用户名: 密码: 验证码:
大豆连作条件下的根际细菌与氨氧化微生物群落特征及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大豆长期连作定位试验地,利用T-RFLP和qPCR方法研究了连作1-13年土壤中细菌及氨氧化微生物群落结构和丰度的动态变化,同时通过构建微宇宙系统,研究染料木因和大豆苷元对细菌和氨氧化微生物的影响,并结合田间和盆栽13C02标记试验,研究大豆根系淀积物对土壤细菌群落的影响,结果如下:
     (1)不同连作年限土壤中微生物量碳变化不显著,但是微生物量氮发生了显著的变化,并且细菌仍是主要的微生物类群。根际土壤中细菌16S rRNA基因的基因拷贝数随着连作年限的增加,出现了先增加后降低再增加的现象。不同连作年限土壤中与碳、氮循环相关的细菌类群的相对丰度发生变化,且根系分泌物与细菌群落结构的变化具有相关性,此外还与全氮、微生物量碳等因子有关。
     (2) DNA-SIP在田间和盆栽条件下都没有找到利用13C的根际微生物,而盆栽RNA-SIP的结果找到158bp、438bp所代表的细菌是根际中活跃的微生物。在研究植物-微生物相互作用方面,RNA-SIP比DNA-SIP可能更为有效。
     (3)大豆连作对氨氧化细菌的数量没有产生显著影响,但是改变了其群落结构,NMDS分析显示连作1年与其余年限分开,群落结构与染料木因、土壤全氮含量相关;氨氧化古菌的群落结构和数量均随着连作年限发生了显著的变化,连作1-4年土壤中氨氧化古菌amoA基因的拷贝数显著低于连作5-13年,而染料木因和土壤有机质含量与氨氧化古菌群落结构的变化有相关性。
     (4)与对照相比,只有在培养3天时,添加较高浓度的大豆苷元和染料木因的混合液改变了细菌的群落结构,但是在培养7天和14天后细菌的群落结构却没有发生变化。培养时间为3天和7天时,大豆苷元对土壤中细菌群落的丰度产生了抑制作用,而培养14天时抑制作用减弱。染料木因对细菌群落丰度的作用表现在较低浓度时产生抑制作用,中等浓度时抑制作用消失,而高浓度时,培养3天时对细菌群落有抑制作用,而在培养7天和14天时抑制作用消失。
     (5)添加异黄酮对氨氧化细菌和氨氧化古菌的群落结构均没有产生影响。在培养的7天和14天后,较高浓度的大豆苷元和染料木因的混合液显著增加了氨氧化细菌的数量。添加较高浓度的大豆苷元和染料木因的混合液对氧化古菌数量也有促进作用,其他处理在3天、7天时对氨氧化古菌的数量没有影响,培养14天时氨氧化古菌的数量显著性增加。
     通过上述试验结果得出以下结论:(1)大豆连作后,主要对参与碳、氮循环的细菌类群产生影响,改变了其相对丰度;(2)大豆连作会影响土壤中氨氧化细菌和氨氧化古菌的群落结构和数量;(3)异黄酮在培养时间内对氨氧化细菌和古菌的群落结构没有产生影响,但是改变了其数量;(4)异黄酮对土壤细菌16S rRNA基因的基因拷贝数有影响,较高浓度的大豆苷元和染料木因混合液会改变细菌的群落结构;(5)在研究植物-微生物相互作用方面,RNA-SIP比DNA-SIP可能更为有效。
Cultivation of soybean (Glycine max) in Northeast China is characterized by high proportion of continuous monoculture which results in reduced crop production. Among all biotic and abiotic factors, changes in soil microbial communities induced by roots activities, especially root exudation might play an important role in it. The aim of present study was to investigate response of bacteria、ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to root exudation in an experimental field of soybean monoculture continuously up to13years. Furthermore, a laboratory incubation experiment was performed to determine the effects of root exudates on the compositions and abundances of bacteria、AOA and AOB. In addition, to evaluate effects of root exudates as carbon sources on microbial communities, we used stable isotope probing under field and pot conditions and pulse labeled of soybean plants with13CO2. The main results were as follows:
     (1) The abundance and community composition of bacteria and microbial biomass in soybean changed significantly with years of mono-cropping. The abundance of bacterial community increased from1to4years, and then it decreased from5to9years, then increased again from9to13years, except the11th year. Microbial biomass was correlated with both of genistein and daidzein. The change of community composition of bacteria was no clearly temporal compositional trends and affected by available P, total N, NH4+, microbial biomass, daidzein and genistein.
     (2) The link between plant and rhizosphere microorganisms by13CO2labeling was applied to study the effect of root exudation of soybean as carbon sources on rhizosphere microbial communities. Terminal-restriction fragment length polymorphism (T-RFLP) analyses revealed158bp and438bp T-RF predominated in the heavy13C-labled bacterial rRNA, clearly showed that these bacteria were the populations most actively assimilating the carbon provided by the pulse labeling of the soybean plants in the greenhouse. Bacterial T-RFLP fingerprints from DNA taken from different density gradient fractions after pulse labeling showed similar fingerprints with increasing buoyant density, indicating that DNA-SIP failed to tracking carbon flow through different compartments of the rhizosphere microbiota.
     (3) The community composition analyzed by T-RFLP fingerprints changed in the rhizosphere and non-rhizosphere with years of mono-cropping up to13years, including ammonia-oxidizing bacterial (AOB) and ammonia-oxidizing archaeal (AOA). NMDS indicated that the AOB community of the first year was far from2to13years. Furthermore, AOB community composition was affected by genistein and total N. AOA community composition was affected by genistein and soil organic matter (SOM). The abundance of AOB was not significantly changed with years of mono-cropping, but the abundance of AOA was decreased from1to4years, and then it was increased from5to13years.
     (4) During soil incubations, we tested response of bacteria, AOA and AOB to exogenous daidzein and genistein as well as their mixture. Our results demonstrated that the compositions of AOA and AOB were not responsive to the isoflavones, but the abundance of AOA and AOB were strongly accelerated at14th by daidzin, genistein and their mixture. In addition, community composition of bacterial was influenced by the mixture of daidzin and genistein at3rd. Daidzin, genistein and their mixture have strongly impacted on the abundance of bacterial community. Daidzein, low concentrations of genistein, mixture of daidzein and genistein had an inhibitory effect on it in incubated3rf,7th. High concentrations of genistein had no effect on the abundance of bacterial community at7th,14th.
     In conclusion, the abundance and community composition of bacteria changed significantly with years of mono-cropping, the community composition of AOA and AOB were affected by soybean mono-cropping, but had little effort on the abundance of AOB, the abundance of AOA was decreased from1to4years, and then it was increased from5to13years. The compositions of AOA and AOB were not responsive to the isoflavones, but the abundance of AOA and AOB were strongly accelerated at14th by daidzein, genistein and their mixture. Daidzein, genistein and their mixture had impacted on the abundance and community composition of bacterial. The approach of RNA-SIP was more effective than DNA-SIP in the study of interaction between plant-microbes.
引文
裴雪霞,周卫,梁国庆,孙静文,王秀斌,李双来.2011.长期施肥对黄棕壤性水稻土氨氧化细菌多样性的影响.植物营养与肥料学报.17(3):724-730.
    陈宗泽,殷勤燕.1997.大豆连作对土壤徽生物生物量的影响.大豆通报.6:15.
    陈宏宇.2005.不同品种和不同茬口大豆根面及根际的微生物群落结构分析.博士学位论文.北京:中国农业大学.
    陈宏宇,李晓鸣,王敬国.2005抗病性不同大豆品种根面及根际微生物区系的变化Ⅰ.非连作大豆(正茬)根面及根际微生物区系的变化.植物营养与肥料学报.11(6):804-809.
    董莲华,杨金水,袁红莉.2008.氨氧化细菌的分子生态学研究进展.应用生态学报.19(6):1381-1388.
    傅慧兰,杨振明,邹永久,王树起,韩丽梅.1996.大豆连作对土壤酶活性的影响.植物营养与肥料学报,2(4):374-377.
    傅慧兰,战景仁,孟民,邹永久.1997.大豆连作的过氧化氢酶活性与根系分泌物.吉林农业科学.2(4):34-36.
    辜运富,云翔,张小平,涂仕华,孙锡发.2009.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响.中国农业科学.41(12):4119-4126.
    郭中元.2010.连作大豆根际微生物与大豆异黄酮间的相互作用.硕士学位论文.北京:中国农业大学.
    高同春,周书其,王振荣.1992.大豆根腐病原物的分离、鉴定及致病性测定.安徽农业科学.20(1):79-81
    何志鸿,刘忠堂,胡立成.1998.大豆重茬减产的主要原因及农艺对策.大豆通报.(3):4-5.
    何志鸿,刘忠堂,韩晓增,许艳丽,祖伟.2003.大豆重迎茬减产的原因及农艺对策研究V重迎茬大豆的水分问题.黑龙江农业科学.2:1-4.
    韩晓增,许艳丽.1999.大豆连作减产主要障碍因素的研究Ⅱ.连作大豆土壤有害生物的障碍效应.大豆科学.18(1):47-51
    韩丽梅,王树起,鞠会艳.2000.大豆根茬腐解产物的鉴定及化感作用的初步研究.生态学报.20(5):771-778.
    韩丽梅,沈其荣,鞠会艳,阎石,阎飞.2002a.大豆地上部水浸液的化感作用及化感物质的鉴定.生态学报.22(9):1425-1432.
    韩丽梅,沈其荣,王树起,王旭明,扬振明.2002b.大豆根茬木霉腐解产物的鉴定及其化感作用的研究.应用生态学报.13(10):1295-1299.
    韩丽梅,鞠会艳,杨振明.2005.两种基因型大豆根分泌物对大豆根腐病菌的化感作用.应用生态学报.16(1):137-141.
    胡安谊,焦念志.2009.氨氧化古菌-环境微生物生态学研究的一个前沿热点.自然科学进展.19(4):370-379.
    胡江春,王书锦.1996.大豆连作障碍研究Ⅰ大豆连作土壤紫青霉菌的毒素作用研究.应用生态 学报.7(4):396-400.
    郝永俊,吴松维,吴伟祥,陈英旭.2007.好氧氨氧化菌的种群生态学研究进展.生态学报.27(4):1573-1583.
    贺永华,沈东升,朱荫湄.2006.根系分泌物及其根际效应.科技通报.22(6):761-766.
    贺纪正,张丽梅.2009.氨氧化微生物生态学与氮循环研究进展.生态学报.29(1):406-415.
    贾仲君.2011.稳定性同位素核酸探针技术DNA-SIP原理与应用.微生物学报.51(12):1585-1594.
    贾新民,于泉林,郑玉龙,赵萍,高和顺.1995.大豆连作土壤酶与土壤微生物和基础肥力关系研究.现代化农业.10:31-32.
    连腾祥,王光华,于镇华,刘居东,金剑,刘晓冰.2013.植物光合碳在根际土壤中的微生物转化与SIP技术.土壤与作物.2(2):77-83.
    罗剑飞,林炜铁,任杰,崔华平.2008. T-RFLP技术及其在硝化细菌群落分析中的应用.微生物学通报.3:456-461.
    李刚,文景芝,吴凤芝,张齐凤,叶楠.2006.连作条件下设施黄瓜根际微生物种群结构及数量消长.东北农业大学学报.37(4):444-448.
    李春格.2006.大豆连作对土壤微生物群落功能和结构的影响.博士学位论文.北京:中国农业大学
    李长松,罗瑞梧,王金龙,徐冉.1995.山东省大豆根腐病研究与防治.大豆通报.95(3):7-8.
    李长松,赵玖华,杨崇良,尚佑芬,罗瑞梧,辛相启,邢邯,赵经荣.1997.大豆根腐病菌致病力分化的初步研究.植物病理学报.27(2):129-132.
    刘汉起,商绍刚,霍虹.1985.大豆孢囊线虫病发生危害.大豆科学.4(2):131-136.
    刘爱民,封志明,阎丽珍.2003.基于耕地资源约束的中国大豆生产能力研究.自然资源学报.8(4):430-436.
    刘增柱,周玉芝.1999.大豆连作、轮作土壤微生物生态分布与大豆孢囊线虫群体动态研究大豆科学.9:206-212.
    刘微,吕豪豪,陈英旭,吴伟祥.2008.稳定碳同位素技术在土壤-植物系统碳循环中的应用.应用生态学报.19(3):674-680.
    刘新晶,许艳丽,李春杰,孟庆杰.2007.大豆轮作系统对土壤细菌生理菌群的影响.大豆科学.26(5):723-727.
    刘晶静,吴伟祥,丁颖,石德智,陈英旭.2010.氨氧化古菌及其在氮循环中的重要作用.应用生态学报.(8):2154-2160.
    刘爱群,许艳丽,韩晓增,李兆林,王守宇.2001.黑龙江省大豆重迎茬现状及对策.辽宁农业科学.(2):63-66.
    刘素慧,刘世琦,张自坤,尉辉,齐建建,段吉锋.2010.大蒜连作对其根际土壤微生物和酶活性的影响.中国农业科学.43(5):1000-1006.
    刘剑锋,杜建珍,梁绍静.2000.重迎茬大豆减产成因及控制对策.中国农学通报.16(4):71-72.
    林启美,吴玉光,刘焕龙.1999.熏蒸法测定土壤微生物量碳的改进.生态学杂志.18(2):63-66.
    马汇泉,赵淑英.1991.大豆重迎茬近根土壤微生物变化动态初报.北京:全国首届根际环境研讨会.
    孟德龙,杨扬,伍延正,吴敏娜,秦红灵,朱亦君,魏文学.2012.多年蔬菜连作对土壤氨氧化微生物群落组成的影响.33(4):1331-1338.
    曲晓华.2008.大豆根系分泌物对土壤微生物群落结构的影响.博士学位论文.北京:中国农业大学.
    裘劫人,许颖,喻富根.2011.利用SYBR Green实时定量PCR法检测转基因植物外源基因的拷贝数.安徽农业科学.39(21):12655-12657.
    阮维斌.2000.大豆连作障碍机理及调控措施的研究.博士学位论文.北京:中国农业大学.
    阮维斌,王敬国,张福锁.2003.连作障碍因素对大豆养分吸收和固氮作用的影响.生态学报.23(1):22-29.
    阮维斌,刘默涵,黄斌,阎飞,王敬国,高玉葆.2003.两种羟基苯乙酸对大豆萌发的化感效应研究.应用生态学报.14(5):785-788.
    芮俊鹏.2012.水稻土有机残体厌氧降解及乙酸互养氧化过程与机理.博士学位论文.北京:中国农业大学.
    单海艳.2004.我省大豆重迎荐减产原因及解决途径.职大学报.2:11-12.
    谭秀梅,王华田,孔令刚,王延平.2008.杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响.山东大学学报.43(1):14-19.
    吴萼,刘晓艳,祝心如.1999.酚酸类化合物各基团对土壤中氮的硝化作用的影响.环境科学.18(5):39840.
    王颖.2012.禾本科与豆科作物间作、轮作对土壤氮磷转化和微生物群落组成的影响.博士学位论文.北京:中国农业大学.
    王惠,钱冲,郭峰,关超,苏长青,白洪志.2013.实时定量PCR检测技术研究进展.种子.(6):43-47.
    王金龙,徐冉,王彩洁,撒得山.2005.大豆连作条件下土壤环境的变化及其危害.山东农业科学.(2):54-57.
    王敬国.1993.根际微生物的植物基因型特征.植物营养生态生理学和遗传学.北京
    王宗玮,张鑫生,闫飞.2009.大豆连作障碍机理的研究简述.吉林农业科学.34(3):12-13.
    王树起,韩丽梅.2000.大豆根茬腐解液和营养液残液对大豆生长发育的自感效应.中国油料作物学报.22(3):43-47.
    王震宇,王英祥,陈祖仁.1991.重茬大豆生长发育障碍机制初探.大豆科学.10(1):31-36.
    王兆荣,田中艳.1999.重迎茬大豆对土壤有机—无机复合胶体及土壤结构的影响.大豆科学.18(1):10-17.
    许艳丽,陈伊里,司兆胜,李兆林,李春杰,温广月.2004.不同茬口条件下的作物根渗出物对大豆胞囊线虫(Heterodera glycines)卵孵化影响.植物病理学报.34(6):481-486.
    许艳丽,韩晓增.1995.重迎茬对大豆病虫害发生与危害的研究.大豆重迎茬研究.
    许艳丽,王光华.1997.连作大豆生物障碍研究.中国油料.19(3):46-49.
    徐艳霞,王光华,金剑,刘居东,张秋英,刘晓冰.2008.大豆根际未培养与培养细菌群落结构差异比较研究.大豆科学.26(6):907-913.
    谢明杰,陆敏,邹翠霞,刘长江,卢明春,金凤燮.2004.大豆异黄酮的抑菌作用.大豆科学.23(2):101-105.
    于广武,许艳丽,刘晓冰,王光华,鲁振明.1993.大豆连作障碍机制研究初报.大豆科学.12(3):238-243.
    于贵瑞,陆欣来,韩静淑.1988.大豆,向日葵等作物连作障碍与轮作效应机理的研究初报.生态学杂志.7(2):1-8.
    岳冰冰.2012.烤烟连作改变了根际土壤微生物的多样性.博士学位论文.东北林业大学..
    闫素丽,皇甫超河,李刚,左照江,马杰,杨殿林.2011.四种牧草植物替代控制对黄顶菊入侵土壤细菌多样性的影响.植物生态学报.35(1):45-55.
    余素林,吴晓磊,钱易.2006.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报.12(6):861-868.
    杨起,王林娟.2002.重茬大豆低产原因及对策.黑龙江农业科学.(5):24-26.
    杨庆凯,马占峰,李秀文.1994.黑龙江省大豆重迎茬问题及对策.大豆科学.13(2):156-162.
    阎飞.2003.大豆残茬中化感物质的分离、鉴定及其化感作用的研究.硕士学位论文.北京:中国农业大学.
    张德俭,赵九洲.1996.连作对大豆生长发育动态的影响.大豆科学.15(4):326-330.
    钟文辉,蔡祖聪,尹力初,张鹤.2008.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响.土壤学报.45(1):105-110.
    曾昭海,褚庆全,赵晓萌,胡跃高,卢成,康玉凡.2005.我国大豆产业发展趋势与对策.中国农业科技导报.6:43-48.
    周宝利,徐妍,尹玉玲,叶雪凌.2010.不同连作年限土壤对茄子土壤生物学活性的影响及其嫁接调节.生态学杂志.29(2):290-294.
    张俊英,王敬国,许永利.2007.不同大豆品种根系分泌物中有机酸和酚酸的比较研究.安徽农业科学.35(23):7127-7129.
    邹莉,袁晓颖,李玲,王欣宇.2005.连作对大豆根部土壤微生物的影响研究.微生物学报.25:27-30.
    邹永久,韩丽梅,付慧兰,杨振明,陈宗泽,刘金萍.1996.大豆连作土壤障碍因素研究-Ⅰ连作对土壤腐殖质组分性质的影响.大豆科学.15(3):235-242.
    郑桂萍,赵九州,王立发,赵萍.1995.连作大豆根际土及根系、冠部三要素含量变化动态的研究.大豆科学.14(4):310-315.
    郑良永,胡剑非,林昌华,唐群锋,郭巧云.2005.作物连作障碍的产生及防治.热带农业科学.25(2):58-62.
    Allison, S.M. and Prosser, J.I.1991. Survival of ammonia oxidising bacteria in air-dried soil. FEMS Microbiology Letters.79:65-68.
    Alvey, S., Yang, C.H., Buerkert, A., Crowley, D.E.2003. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils.37(2):73-82.
    Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., Lalande, R.1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:effect on radish es (Raphanus sativus L.). Plant and Soil.204(1):57-67.
    Armstrong, R.D., Helyar K.R.1992. Changes in soil phosphate fraction in the rhizpsohere of semi-arid pasture grasses. Soil Research.30:131-143.
    Astrom, B. and Gerhardson, B.1988. Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant and Soil.109(2):263-269.
    Avrahami, S., Conrad, R., Liesack, W.2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology.5 (8):691-705.
    Avrahami, S. and Bohannan, B.J.M.2007. Response of Nitrosospira sp. Strain AF-Like Ammonia Oxidizers to Changes in Temperature, Soil Moisture Content, and Fertilizer Concentration. Applied and Environmental Microbiology.73(4):1166-1173.
    Bakker A.W., and Schippers, B.1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry.19(4):451-457.
    Bais, H.P., Weir, T.L., Perry, L.G, Gilroy, S., Vivanco, J.M.2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology.57: 233-266.
    Benizri, E., Piutti, S., Verger, S., Pages, L., Vercambre, G, Poessel, J.L., Michelot, P.2005. Replant diseases:bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biology and Biochemistry,37(9):1738-1746.
    Baudoin, E., Benizri, E., Guckert, A.2003. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry.35(9):1183-1192.
    Bedini, S., Avio, L., Argese, E., Giovannetti, M.2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems & Environment. 120(2),463-466.
    Behera, N. and Sahani, U.2003. Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. Forest Ecology and Management.174(1):1-11.
    Biedrzycki, M.L. and Bais, H.P.2009. Root secretions:from genes and molecules to microbial associations. Journal of Experimental Botany.60(6):1533-1534.
    Borner, H.1959. The apple replant problem. I. The excretion of phlorizin from apple root residues. Contributions of the Boyce Thompson Institute.20:39-56.
    Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., De Graaf, W., Pel, R., Cappenberg, T.E.1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature.392(6678):801-805.
    Bruns, M.A., Stephen, J.R., Kowalchuk, GA., Prosser, J.I., Paul, E.A.1999.Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Applied and Environmental Microbiology.65:2994-3000.
    Butler, J.L., Williams, M.A., Bottomley, P.J., Myrold, D.D.2003. Microbial community dynamics associated with rhizosphere carbon flow. Applied and Environmental Microbiology.69(11): 6793-6800.
    Connon, S.A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S.J., Semprini, L.2005. Bacterial community composition determined by culture-independent and-dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environmental Microbiology.7(2):165-178.
    Curl E.A. and Truelove B.1986. The Rhizosphere. Springer-Verlag. Berlin. Curr. Opin. Microbiol.,7: 210-220.
    De Boer, W. and Kowalchuk, GA.2001. Nitrification in acid soils:micro-organisms and mechanisms. Soil Biology and Biochemistry.33(7):853-866.
    D'Arcy Lameta, A. and Jay, M.1987. Study of soybean and lentil root exudates. Ⅲ. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant and Soil.101:267-272.
    Dumont, M.G. and Murrell, J.C.2005. Stable isotope probing-linking microbial identity to function. Nature Reviews Microbiology.3:499-504.
    Dumont, M.G., Pommerenke, B., Casper, P., Conrad, R.2011. DNA-, rRNA- and mRNA-based stable isotope probingof aerobic methanotrophs in lake sediment. Environmental Microbiology.13(5): 1153-1167.
    Firmin, J.L., Wilson, K.E., Rossen, L., Johnston, A.W.B.1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature.324:90-92.
    Franche, C., Lindstrom, K., Elmerich, C.2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil.321(1-2):35-59.
    Fredrickson, J.K. and Elliott, L.F.1985. Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant and Soil.83(3):399-409.
    Gahoonia, T.S., Claassen, N., Jungk, A.1992. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant and Soil.140(2):241-248.
    Garcia-Garrido, J.M. and Ocampo, J.A.2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany.53(373):1377-1386.
    Ginige, M.P., Hugenholtz, P., Daims, H., Wagner, M., Keller, J., Blackall, L.L.2004. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Applied and Environmental Microbiology.70(1):588-596.
    Goodfellow, M., Williams, S. T., Mordarski, M.1988. Actinomycetes in Biotechnology. Academic Press, London
    Gruber, N. and Galloway, J.N.2008. An Earth-system perspective of the global nitrogen cycle. Nature. 451(7176):293-296.
    Graham, T.L., Kim, J.E., Graham, M.Y.1990. Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Molecular Plant- Microbe Interactions.3(3):157-166.
    Gunawardena, U., Rodriguez, M., Straney, D., Romeo, J.T., VanEtten, H.D., Hawes, M.C.2005. Tissue-Specific localization of pea root infection by Nectria haematococca. Mechanisms and Consequences. Plant Physiology.137(4):1363-1374.
    Gubry-Rangin, C., Nicol, G.W., Prosser, J.I.2010. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiology Ecology.74(3):566-574.
    Guo, Z.Y., Kong, C.H., Wang, J.G., Wang, Y.F.2011. Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biology and Biochemistry.43(11):2257-2264.
    Hallam, S.J., Mincer, T.J., Schleper, C., Preston, C.M., Roberts, K., Richardson, P.M., DeLong, E.F. 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology.4(4):0520-0536
    Hartwig, U.A., Maxwell, C.A., Joseph, C.M., Phillips, D.A.1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiology.92:116-122.
    Hastings, R.C., Ceccherini, M.T., Miclaus, N., Saunders, J.R., Bazzicalupo, M., McCarthy A.J.1997. Direct molecular biological analysis of ammonia oxidizing bacteria population in cultivated soil plots treated with swine manure. FEMS Microbiology Ecology.23:45-54.
    Hassan, S. and Mathesius, U.2012. The role of flavonoids in root-rhizosphere signalling:opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany.63(9): 3429-3444.
    Hatzenpichler, R.2012. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Applied and Environmental Microbiology.78(21):7501-7510.
    Henry, S., Texier, S., Hallet, S., Bru, D., Dambreville, C., Cheneby, D., Philippot, L.2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:insight into the role of root exudates. Environmental microbiology.10(11):3082-3092.
    Herrmann, M., Saunders, A.M., Schramm, A.2008. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Applied and Environmental Microbiology.74(10):3279-3283.
    Herfort, L., Schouten, S., Abbas, B., Veldhuis, M.J., Coolen, M.J., Wuchter, C., Sinninghe Damste, J.S. 2007. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiology Ecology.62(3):242-257.
    He, J.Z., Xu, Z.H., Hughes, J.2005. Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiology Ecology.247:91-100.
    He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu, M.G., Di, H.J.,2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology.9(9):2364-2374.
    He, J.Z., Zheng, Y., Chen, C.R., He, Y.Q., Zhang, L.M.2008. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments.8(5):349-358.
    Horz, H.P., Barbrook, A., Field, C.B. Bohannan, B.J.M.2004. Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences of the United States of America.101(42):15136-15141.
    Horz, H.P., Rotthauwe, J.H., Lukow, T. Liesack, W.2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods.39:197-204.
    Hooper, D.U. and Vitousek, P.M.1997. The effects of plant composition and diversity on ecosystem processes. Science.277:1302-1305.
    Hu, F., Li, H., Xie, L., Wu, S.,1998. Interactions of bacterivorous nematode and bacteria and their effects on mineralization-immobiolization of nitrogen and phosphorus. Acta Ecologica Sinica. 19(6):914-920.
    Jamieson W.D., Pehl M.J., Gregory, GA., Orwin, P.M.2009. Coordinated surface activities in Variovorax paradoxus EPS. BMC microbiology.9(1):124.
    Jia, Z. and Conrad, R.2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology.11(7):1658-1671.
    Joergensen, R.G, and Scheu, S.1999. Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biology and Biochemistry.31(6):859-866.
    Kapoor, R. and Mukerji, K.G 2006. Rhizosphere microbial community dynamics. Microbial Activity in the Rhizoshere. Springer Berlin Heidelberg.55-69.
    Kellogg, D.E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P.D., Chenchik, A.1994. TaqStart Antibody:" hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNApolymerase. BioTechniques.16(6):1134-1137.
    Kemmitt, S.J., Wright, D., Goulding, K.W.T., Jones, D.L.2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry.38:898-911.
    Klotz, M.G, Arp, D.J., Chain, P.S., El-Sheikh, G, Hauser, A.F., L.J., Hommes, N.G., Larimer, F.W., Malfatti, S.A., Norton, J.M., Poret-Peterson, A.T.2006. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707. Applied and Environmental Microbiology.72(9):6299-6315.
    Konneke, M., Bernhard, A.E., Jose, R., Walker, C.B., Waterbury, J.B., Stahl, D.A.2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature.437(7058):543-546.
    Kowalchuk, GA., Naoumenko, Z.S., Derikx, P.J., Felske, A., Stephen, J.R., Arkhipchenko, I.A.1999. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials. Applied and Environmental Microbiology. 65:396-403.
    Kowalchuk, GA., Bodelier, P.L.E., Heilig, GH., Stephen, J.R., Laanbroek, H.J.1998. Community analysis of ammonia-oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization. FEMS Microbiology Ecology.27:339-350.
    Kowalchuk, GA., Stienstra, A.W., Heilig, GH., Stephen, J.R. Woldendorp, J.W.2000. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environmental Microbiology.2:99-110.
    Kulmatiski, A., Beard, K.H., Stevens, J.R., Cobbold, S.M.2008. Plant-soil feedbacks:a meta-analytical review. Ecology Letters.11(9):980-992.
    Lambers, H., Mougel, C., Jaillard, B., Hinsinger, P.2009. Plant-microbe-soil interactions in the rhizosphere:an evolutionary perspective. Plant and Soil.321:83-115.
    Larkin, R.P.2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology and Biochemistry.35(11):1451-1466.
    Lee, H.I., Lee, J.H., Park, K.H., Sangurdekar, D., Chang, W.S.2012. Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Applied and Environmental Microbiology.78(8):2896-2903.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C.2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 442(7104):806-809.
    Liu, A.Q., Xu, Y.L., Han, X.Z.2001. Investigation and control of Soybean Monoculture in Heilongjiang Province. Liaoning Agric Sci 3:51-52.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J.1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology.63:4516-4522.
    Liu, X. and Herbert, S.J.2002. Fifteen years of research examining cultivation of continuous soybean in northeast China:A review. Field Crops Research.79(1):1-7.
    Lu, Y., Murase, J., Watanabe, A., Sugimoto, A., Kimura, M.2004. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiology Ecology.48(2): 179-186.
    Lu, Y. and Conrad, R.2005. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science.309(5737):1088-1090.
    Lu, Y, Abraham, W.R., Conrad, R.2007. Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environmental Microbiology. 9(2):474-481.
    Marschner P, Yang C. H, Lieberei, R., Crowley, D.E.2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry.33(11):1437-1445.
    Marcotte, E.M., Monzingo, A.F., Ernst, S.R., Brzezinski, R., Robertus, J.D.1996. X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nature structural biology.3(2):155-162.
    Martens-Habbena, W., Berube, P.M., Urakawa, H., Jose, R., Stahl, D.A.2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature.461(7266):976-979.
    Marsh, T.L., Saxman, P., Cole, J., Tiedje, J.2000. Terminal Restriction Fragment Length Polymorphism Analysis Program, a Web-Based Research Tool for Microbial Community Analysis. Applied and Environmental Microbiology.66(8):3616-3620.
    McDonald, I.R., Radajewski, S., Murrell, J.C.2005. Stable isotope probing of nucleicacids in methanotrophs and methlotrophs:a review. Organic geochemistry.36(5):779-787.
    Micallef, S.A., Shiaris, M.P., Col6n-Carmona, A.2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Journal of Experimental Botany. 60(6):1729-1742.
    Morris, S.A., Radajewski, S., Willison, T.W., Murrell, J.C.2000. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Applied Environmental Microbiology.68:1446-1453.
    Morris, P.F., Bone, E., Tyler, B.M.1998. Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiology.117(4):1171-1178.
    Naseby, D.C. and Lynch, J.M.1999. Effects of Pseudomonas fluorescens F113 on ecological functions in the pea rhizosphere aredependent on pH. Microbial Ecology.37:248-256
    Nayyar, A., Hamel, C., Lafond, G., Gossen, B.D., Hanson, K., Germida, J.2009. Soil microbial quality associated with yield reduction in continuous-pea. Applied Soil Ecology.43(1):115-121.
    Neufeld, J.D., Dumont, M.G, Vohra, J., Murrell, J.C.2007. Methodological considerations for the use of stable isotope probing in microbial ecology. Microbial Ecology.53(3):435-442.
    Nicol, GW., Leininger, S., Schleper, C., Prosser, J.I.2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology.10(11):2966-2978.
    O'Donnell, A.G, Seasman, M., Macrae, A., Waite, I. and Davies, J.T.2001. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil.232: 135-145.
    Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., Scow, K.M. 2004. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology.70(2):1008-1016.
    Oldenhuis, R., Vink, R.L., Janssen, D.B., Witholt, B.1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology.55(11):2819-2826.
    Olson, R.K. and Reiners, W.A.1983. Nitrification in subalpine balsam fir soils:tests for inhibitory factors. Soil Biology and Biochemistry.15(4):413-418.
    Ostle, N., Whiteley, A.S., Bailey, M.J., Sleep, D., Ineson, P., Manefield, M.2003. Active microbial RNA turnover in a grassland soil estimated using a 13CO2 spike. Soil Biology and Biochemistry.35(7): 877-885.
    Paterson, E., Gebbing, T. Abel, C., Sim, A., Telfer, G 2007. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist.173(3):600-610.
    Perez-Pantoja, D., Donoso, R., Agullo, L., Cordova, M., Seeger, M., Pieper, D.H., Gonzalez, B.2012. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environmental Microbiology.14(5):1091-1117.
    Pfaffl, M.W.2001. Anew mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research.29:2003-2007.
    Pratscher, J., Dumont, M.G, Conrad, R.2011. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences.108(10): 4170-4175.
    Prosser, J.I., Rangel-Castro, J.I., Killham, K.2006. Studying plant-microbe interactions using stable isotope technologies. Current Opinion in Biotechnology.17(1):98-102.
    Qu, X.H. and Wang, J.G 2008. Effect of amendments with different phenolic acids on soil microbial biomass, activit and community diversity. Applied Soil Ecology.39:172-179.
    Radajewski, S., Ineson, P., Parekh, N.R. Murrell, J.C.2000. Stable-isotope probing as a tool in microbial ecology. Nature.403:646-649.
    Radajewski, S., Webster, G, Reay, D.S., Morris, S.A., Ineson, P., Nedwell, D.B., Prosser, J.I., Murrell, J.C.2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology.148(8):2331-2342.
    Ranjard, L., Poly, E, Nazaret, S.2000. Monitoring complex bacterial communities using culture-independent molecular techniques:application to soil environment. Research in Microbiology.151(3):167-177.
    Rasche, E, Lueders, T., Schloter, M., Schaefer, S., Buegger, E, Gattinger, A.,, Sessitsch, A.2009. DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytologist.181(4):802-807.
    Rice, E.L. and Pancholy, S.K.1974. Inhibition of nitrification by climax ecosystems.Ⅲ. Inhibitors other than tannins. American Journal of Botany.1095-1103.
    Rice E.L.1984. Allelopathy (2nd edition). New York:Academic Press.1-50
    Rice E.L.1979. Allelopathyn-update. The Botanical Review.45(1):15-109.
    Satola, B., Wubbeler, J.H., Steinbiichel, A.2013. Metabolic characteristics of the species Variovorax paradoxus. Applied Microbiology and Biotechnology.97(2):541-560.
    Schippers, B., Bakker, W., Bakker, A.H.M.1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology.25: 339-358.
    Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B., He, J.Z.2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology.10(6):1601-1611.
    Sohn, J.H., Kwon, K.K., Kang, J.H., Jung, H.B., Kim, S.J.2004. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology. 54(5):1483-1487.
    Stacey, G., Sanjuan, J., Luka, S., Dockendorff, T., Carlson, R.W.1995. Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biology and Biochemistry.27(4):473-483.
    Strauch, E., Schwudke, D., Linscheid, M.2007. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiology.2(1):63-73.
    Suslow, T.V., and Schroth, M.N.1982. Rhizobacteria of Sugar Beets:Effects of Seed Application and Root Colonization on Yield. Phytopathology.72:199-106.
    Szabo, K. and Wittenmayer, L.2000. Plant specific root exudations as possible cause for specific replant diseases in Rosaceen. Journal of Applied Botany-Angewandte Botanik 74:191-197.
    Taylor, A.E., Zeglin, L.H., Dooley, S., Myrold, D.D., Bottomley, P.J.2010. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Applied and Environmental Microbiology.76(23):7691-7698.
    Tomasi, N., Weisskopf, L., Renella, G., Landi, L., Pinton, R., Varanini, Z., Cesco, S.2008. Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biology and Biochemistry. 40(7):1971-1974.
    Torsvik, V., Gosk(?)yr J., Daae F.L.1990. High diversity in DNA of soil bacteria, Applied and Environmental Microbiology.56:782-787.
    Tourna, M., Freitag, T.E., Nicol, G.W., Prosser, J. I.2008. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology. 10(5):1357-1364.
    Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., Schleper, C.2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology.7(12):1985-1995.
    Treonis, AM., Ostle, N.J., Stott, A.W., Primrose, R., Grayston, S.J., Ineson, P.2004. Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biology and Biochemistry.36(3):533-537.
    Tyler, B.M., Forster, H., Coffey, M.D.1995. Inheritance of avirulence factors and restriction fragment length polymorphism markers in outcrosses of the oomycete Phytophthora sojae. MPMI-Molecular Plant Microbe Interactions.8(4):515-523.
    Ulanowska, K., Tkaczyk, A., Konopa, G., Wegrzyn, G. 2006. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Archives of Microbiology.184(5):271-278.
    Vance, E.D., Brookes, P.C., Jenkinson, D.S.1987. An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry.19(6):703-707.
    Van OS G.J. and van Ginkel J.H.2011. Suppression of Pythium root rot in bulbous Iris in relation to biomass and activity of the soil microflora. Soil Biology and Biochemistry.33:1447-1454
    Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Smith, H.O.2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science.304(5667):66-74.
    Wardle, D.A., Bardgett, R.D., Usher, M.B., Hopkins, D.W.2005. How plant communities influence decomposer communities. Biological Diversity and Function in Soils.119-138.
    Weisskopf, L., Le Bayon, R.C., Kohler, F., Page, V., Jossi, M., Gobat, J.M., Aragno, M.2008. Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion:a one-year microcosm study on lupin and wheat. Soil Biology and Biochemistry.40(7):1772-1780.
    Whittaker, R.H. and Feeny, P.P.1971. Allelochemics:chemical interactions between species. Science. 171(3973):757-770.
    Woltz S.S.1978. Nonparasitic plant pathogens. Annual Review of Phytopathology.16(1):403-430.
    Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Jia, Z.2011. Autotrophic growth of nitrifying community in an agricultural soil. The ISME journal.5(7):1226-1236.
    Xu, J.Y., Zhang, H.D., Zhang, H., Tong, Y.H., XU, Y., Chen, X.J., Ji, Z.L.,2004. Toxin produced by Rhizoctonia solani and its relationship with pathogenicity of the fungus. Journal of Yandzhou University Agricultural and Life Sciences Edition.25:61-64.
    Yao, J. and Allen, C.2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology.188:3697-3708.
    Ye, S.F., Zhou, Y.H., Sun, Y., Zou, L.Y. and Yu, J.Q.2006 Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany.56:255-262.
    Yu, G.R., Lu, X.L., Han, S.J., Wang, D.S.,1988. Soil sickness due to continuous cropping and mechanism of rotational effects of sunflower, soybean and other crops. Chin. J. Ecol.7(2):1-8.
    Zhang, L., Chew, Y.H., Wong, W.C.,2012. Enhanced AoA estimation and localization through transmitter precoder design. International Journal of Wireless Information Networks.19(4): 315-325.
    Zeglin, L.H., Taylor, A.E., Myrold, D.D., Bottomley, P.J.2011. Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses. Environmental Microbiology Reports.3(6):717-726.
    Zhou, X. and Wu, F.2012. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiology Ecology 80(2):469-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700