用户名: 密码: 验证码:
华北山区土地利用/覆被变化及其水资源效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地利用/覆被变化对水循环过程的影响及其衍生的资源与环境问题已经成为当前研究的热点问题。永定河流域官厅山峡段是华北山区典型的生态环境脆弱区,也是北京市“京西绿色生态走廊与城市西南生态屏障”。同时,随着工业化和城市化的快速发展以及人民生活水平的不断提高,该区域水资源短缺的问题日益突出。虽然,流域内的水分平衡分量受上游流域的深刻影响,但区域内部土地利用/覆被格局及其变化也对流域的产汇流过程产生了重要影响。研究该区域的自然条件、人类活动、区位条件等多因素对土地利用/覆被变化的影响及其水资源效应,对于深化土地利用/覆被变化研究,具有理论意义;其研究结果对于认识上游山区生态涵养,掌握生态用水对于下游平原生产、生活用水的影响,建立合理的土地利用/覆被结构与格局,构建生态补偿机制都具有实践价值。
     本文选择永定河流域(北京市门头沟区段)作为华北山区的典型区,以自然地理学、系统论、景观生态学、“天然-人工”二元水循环等理论为指导,应用遥感、地理信息系统等技术手段构建了研究区综合地理信息数据库,研究区域土地利用履被格局,植被覆盖变化特征及其降水响应;应用SWAT模型研究流域土地利用/覆被变化的水资源效应,并根据研究结果探讨出符合北京山区自然资源特点和经济社会条件的土地利用与生态保护道路。
     研究得到主要结论如下:
     (1)海拔、坡度、地质与土壤等自然地理因素是门头沟区土地利用/覆被空间格局的基础,社会经济发展是土地利用/覆被变化的驱动因素,但不同地形区内社会经济发展导致的土地利用/覆被变化存在差异。门头沟的地貌主体是山区、地形决定了以林地为主的土地利用/覆被基本格局。受海拔高度和地形影响,有林地主要分布在深山区,浅山区以灌木林地为主。山前平原区地形有利于开发活动,土地多宜性高,以农业景观和城市景观为主。深山区土地利用结构以未利用地向灌木林地转换为主,平原区和浅山区土地利用结构以灌木林地、未利用地向有林地和建设用地转换为主。由于交通发达,受道路切割影响,建设用地蚕食农地,山前平原区农业类型景观呈现破碎化、边缘化趋势,耕地优势度剧烈下降。
     (2)从卫星影像解译的四个时点(1984a、1992a、1999a、2010a)的门头沟区的土地利用/覆被变化表明,全区耕地、园地一直为减少趋势;建设用地(包括城镇用地、农村居民点、工矿用地)保持持续增加,主要发生在门头沟中心城区和各镇的中心区;灌木林地和有林地总体表现为增加趋势。从1982a到2011a,研究区全域GIMMS-NDVI的年平均值在0.347~0.439范围内,植被覆盖/NDVI虽然在个别年份受降水量影响有波动,但总体上是大幅增加的。这说明,在门头沟山区持续的植树造林和生态恢复过程中,绿化率和植被覆盖不断提升。
     (3)近十年来,研究区内植被覆盖变化率、植被覆盖年际变异的水平分异特征表明植被覆盖变化受降水变化、地形因素以及人类活动强弱变化等多种因素共同作用。近十年研究区内降水量呈现下降趋势,但是受人类活动强度变弱以及生态保护和修复治理等因素影响,植被覆盖/EVI呈现上升趋势。虽然研究区内降水量减少,但地形因素对降水的再分配,降低了地势较低、汇水条件较好位置的水分胁迫,加上人类活动的进一步减弱和生态修复治理工程的实施,使得中部区域的植被覆盖/EVI大面积提升。而海拔较高、坡度较大的西部区域植被覆盖相对稳定。山前平原区和军庄镇、潭柘寺镇在城镇化过程中由于新增建设用地占用其他用地类型导致研究区东部区域部分区域出现植被显著下降的趋势,植被覆盖变化波动较大。
     (4)研究区内降水对不同植被类型的时滞影响普遍在1个月以内,影响的时效主要集中在1-2个月之间,山高坡陡,沟壑密度大,土壤中所能涵蓄的水量非常有限是该特征的主要原因。由于所处坡度缓、土层厚,有林地和园地相对于灌木林地和草地在水源涵养方面的作用更强,研究区内草地、灌木林地对降水的时效性较园地和有林地稍短。研究区内处于恢复阶段的生境由低级向高级、由不稳定向稳定的进化过程中,植被覆盖与降水的最大相关系数在波动上升,灌木林地对降水的依赖程度和利用效率向增强型方向发展,即在人为十扰程度较小的状况下,植被对降水的响应程度会增强。
     (5)基于遥感数据的植被覆盖/NDVI,利用SWAT模型模拟的产流结果表明,随着植被覆被面积增加以及植被覆盖/NDVI等级提高,门头沟区总体上地表径流减少,整个区域产水区的变化经历了由以多水区为主向以缺水、少水区为主的变化过程,沿深山-浅山-山前平原的地形梯度由山区向平原区的径流输水正在减少。深山区径流发生显著下降的直接原因是降水减少以及深山区植被覆被面积增加以及植被覆盖/NDVI等级提高,地形因素以及人类干扰活动则通过影响土地利用/覆被间接对径流变化产生影响。浅山区内对径流的消耗趋势减弱,并非降水变化所致,更重要的是下垫面条件变化以及社会经济发展压力激增下人工侧支水循环干扰程度变化所致;该植被覆盖/NDVI等级提高,也是径流减少的主要原因。受有林地、灌木林地等生态用地面积的增加和植被覆盖/NDVI等级提高的影响,整个研究区内自然水循环条件下产水区的变化经历了由以多水区为主向以缺水、少水区为主的变化过程。
     (6)区域水文和水资源的变化,不但要考虑人类干扰下的土地利用/覆被变化,而且必须根据地形划分不同地貌单元来研究,充分考虑地形造成的水资源再分配;对于生态保护或修复,也必须从系统论和景观生态学的角度,统筹考虑水资源在生态用水、生产用水和生活用水之间的合理分配以及上下游用水之间的合理分配,建立一个符合气候和地形特点,与区域经济社会需求相适应的土地利用/覆被格局。
Impacts of land use/cover change (LUCC) on hydrological cycle, and its derived resources and environmental problems, have been a hot topic in current studies. The Guanting gorge part of Yongding River watershed, located in the mountainous area of Northern China is confronted with a fragile environment. And it is going to be rehabilitated to form the "green eco-corridor for the west part of Beijing" and "ecological barrier for the whole municipality". Meanwhile, rapid industrialization and urbanization, and the needs for higher living standards of people aggravate the situation of water shortage. In the watershed, LUCC become an important driving-forces to change the hydrology within, besides the impact of upstream. There is theoritical meaning for further studies on LUCC to discuss the impacting factors, such as natural conditions, human activities, location and so forth on LUCC, as well as related hydrology and water resource effects. It's also can provide practical methods for ecological conservation in upstream regions, control of the impact of ecological water on water consumption in downstream areas, as well as the establishment of reasonable structure and pattern for land use/cover and scientific ecological compensation system.
     In this research, Yongding River watershed (in Beijing Mentougou District) was selected as a typical area in the mountainous areas of northern China. And comprehensive geographic information database was built with the help of remote sensing (RS) and geographic information system (GIS) technologies, under the guidance of natural geography, systems theory, landscape ecology and "natural-artificial" dualistic circulation etc. With the synthesized data, analyses of regional LUCC, vegetation cover change and response of precipitation were carried out. Furthermore, Impacts of LUCC on hydrology and water resources were discussed on the support of SWAT model to find out proper land use and ecological conservation methods according to the characteristics of natural resources in the mountainous areas of Beijing and local socioeconomic conditions.
     The main conclusions are drawn as follows:
     (1) Altitude, slope, geology and soil make up the foundation of the spatial pattern of land use and land cover in Mentougou District. As a location-sensitive driving force to LUCC, socio-economy factors diversify and complicate the changes in different geographical areas. Hilly areas dominate Mentougou District, which determine that woodland is base of land use/cover pattern. Within which, Forest and shrub distributes in the inner and shallow parts respectively. In piedmont plain areas, multi-purpose development activities exist for the trivial topographical limitation, where agricultural and urban landscapes make up the most part. The main transformation from unused land to shrub land is the main direction in inner mountainous area. The main transformation of land use structure is shrub land and unused land to forest and construction land in shallow mountainous area and piedmont plain area. Because of improvement of transportation infrastructure and construction land sprawl agricultural landscape is becoming fragmental and marginal, which sharply abate the dominance of cultivated land.
     (2) Land use/cover images of Mentougou District of1984,1992,1999and2010were derived from satellite imaginaries. The results were concluded based on the analysis of these data. Cultivated land area has been decreased. Construction land (including urban land, rural residential land, industrial and mining land) area has been increased, which occurred in downtown and fringe belt of Mentougou District. The area of shrub and forest are totally increased. Average values of GIMMS-NDVI of the whole region are ranged from0.347to0.439. In general, the NDVI values increase with the fluctuations of rainfall in recent years These data indicate that greening rate and vegetation coverage are increasing during the afforestation programs and ecological restoration.
     (3) The Horizontal differentiation characteristics of velocity of land cover change and vegetation interannual variation in Mentougou District over the last decade, indicates that land cover change is determined by rainfall, topology and human activities etc. In general, with less of human disturbance and enforcement of ecological conservation and remediation, MODIS-EVI is becoming better, in spite of the descending of rainfall in recent decades.Although rainfall is decreasing in study area, water stress in low-lying and good catchment condition positions is weaken due to the redistribution of precipitation by terrain factors and the further weakening of human activity and the large area promotion of MODIS-EVI by ecological remediation project. Land cover is relatively stable in west zone where elevation is higher and slope gradient is bigger. MODIS-EVI is decreasing in some places of piedmont plain area and Junzhuang Town and Tanzhesi Town on account of construction land occupying other land types. Fluctuations of land cover are also much bigger in these places.
     (4) Time lag effect of rainfall to vegetation is within1month in Mentougou District. Affect aging concentrates between1to2months because of limitation of soil water content with high mountains and steep slopes. Because forest land and orchard land with gentle slope and thickness soil layer are better in conserving water than shrub land and grass land, the affect aging of rainfall to forest land and orchard is much longer than that of shrub land and grass land. While the recovering habitats levels are evolving from low1to high from unstable to stable in our study area, maximum correlation coefficient between rainfall and land cover is increasing. Degree of dependence and utilization efficiency of shrub to rainfall is strengthened. The degree of response of vegetation to rainfall will be strengthened in the condition of less human disturbance.
     (5) SWAT model was applied to simulate hydrologic water cycle in mountain region on the basis of vegetation coverage (NDVI) derived from remote sensing data, satellite imaginaries, With the increasing of vegetation cover area and the improvement of vegetation coverage grade, direct surface runoff is decreasing in Mentougou District, and this region goes through the change from the water riching dominant zone to the water shortage dominant zone. Along the topographic gradient from remote mountainous area, shallow mountainous area, to piedmont plains area, the conveyance of runoff water from mountainous area to plain area is reducing. Decreasing of rainfall, increasing of vegetation coverage area, improvement of vegetation coverage (NDVI) are direct reasons of the significant decrease of runoff in remote mountainous area, topographical factor and human activity interventions are indirect influence factors by influencing the land use/cover. In shallow mountainous area, the weakness of runoff yield's consumption are not induced by the changes of precipitation but by the changes of underlying surface conditions and intervention degree of artificial side-branch water cycle under the social and economic surge. The improvement of vegetation coverage degree (NDVI) is the main cause of the runoff yield's decrease.
     (6)To study the changes of hydrology and water resources, we should not only consider the human disturbance on land use/cover change, but also take the topology into account and analysis its effects on water resources' redistribution. Therefore, the division of geographic unit according to topology is necessary. As to ecological protection and ecological remediation, a whole consideration of how to allocation water resources among ecological water utilization, production water and domestic water demands, and between upper reaches and lower reaches is essential from the theory of system theory, land landscape ecology. Only in this way, a pattern of land use/cover which is suitable to local climate and topology conditions and meeting the demand of local economical and social development could possibly be constructed.
引文
[I]Abbaspour K C, Johnson C A, Van Genuchten M T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal,2004,3(4):1340-52
    [2]Arnold J G, Srinivasan R, Muttiah R S, et al.. Large area|hydrologic modeling and assessment part Ⅰ:Model development. JAWRA Journal of the American Water Resources Association,1998,34(1): 73-89
    [3]Basta D J, Bower B T. Analyzing natural systems. Analysis for regional residuals: Environmental quality management.1982
    [4]Bian J H, Li A, Song M, et al.. Reconstruction of NDV1 time-series datasets of MODIS based on Savitzky-Golay filter. Journal of Remote Sensing,2010,14(4):22-7
    [5]Bradley B A, Jacob R W, Hermance J F, et al.. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment,2007,106(2):137-45
    [6]Buffoni L, Maugeri M, Nanni T. Precipitation in Italy from 1833 to 1996. Theoretical and Applied Climatology,1999,63(1-2):33-40
    [7]Cooley T, Anderson G, Felde G, et al.. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Geoscience and Remote Sensing Symposium,2002 IGARSS'02 2002 IEEE International:IEEE 2002.1414-8
    [8]Costanza R, d'Arge R, De Groot R, et al.. The value of the world's ecosystem services and natural capital. Ecological economics,1998,25(1):3-15
    [9]Duguay C R, Ledrew E F. Estimating surface reflectance and albedo from Landsat-5 Thematic Mapper over rugged terrain. Photogrammetric Engineering and Remote Sensing,1992,58, 551-8.
    [10]Fahey B, Jackson R. Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. Agricultural and Forest Meteorology,1997,84(1):69-82
    [11]Fu B J, Hu C X, Chen L D, et al.. Evaluating change in agricultural landscape pattern between 1980 and 2000 in the Loess hilly region of Ansai County, China. Agriculture, ecosystems & environment,2006,114(2):387-96
    [12]Jim C Y, Chen W Y. Consumption preferences and environmental externalities:a hedonic analysis of the housing market in Guangzhou. Geoforum,2007,38(2):414-31
    [13]Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. Geoscience and Remote Sensing, IEEE Transactions on,2002,40(8):1824-32
    [14]Kannan N, White S, Worrall F, et al.. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology, 2007,332(3):456-66
    [15]Langbein W B, Iseri K T. General introduction and hydrologic definitions:US Government Printing Office,1960
    [16]Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. Geoscience and Remote Sensing, IEEE Transactions on,1995, 33(2):457-65
    [17]Ma M G, Veroustraete F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Advances in Space Research,2006,37(4):835-40
    [18]Magagula C. Changes in carabid beetle diversity within a fragmented agricultural landscape. African Journal of Ecology,2003,41(1):23-30
    [19]Makowski D, Wallach D, Tremblay M. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie,2002,22(2):191-203
    [20]Merriam C F. A comprehensive study of the rainfall on the Susquehanna Valley. Transactions, American Geophysical Union,1937,18(2):471-6
    [21]Monteith J L. Evaporation and environment, the state and movement of water in living organisms. In:19th symp Soc Exp Biol. New York:Academic Press,1965
    [22]Riebsame W, Parton W, Galvin K, et al.. Integrated modeling of land use and cover change. Bioscience,1994,44(5):350-6
    [23]Robinson M, Dupeyrat A. Effects of commercial timber harvesting on streamflow regimes in the Plynlimon catchments, mid-Wales. Hydrological Processes,2005,19(6):1213-26
    [24]Rouse J W, Haas R H, Schell J A, et al.. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation.1978
    [25]Sikka A, Samra J, Sharda V, et al.. Low flow and high flow responses to converting natural grassland into bluegum (Eucalyptus globulus) in Nilgiris watersheds of South India. Journal of Hydrology,2003,270(1-2):12-26
    [26]Stow D A, Hope A, McGuire D, et al.. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment,2004,89(3):281-308
    [27]Sun C, Ren L. Assessment of surface water resources and evapotranspiration in the Haihe river basin of China using SWAT model.Hydrological Processes,2013,27(8):1200-22
    [28]Thornthwaite C W. An approach toward a rational classification of climate. Geographical review,1948,38(1):55-94
    [29]Tucker C J, Newcomb W W, Dregne H E. AVHRR data sets for determination of desert spatial extent. International Journal of Remote Sensing,1994,15(17):3547-65
    [30]Tucker C J, Pinzon J E, Brown M E. Global inventory modeling and mapping studies. Global Land Cover Facility, University of Maryland, College Park, Maryland,2004
    [31]Vermote E F, Saleous N. Stratospheric aerosol perturbing effect on the remote sensing of vegetation:Operational method for the correction of AVHRR composite NDVI. Satellite Remote Sensing:International Society for Optics and Photonics.1995:19-29
    [32]Williams R, Nicks A. A modelling approach to evaluate best management practices. Water Science and Technology,1993,28
    [33]Wilson C O, Weng Q. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Science of the Total Environment,2011,409(20):4387-405
    [34]陈昌笃,林文棋.北京的珍贵自然遗产——植物多样性.生态学报,2006,26(4):969-79
    [35]陈灵芝.暖温带森林生态系统结构与功能的研究.北京:科学出版社,1997
    [36]陈彦光,刘继生.基于引力模型的城市空间互相关和功率谱分析——引力模型的理论证明,函数推广及应用实例.2002
    [37]杜习乐,吕昌河,王海荣.土地利用/覆被变化(LUCC)的环境效应研究进展.土壤(Soils),2011,43(3):350-60
    [38]冯健,周一星.1990年代北京市人口空间分布的最新变化.城市规划,2003,27(5):55-63
    [39]符素华,王红叶,王向亮,等.北京地区径流曲线数模型中的径流曲线数.地理研究,2013,32(5):797-807
    [40]傅抱璞.山地气候.北京:科学出版社,1983
    [41]傅伯杰,马克明.黄土丘陵区土地利用结构对土壤养分分布的影响.科学通报,1998,43(22):2444-8
    [42]傅伯杰,邱扬,陈利顶.景观生态学的原理及应用,2000
    [43]傅伯杰,肖笃宁.景观生态学的对象和任务.北京:中国林业出版社,1991
    [44]郭军庭,张志强,王盛萍,等.气候和土地利用变化对潮河流域产流产沙的影响.农业工程学报,2012,28(14):236-43
    [45]郝芳华,程红光,杨胜天.非点源污染模型——理论、方法与应用.北京:中国环境科学出版社,2006
    [46]黄锡荃.水文.北京:高等教育出版社,1996
    [47]姜广辉.社会经济转型加速期农村居民点用地形态演化及其调控:[博士学位论文].北京:中国农业大学,2007
    [48]姜秋香,付强,王子龙,等.三江平原水土资源空间匹配格局.自然资源学报,2011,26(2):270-7
    [49]金鸿章,郭健,韦琦,等.基于滑动t检验法的非典型性肺炎疫情的脆性分析.哈尔滨工程大学学报,2004,24(6):640-5
    [50]雷泳南,张晓萍,张建军,等.窟野河流域河川基流量变化趋势及其驱动因素.生态学报,2013,33(5):1559-68
    [51]李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势.土壤,2002,34(4):191-205
    [52]李昌哲,郭卫东.森林植被的水文效应.生态学杂志,1986,5(5):17-21
    [53]李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展.自然资源学报,2007,22(2):211-24
    [54]李楠.黄骅市水土资源空间优化耦合研究:[硕士学位论文].河北:河北师范大学,2012
    [55]李儒,张霞,刘波,等.遥感时间序列数据滤波重建算法发展综述.遥感学报,2009(2): 335-41
    [56]李双双,延军平,万佳.近10年陕甘宁黄土高原区植被覆盖时空变化特征.地理学报,2012,67(7)
    [57]李晓光,苗鸿,郑华,等.生态补偿标准确定的主要方法及其应用.生态学报,2009,29(8):4431-40
    [58]李子君,李秀彬.近45年来降水变化和人类活动对潮河流域年径流量的影响.地理科学,2008,28(6):809-13
    [59]林超,李昌文.北京山区土地类型研究的初步总结.地理学报,1980,35(3):187-99
    [60]林超,李昌文.阴阳坡在山地地理研究中的意义.地理学报,1985,40(1):20-8
    [61]林之光.地形降水气候学.北京:科学出版社,1995
    [62]刘建国.当代生态学博论.北京:中国科学技术出版社,1992
    [63]刘彦随,甘红,张富刚.中国东北地区农业水土资源匹配格局.地理学报,2006,61(8):847-54
    [64]马宝霞,李景侠.东灵山植物群落(乔木)物种多样性与微地形关系的研究.西北林学院学报,2006,21(6):47-9
    [65]马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观.生态学报,1999,19(1):1-7
    [66]穆兴民,张秀勤,高鹏,等.双累积曲线方法理论及在水文气象领域应用中应注意的问题.水文,2010,30(4)
    [67]潘宜,侣小伟,金苗,等.城市化进程中水土资源系统耦合配置研究.水土保持通报,2010,30(5):216-20
    [68]彭代亮,黄敬峰,王秀珍.基于MODIS-EVI区域植被季节变化与气象因子的关系.应用生态学报,2007,18(5):983-9
    [69]钱坤,叶水根,朱琴.基于SWAT模型的房山区不同情景方案下的蒸腾蒸发模拟.农业工程学报,2011,27(1):99-105
    [70]秦大庸,陆垂裕,刘家宏,等.流域“自然-社会”二元水循环理论框架.科学通报,2014,59(4-5):419-27
    [71]任继周,贺达汉.荒漠—绿洲草地农业系统的耦合与模型.草业学报,1995,4(2):11-9
    [72]荣浩,刘艳萍.草原生态建设与草地灌溉耦合效应研究.水土保持研究,2005,12(1):156-8
    [73]桑卫国,陈灵芝,王喜武.东灵山地区落叶阔叶林长期动态的模拟.植物生态学报,2000,24(2):180-5
    [74]申立莹.黄骅市水土资源空间格局及其平衡调控研究:[硕士学位论文].河北:河北师范大学,2013
    [75]申元村.北京山区的自然地理环境与山区建设问题的探讨.地理学与国土研究,1985,1(4):23-7
    [76]石培礼,李文华.森林植被变化对水文过程和径流的影响效应.自然资源学报,2001,16(5)
    [77]石月婵,杨贵军,冯海宽,等.北京山区森林叶面积指数季相变化遥感监测.农业工程学报,2012,28(15):133-9
    [78]宋晓宇,王纪华,刘良云,等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH.遥感技术与应用,2005,20(4):393-8
    [79]孙鹏,张强,陈晓宏,等.鄱阳湖流域水沙时空演变特征及其机理.地理学报,2010,65(7):828-40
    [80]孙新章,成升魁,张新民.近十年东部发达区农业地位与功能演变分析.中国农业资源与区划,2004,25(4):30-5
    [81]汤立群,陈国祥.水利水保措施对黄土地区产流模式的影响研究.人民黄河,1995,17(1):19-22
    [82]汤国安,赵牡丹.地理信息系统.北京:科学出版社,2002
    [83]王浩,王建华,秦大庸,等.基于二元水循环模式的水资源评价理论方法.水利学报,2006,37(12)
    [84]王佳丽,张人禾,王迎春.北京降水特征及北京市观象台降水资料代表性.应用气象学报,2012,23(3):265-73
    [85]王宁练,贺建桥,蒋熹,等.祁连山中段北坡最大降水高度带观测与研究.冰川冻土,2009(3):395-403
    [86]王让会,于谦龙,李凤英,等.基于生态水文学的新疆绿洲生态用水若干问题.水土保持通报,2005,25(5):100-4
    [87]王思远,刘纪远.中国土地利用时空特征分析.地理学报,2001,56(6):631-9
    [88]王思远,王光谦,陈志祥.黄河流域土地利用与土壤侵蚀的耦合关系.自然灾害学报,2005,14(1):32-7
    [89]王随继,闫云霞,颜明,等.皇甫川流域降水和人类活动对径流量变化的贡献率分析:累积量斜率变化率比较方法的提出及应用.地理学报,2012,67(3):388-97
    [90]王天平,解建仓,张建龙,等.基于动态生态环境需水量的水土资源优化配置.水土保持学报,2011,25(6):176-80
    [91]王万茂.土地利用规划学.北京:中国大地出版社,2008
    [92]王秀荣,王维国,刘还珠,等.北京降水特征与西太副高关系的若干统计.高原气象,2008,27(4):822-9
    [93]王学.基于SWAT模型的白马河流域土地利用/覆被变化的水文效应研究:[硕士学位论文].山东:山东师范大学,2012
    [94]王长耀,林文鹏.基于MODIS EVI的冬小麦产量遥感预测研究.农业工程学报,2006,21(10):90-4
    [95]魏丹,刘智勇,李小冰SWAT模型及SUFI-2算法在秃尾河上游流域径流模拟中的应用.干旱地区农业研究,2012,30(6):200-6
    [96]文魁.京津冀蓝皮书:京津冀发展报告(2013)——承载力测度与对策.北京:社会科学文献出版社,2013
    [97]邬建国.景观生态学——概念与理论.生态学杂志,2000,19(1):42-52
    [98]吴次芳,宋戈.上地利用学.北京:科学出版社,2009
    [99]吴宇哲,鲍海君.区域基尼系数及其在区域水土资源匹配分析中的应用.水土保持学报,2003,17(5):123-25
    [100]信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响.中国科学:D辑,2007,37(11):1504-14
    [101]徐宗学.水文模型.北京:科学出版社,2009
    [102]杨萍,王乃昂,王翠云,等.1960—2007年青海湖地区气温变化趋势和突变分析.青海大学学报:自然科学版,2011,29(2):49-53
    [103]杨淑华,粟永忠,王和平,等.大同地区近50年来气温突变的诊断分析.山西气象,2008(1):18-9
    [104]姚华荣,吴绍洪,曹明明,等.区域水土资源的空间优化配置.资源科学,2004,26(1):99-106
    [105]姚华荣,郑度,吴绍洪.首都圈防沙治沙典型区水土资源优化配置.地理研究,2002,21(5).
    [106]姚治君,管彦平,高迎春.潮白河径流分布规律及人类活动对径流的影响分析.地理科学进展,2003,22(6):599-606
    [107]俞海,任勇.流域生态补偿机制的关键问题分析.资源科学,2007,29(2):28-33
    [108]余新晓,张晓明,王雄宾.北京山区天然灌丛植被群落特征与演替规律.北京林业大学学报,2008,30(2):107-11
    [109]余钟波.流域分布式水文学原理及应用.北京:科学出版社,2008
    [110]虞锡君.构建太湖流域水生态补偿机制探讨.农业经济问题,2007(9):56-9
    [111]张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展.地理科学进展,2005,24(6):116-23
    [112]张广仁,谭俭,陈志金,等.门头沟区水利志.北京:北京市门头沟区水利志编辑委员会,1994
    [113]张楠.永定河下苇甸至三家店段输水损失原因分析.见:北京水利学会等,编.第13届北京科技交流学术月“北京的母亲河”永定河论坛论文集.北京:2010
    [114]张晓明,余新晓,武思宏,等.黄土丘陵沟壑区典型流域十地利用/土地覆被变化水文动态响应.生态学报,2007,2
    [115]张学霞,葛全胜,郑景云.北京地区气候变化和植被的关系——基于遥感数据和物候资料的分析.植物生态学报,2004,28(4):499-506
    [116]郑重,张凤荣.系统耦合效应与水土资源优化配置的诠释.石河子大学学报:自然科学版,2008,26(4):415-8
    [117]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社,2004
    [118]钟耀武,刘良云,王纪华,等.SCS+C地形辐射校正模型的应用分析研究.国土资源遥感,2006,18(4):14-8
    [119]周宏飞,张捷斌.新疆的水资源可利用量及其承载能力分析.干旱区地理,2005,28(6):756-63
    [120]朱长青,史文中.空间分析建模与原理.北京:科学出版社,2006
    [121]朱会义,何书金,张明.环渤海地区土地利用变化的驱动力分析.地理研究,2001,20(6):669-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700