001,32(11):80-86.
    [63]张建华,贾文锁,康绍忠.Partial root zone irrigate ion:its physiological consequences and impact on water use efficiency[J].西北植物学报,200121,(2):191-197.
    [64]郭彦彪,邓兰生,张承林.设施灌溉技术[M].北京:化学工业出版社,2007,102-105.
    [65]中华人民共和国水利部.SL558—-2011.地面灌溉工程技术管理规程.北京:中国水利水电出版社,2011-11-18.
    [66]吕宏兴等.水力学[M].北京:中国农业出版社,2002,130-151.
    [67]刘焕芳.微压多孔软管水力性能研究:[博士学位论文].杨凌,西北农林科技大学,2008.
    [68]南京水利科学研究院.水利水电科学研究院水模型试验第二版.北京:水利电力出版社,1985,6-24.
    [69]门旗,米孟恩,陈祖森.低压多孔灌溉软管设计与评价方法的研究[J].喷灌技术,1995(4):17-19.
    [70]陈水悌.多孔管配水均匀性的理论探讨[J].给水排水,1995,21(5):5-10.
    [71]缪正清.多孔分配管与汇集管内单相流体的流动特性[J].上海交通大学学报,1999,33(3):297-300.
    [72]张珂,刘俊,王华锋.单支管实现配水均匀的方法[J].河北建筑科技学院学报,2004,21(2):38-40.
    [73]周和平,张胜江,赵春艳.蓄流分离式灌溉新技术研究[J].中国科学,2009,(4):814-820.
    [74]Acrivos A, Babcock B D, Pigford R L. Flow distributions in manifolds. Chemical Engineering Science,1959,10(1):112-124.
    [75]陈水悌,张祥中,史华.变孔径配水多孔管的设计[J].给水排水,2002,28(10):23-26
    [76]吴普特,朱德兰,等.灌溉水力学引论[M].北京:科学出版社,2012,,222-225.
    [77]朱德兰,吴普特.田面微地形影响下滴灌灌水均匀度指标研究.排灌机械,2005b,23(1):50-56.
    [78]顾烈峰.滴灌工程设计图集[M]北京:中国水利水电出版社,2005,32-33.
    [79]徐晓峰,刘英超,孔镭,等.交替灌溉技术设备研究应用现状.中国农村水利水电,2012,7:21-25.
    [80]徐晓峰.隔沟交替灌溉灌水设备优化与仿真:[硕士学位论文].北京:中国农业大学,2013.
    [81]房宽厚,赖伟标.农田灌溉与排水[M].北京:水利电力出版社,1993:130.
    [82]水利部农村水利司.节水灌溉技术标准选编.北京:中国水利水电出版社,1999:115-155.
    [83]吴普特,朱德兰,张林.多孔变径出流管标准化管径设计方法[J].排灌机械工程学报,2011,5:446-450.
    [84]Gillespi V A, Philips A L. Wu I P. Drip irrigation design equation [J]. J Irrig Drain Eng, 1979,105(3):247-257.
    [85]朱德兰,吴普特,牛文全.用两级优化法进行喷微灌支管设计[J].水利学报,2005,36(5):608-612.
    [86]中国国家标准化管理委员会.GB/T 1047-2005.管道元件DN(公称尺寸)的定义和选用.2005-1-13.
    [87]Keller J, Bliesner R D.Sprinkler and Trickle Irrigation.New Jersey:The Blackburn Press, 1990.
    [88]周长吉.温室灌溉原理与应用[J].北京:中国农业出版社,2007:266.
    [89]侯书林,徐晓峰,刘英超,等.一种用于软管的可调式出水口.中国专利,201320146633.4,2013-8-7.
    [90]戴志海,左孝花.锥度密封在管道连接中的应用[J].机械制造,1992,6:28.
    [91]孙文海,杨继福,高占义,等.闸管输水软管开孔器.中国专利,ZL200520118317.1,2006-10-18.
    [92]侯书林,刘英超,杜太生,等.交替灌溉分配阀.中国专利,201120541471.5,2012-8-8.
    [93]杜太生,康绍忠,侯书林,等.根系分区交替灌溉控制器及其灌溉系统.中国专利,CN102550372A,2012-7-11.
    [94]侯书林,刘英超,杜太生,等.一种实现多区域选择的灌溉分配阀.中国专利,201020645706.0,2011-8-24.
    [95]侯书林,马世榜,刘英超,等.温室爬蔓作物有芯微管灌溉系统.中国专利,201110433613.0,2011-12-21.
    [96]周和平,张江辉,徐小波,等.蓄流分离式灌溉技术理论与实践[M].北京:中国水利水电出版社,2008,93-96.
    [97]水利部科技司编.低压管道输水灌溉技术[M].北京:水利电力出版社,1991.
    [98]崔毅.农业节水灌溉技术及应用实例[M].北京:化学工业出版社,2005.
    [99]水利部农水司主编.微灌工程技术[M].北京:中国水利水电出版社,1999.
    [100]陈玉民,郭国双,等.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995,17-318.
    [101]林成谷.土壤学(北方本)[M].北京:农业出版社,1983.
    [102]宋文,张玉龙,党秀丽,等.渗灌条件下保护地黄瓜不同生育期适宜灌水定额[J].浙江农业学报,2010,22(2):188-192.
    [103]朱贤,冀勇夫,张建可,等.材料渗透系数的测定[J].低温物理学报,1987,9(1):73-76.
    [104]徐小波,周和平,等.基于蓄流灌水器的灌溉均匀问题研究[J].节水灌溉,2007(6):52-56.
    [105]张国祥,申亮.微灌灌水小区水力设计的经验系数法[J].节水灌溉,2005,(6):20-23.
    [106]周和平,徐小波.蓄流灌溉技术试验分析[J].灌溉排水学报,2006,(5).
    [107]彭立新,周和平,徐小波,等.水权概论与节水技术研究[M].乌鲁木齐:新疆科学技术出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700