用户名: 密码: 验证码:
砂卵石地层基坑预应力锚索复合土钉支护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于土钉支护技术而发展起来的预应力锚索复合土钉支护技术充分结合了土钉支护技术和预应力锚索支护技术的优点,已在基坑支护工程中得到广泛应用。但是目前该技术多应用于粉土、粘土等粘性土地层,而在砂卵石地层中的应用和研究则相对较少,理论明显滞后于工程实践。为此,论文针对这一问题进行了较为深入的研究,所开展的主要工作及研究成果如下:
     (1)在对典型工程实例进行分析的基础上,采用理论分析、现场试验和监测及数值模拟等多种方法对砂卵石地层中的预应力锚索复合土钉支护技术设计理论及方法进行了全面而深入的研究。认为在砂卵石地层中进行基坑预应力锚索复合土钉支护设计时应对砂卵石地层取非零的粘聚力(或结构力),这样不但可以大大减小支护工程量,而且亦能保证施工安全。
     (2)基于莫尔-库仑强度理论讨论了砂卵石地层的抗剪强度,认为对于砂卵石地层,其固有的结构力(咬合力)及摩阻角是描述其抗剪强度的重要参数,应该且必须在设计中予以考虑。同时通过现场直剪试验,对砂卵石地层强度参数进行了原位测试,认为砂卵石地层的粘聚力与其在天然状态下的密实度、结构性等密切相关,建议取为3~10kPa。
     (3)基于土钉支护设计中的土体准粘聚力理论,认为由于土钉支护而形成的复合土体,其粘聚力较原位土体将会有所增加,并推导了相应的准粘聚力计算公式。
     (4)采用FLAC3D数值方法对砂卵石地层中预应力锚索复合土钉支护机理进行了研究,认为砂卵石地层的粘聚力对基坑边坡位移有重要影响,随着砂卵石地层粘聚力的增加,基坑边坡土体位移迅速减小。预应力锚索的施加可以明显改善土钉受力,减小基坑边坡位移。
     (5)通过对砂卵石地层基坑工程中的土钉、锚索内力的现场监测结果表明:土钉及锚索受力都出现沿其长度先增大后减小的趋势,且随着基坑开挖深度的增加,其受力亦出现先增大而后减小的现象。同时对比分析了砂卵石地层粘聚力取零与非零两种情况下的设计与计算结果,表明当取粘聚力为非零值时,实际监测结果与计算结果更为接近,从而说明了在砂卵石地层中粘聚力取非零值的合理性。
     (6)以实际基坑工程为背景,采用数值试验的方法讨论了砂卵石地层粘聚力取值大小对基坑边坡土体位移、锚索及土钉受力和土体塑性区的影响。结果表明随着砂卵石地层粘聚力的增加,基坑边坡土体位移及支护结构受力明显减小,但其减小幅度随粘聚力的增加而逐渐变缓。
The prestressed anchor cable composite soil nailing supporting technology is developedfrom the soil nailing supporting technology fully combines the advantages of the soil nailingsupporting technology and the prestressed anchor cable supporting technology, which is widelyused in foundation pit supporting engineering. But now it is often used in cohesion strata such assilt and clay, and its application in sand and gravel strata is rather little, in which the theoryevidently lags behind the practice. Therefore, further study is fouced on this subject, and themain works undertoken and the research results are as follows.
     (1) On basis of analyzing the typical engineering examples, the overall and further researchon the design theory and method of the prestressed anchor cable composite soil nailingsupporting technology in sand and graval strata is done by means of theoretical analysis, fieldtest and monitoring and numerical simulation. It is concluded that the non-zero cohesion orstructure force should be given to the sand graval strata in foundation pit prestressed anchorcable composite soil nailing supporting design, which can not only greatly reduce the supportingquantities, but also ensure the security of the construction.
     (2) The shear strength of the sand and graval strata is discussed based on Mohr-Coulombstrength theory, and it is regarded that the inherent structure force (interlocking force) andfriction angle are the important parameters in describing its shear strength to the sand and gravalstrata, which should be considered in the design. The strength parameters of the sand and gravalstrata is tested in situ through the direct shear test. It is regarded that the cohesion of the sand andgraval strata is much related to the its density and structure characteristic, and it is suggested tobe3~10kPa.
     (3) Based on the quasi-cohesion theory in the soil nailing supporting design, it is regardedthat the cohesion of the composite soil formed by the soil nailing supporting will increase, andthe calculation formula of the quasi-cohesion is deduced.
     (4) The prestressed anchor cable composite soil nailing supporting mechanism is studied bya numerical code——FLAC3D. It is concluded that the cohesion of the sand and graval strata hasmuch effect on the displacement of the foundation pit slope. With increase in its cohesion, thedisplacement of the foundation pit slope rapidly decreases. The existence of the prestressedanchor cable can evidently improve the soil nailing’s force, reduce the displacement of thefoundation pit slope.
     (5) Through the field monitoring of the force of the nails and anchor cables of thefoundation pit in sand and graval strata, the results show that the force of the nails and anchorcables firstly increase and then decrease along with its length, and the same phenomenon also occurs with the excavation of the foundation pit. By comparing the design and calculation resultsof these two conditions with the cohesion of the sand and graval being zero and non-zero, itshows that the actual monitoring results is in more agreement with the calculation result whenthe cohesion is non-zero. It shows the rationality of the non-zero cohesion of the sand and graval.
     (6) Taking the actual foundation pit engineering as an example, the effect of cohesion of thesand and graval on the displacement of the foundation pit slope, the force of the anchor cablesand soil nailings and the soil plastic zone is discussed by numerical method. The results showthat the displacement of the foundation pit slope and the force of the supporting structureevidently decreases with the increase in cohesion of the sand and graval strata, while its decreaseextent gradually becomes flat.
引文
[1]刘建航,候学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [2]李钟.深基坑支护技术现状及发展趋势[J].岩土工程界,2001,4(1):42-45
    [3]史佩栋.我国深基坑工程技术现状[J].铁道建筑技术,1998,(5):18-22
    [4]李厚恩.预应力锚索复合土钉支护结构工作机理及稳定性研究[D].中国科学院地质与地球物理研究所博士学位论文,2007
    [5]余志成,施文华.深基坑支护设计与施工[M].北京:中国建筑工业出版社,1997
    [6]崔江余,梁仁旺.建筑基坑工程设计计算与施工[M].北京:中国建筑工业出版社,1999
    [7]龚晓南,高有潮.深基坑工程设计施手册[M].北京:中国建筑工业出版社,1998
    [8] Zhang, X. S., Wang, J. X., Wong, H., etc. Land subsidence caused by internal soil erosion owing topumping confined aquifer groundwater during the deep foundation construction in Shanghai [J]. NaturalHazards,2013,69(1):473-489
    [9] Yang Yu-you, Lv Jian-guo, Huang Xue-gang. Sensor monitoring of a newly designed foundation pitsupporting structure [J]. Journal of Central South University,2013,20(4):1064-1070
    [10] Xue Xinhua, Yang Xingguo, Liu Enlong. Application of the Modified Goodman Model in Soil Nailing [J].International Journal of Geomechanics,2013,13(1):41-48
    [11]王曙光.深基坑支护事故处理经验录[M].北京:机械工业出版社2005
    [12]陈忠汉,程丽萍.深基坑工程(第二版)[M].北京:机械工业出版社,2002
    [13]秦四清,王建党,王清,等.土钉支护机理及优化设计[M].北京:地质出版社,1999
    [14] BRUCE, Soil nailing, application and practice, Ground Engineering, January,1987
    [15] Byrne R J, Walkingshaw J L. FHWA. International Scanning Tour of Geotechnology,1992,9
    [16]林宗元.岩土工程治理手册[M].沈阳:辽宁科学技术出版社,1994
    [17]黄希来.土钉支护的工作机理和工程应用研究[D].同济大学硕士学位论文,2008
    [18]叶书麟,韩杰,叶观宝.地基处理与托换技术[M].北京:中国建筑工业出版社,1994
    [19]俞季民,邹勇.土钉支护结构模型试验研究[J].土工基础,1998,12(1):14-19
    [20]莫暖娇,何之民,陈利洲.土钉墙模型试验分析[J].上海地质,1999,3:47~49
    [21]陈树锦,包承纲.土钉墙技术的离心机实验研究[J].长江科学院院报,1997,14(6):41-44
    [22] Byme.R.J,Walkingshaw J, L.FHWA. International Scanning Tour for Geotechnology,September-Octomber1992, FHWA/PL93/020, June1993
    [23] Scientific Committee of the French National Project CLOUTERRE (President: F.Schlosser)Recommendations
    [24] Cartier,G,Giqan,J.P.Experiments and observations on soil nailing structures[J]. Proceedings of theEuropean Conference on Soil Mechanics and Foundation,Engineering,1983,(2):473-476
    [25]林希强.基坑复合土钉支护全过程内力及变形研究[D].北京:中国地质大学博士学位论文,2003.
    [26]黄永来.预应力锚索复合土钉在深基坑支护中的加固应用[J].科技传播,2010,(7):160-161
    [27]阮长锋,孙富学.软土基坑复合土钉支护有限元分析[J].中国水运,2010,10(4):152-153
    [28]杨林德,李象范,钟正雄.复合型土钉墙的非线性有限元分析[J].岩土工程学报,2001,23(2):149-152.
    [29]宋二祥,邱明.基坑复合土钉支护的有限元分析[J].岩土力学,2001,22(3):241-245
    [30]王贵和,贾苍琴,季荣生,等.深大基坑两级复合土钉支护现场测试研究[J].岩土力学,2008,29(10):2823-2828
    [31]徐然,刘小平.土钉墙技术在砂卵石地层深基坑支护中的应用[J].水电站设计,2009,25(1):70-72
    [32]王东清.砂卵石地层下复合锚杆桩对保护桥桩的作用分析[J].隧道建设,2013,33(5):362-367
    [33]陈希哲.粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-63
    [34]张玲玲,姚勇.四川西北地区砂卵石土的直剪试验研究[J].路基工程,2010,(3):162-164
    [35]周保良.砂卵石层的水平推剪试验[J].西部探矿工程,2003,(6):12-13
    [36]杨茜,张明聚,陈建国.复合土钉支护作用机理研究[J].地下空间与工程学报,2005,1(3):409-412
    [37]段立平.土钉支护结构钉土相互作用机理研究[D].湘潭:湘潭大学硕士学位论文,2010
    [38]秦四清,万林海,汤天鹏,等.深基坑工程优化设计[M].北京:地震出版社,1998
    [39]曾宪明,林润德.土钉支护软土边壁(坡)机理相似模型实验研究[J].岩石力学与工程学报,2000,19(4):534-538
    [40]张明聚,郭忠贤.土钉支护工作性能的现场测试研究[J].岩土工程学报,2001,23(3):319-323
    [41] ZHANG M J, SONG E X, CHEN Z Y. Ground movement analysis of soil nailing construction bythree-dimensional (3-D) finite element modeling (FEM)[J]. Computers and Geotechnics,1999,25:191-204
    [42] SHEN C K, BANG S, ROMSTAD K M, e t al. Field measurements of an earth support system[J]. Journalof the Geotechnical Engineering Division, ASCE,1981,107(GT12):1625-1642.
    [43]曾宪明,林皋,易平,等.土钉支护软土边坡的加固机理实验研究[J].岩石力学与工程学报,2002,21(3):429-433
    [44]涂兵雄.土钉支护的机理与稳定性研究[D].河北工程大学硕士学位论文,2009
    [45] Jewell, R.A.(1980), Some factors which influence the shear strength of reinforced sand,Symp. On Computer Apple. To Geotech. Problem in Highway.Engrg. CUED/D/SoiIs/TR85.
    [46] Jewell R.A.,Wroth C.P.,Direct shear tests on feinforced sand[J],Geotechnique,,1987.1(37):30-35
    [47]陈希哲.土力学地基基础(第4版)[M].北京:清华大学出版社,2004
    [48]刘鸿文.材料力学(Ⅰ)(第4版)[M].北京:高等教育出版社,2004
    [49]程良奎,李象范.岩土锚固土钉喷施混凝土[M].北京:中国建筑工业出版社,2008
    [50]王贵和,吕建国,贾苍琴,等.锚管复合土钉支护技术在砂卵石地层深大基坑中的应用[J].施工技术,2010,39(1):90-93
    [51]汤连生,宋明健,廖化荣,等.预应力锚索复合土钉支护内力及变形分析[J].岩石力学与工程学报,2008,27(2):410-417
    [52] HO C L,LUDWIG H P,RICHARD J,et al. Field performance of a soil nail system in loess[C]//Foundation Engineering:Current Principles and Practice. Reston,VA:American Society of CivilEngineers,1989:1281-1292.
    [53] THOMPSON S R, MILLER I R. Design,construction and performance of a soil nailed wall in Seattle,Washington[C]//Design and Performance of Earth Retaining Structures. Reston,VA:American Societyof Civil Engineers,1990:629-643.
    [54] BYRNE J R. Soil nailing, a simplified kinematic analysis. Grouting, soil improvement, andgeosynthetics[C]//Grouting,Soil Improvement and Geosynthetics. Reston,VA:American Society ofCivil Engineers,1992:751-764.
    [55] VUCETIC M,TUFENKJIAN M R. DOROUDIAN M. Dynamic centrifuge testing of soil-nailedexcavations[J]. Geotechnical Testing Journal,1993,16(2):172-187.
    [56] STOCKER M F,RIEDINGER G R. The bearing behavior of nailed retaining structures[C]//Design andPerformance of Earth Retaining Structures. Reston,VA:American Society of Civil Engineers,1990:612-628.
    [57]李厚恩,秦四清.预应力锚索复合土钉支护的现场测试研究[J].工程地质学报,2008,16(3):393-400
    [58]贾军辉,陈德军,郭晓光.鑫丰大厦基坑支护工程实录[J].工程勘察,2008,增刊(2):149-153
    [59]刘来新,李强,陈春.短土钉连续墙技术在深基坑支护中的应用[J].施工技术,2007,36(7):24-27
    [60]张峰,杨生贵,杜建东.土钉支护技术在深基坑支护中的应用[J].建筑科学,1999,15(2):29-31
    [61]徐然,刘小平.土钉墙技术砂卵石地层深基坑支护中的应用[J].水电站设计,2009,25(1):70-72
    [62]吴长江,黄昌乾,潘启辉,等.复合土钉墙在砂卵石地层深基坑工程中的应用[J].工程勘察,2013,增刊(1):133-141
    [63]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2000
    [64]何满朝,黄润秋,王金安,等.工程地质数值法[M].北京:科学出版社,2006
    [65]廖红建,王铁行,谢永利,等.岩土工程数值分析(第二版)[M].北京:机械工业出版社,2009
    [66] ITASCA Consulting Group Inc. FLAC——Fast lagrangian Analysis of Continua. Minneapolis, Minnesota,U.S.A.,2002
    [67] FLAC3D—user’s manual. Minneapolis, MN: ITASCA Consulting Group Inc.1997
    [68] H. Hakami. Rock characterization facility (RCF) shaft sinking—numerical computations using FLAC [J].International Journal of Rock Mechanics&Mining Sciences,2001,38:59-65
    [69] N. Benmebarek, S. Benmebarek, R. Kastner. Numerical studies of seepage failure of sand within acofferdam [J]. Computers and Geotechnics,2005,32:264-273
    [70]吴忠诚,汤连生,廖志强,等.深基坑复合土钉墙支护FLAC-3D模拟及大型现场原位测试研究[J].岩土工程学报,2006,28(增刊):1460-1465
    [71]伍俊,郑全平,吴祥云.复合土钉支护技术的有限元数值模拟及工程应用[J].岩土工程学报,2005,27(4):387-392
    [72]刘日成,张芹,王育奎,等.复合土钉墙支护效果数值模拟[J].地下空间与工程学报,2012,8(1):182-189
    [73]胡敏云,彭孔曙,潘晓东.复合土钉墙工作性状的有限元模拟与分析[J].岩土力学,2009,29(8):2132-2136,2162
    [74] Simth M.Three-dimensional analysis of reinforced and nailed soil [J].Proceedings of the InternationalSymposium on Numerical Models in Geomechanics [C]. Rotterdam: Balkema,1992,829-838
    [75] Smith I M,Su N.Three-dimensional FE analysis of a nailed soil wall curved in plan [J]. InternationalJournal for Numerical and Analytical methods in Geomechanics,1997,21:583-597
    [76]中华人民共和国行业标准.《建筑基坑支护技术规程》(JGJ120-2012)
    [77]中华人民共和国行业标准.《建筑基坑工程技术规范》(YB9258-97)
    [78]张钦喜,孙家乐.插筋补强护坡技术的若干问题[J].工业建筑,1997,27(11):1-5
    [79]中华人民共和国国家标准.《复合土钉墙基坑支护技术规范》(GB50739-2011)
    [80]张玲玲,姚勇.四川西北地区砂卵石土的直剪试验研究[J].路基工程,2010,(3):162-164
    [81]李振,邢义川.干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J].岩土力学,2006,27(12):2255-2260
    [82]董云,柴贺军.土石混合料室内大型直剪试验的改进研究[J].岩土工程学报,2005,27(11):1329-1333
    [83]刘军,徐海波,卓慧英.土的直剪试验影响因素分析[J].工程勘察,2010,增刊(1):148-151
    [84]田树玉.粗粒土抗剪强度特性的研究[J].大坝观测与土工测试,1997,21(2):35-38
    [85]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报,1987,(5):59-65
    [86]郭庆国.试用一个试样三轴试验测粗粒土抗剪强度特性的适用性[J].西北水电,1990,(10):58-63
    [87]黄文熙.土的工程性质[M].北京:水利电力出版社,1983
    [88]李广信.高等土力学[M].北京:清华大学出版社,2004
    [89]陈仲颐.土力学[M].北京:清华大学出版社,1994
    [90]郭继武.建筑地基基础[M].北京:高等教育出版社,1990
    [91]王翠英,刘安安,王旭.复合土钉支护深基坑稳定性及变形的有限元分析[J].湖北工业大学学报,2012,27(5):85-88
    [92]杨茜,张明聚,陈建国.基坑复合土钉支护作用机理研究[J].地下空间与工程学报,2005,1(3):409-412
    [93]杨茜,张明聚,孙铁成.软弱土层复合土钉支护试验研究[J].岩土力学,2004,25(9):1401-1408
    [94]李象范.上海地区基坑工程中的复合土钉支护技术[J].建筑施工,2001,(6):1-11
    [95]段建立,谭跃虎,樊有维,等.复合土钉支护的现场测试研究[J].岩石力学与工程学报,2004,23(12):2128-2132
    [96]王召磊,杨志银,张俊.基于GeoStudio的预应力锚索复合土钉墙稳定性分析[J].工业建筑,2011,41(增刊):437-440,448
    [97]赵鹏,董阳,任婷婷,等.锚索复合土钉墙在大厚度填土基坑中的应用[J].陕西建筑,2013,(总第218期):38-40
    [98]刘晓纲.深基坑复合土钉支护结构试验研究及应用[D].重庆大学硕士学位论文,2005
    [99]李晶晶,程祖锋,耿立立,等.基于FLAC3D的复合土钉支护数值模拟分析[J].河北工程大学学报,2011,28(3):5-8
    [100]姚刚,刘晓纲,韩森.超深基坑复合土钉支护结构原位试验研究[J].土木工程学报,2006,39(10):91-96,101
    [101]贺永俊.用理正深基坑支护软件设计土钉墙基坑支护[J].山西建筑,2006,32(24):82-83
    [102]屈建军,田培先.理正软件在深基坑设计中的应用探讨[J].山西建筑,2008,34(13):131-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700