用户名: 密码: 验证码:
岩石弹塑性损伤MHC耦合模型及数值算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体工程大多数不是赋存于单一的地质环境中,而是处于复杂的多场环境下,如:应力场(Mechanical)、渗流场(Hydrological)、温度场(Thermal)以及水化学场(Chemical),它们之间的相互作用构成了国际岩石力学学会研究的热点问题,即“岩石多场耦合问题”。随着我国大规模的岩体工程建设,岩体工程在载荷和水-岩作用下的应力-渗流-化学(MHC)耦合问题日趋重要。本文以数值计算手段为主,试验手段为辅,以岩石弹塑性损伤MHC耦合问题为主要研究内容,以程序开发为线索层层递进最终实现问题的研究,揭示多场耦合之间的相互作用、破坏机理为研究目标,以大连地铁隧道工程、吉林抚松隧道工程、贵阳地铁隧道工程为背景,从而体现所做研究工作的理论价值和工程意义。
     本文在国家自然科学基金资助项目(No.51079010:渗流-应力耦合海床基岩开挖损伤机理和模型研究)和大连海事大学全国优秀博士学位论文培育基金资助项目(No.2013YB03:海水作用下隧道围岩MHC损伤耦合机理试验及模型研究)下围绕“岩石弹塑性损伤MHC耦合问题”开展研究,具体将其细化为5个子问题进行研究,岩石超声损伤、冻胀力及渗透性试验,岩石弹塑性软化、损伤模型建立及数值算法,岩石弹塑性损伤MH耦合模型及程序实施,岩石弹塑性损伤MHC耦合模型及程序实施,同时为了准确的进行计算,解决复杂模型中参数无法确定的瓶颈,进行参数反演研究。具体开展以下研究工作:
     (1)岩石压缩过程伴随着岩石微裂纹闭合、萌生、扩展和贯通等,宏观表现为岩石变形、破坏过程。在此过程中声波波速随着损伤、破坏表现出一定的变化规律,运用这种变化规律预测岩体工程结构稳定性有着重要的意义。从声波波速的角度出发,测试无受力和受力状态下干燥、饱水裂隙片岩的纵波波速,研究饱水天然裂隙片岩的波速特性及压缩全过程中波速随应变的变化规律,波速变化与岩石损伤、破裂之间的内在关系。同时进行受压饱水裂隙片岩断裂与损伤分析,基于张开型裂纹推导Drucker-Prager准则的尖端塑性区半径,以此反应压缩过程中产生的水压力对尖端塑性区的影响。关于岩石饱水冻胀力试验装置、环向渗流-应力耦合岩石渗透性试验装置还鲜见报道,为了研究岩石冻胀损伤及环向渗流-应力耦合下渗透性的变化规律问题,自主研制相应试验装置。采用饱水岩石冻胀力试验装置进行不同冻融温度、不同岩石含水率、不同冻融循环次数条件下岩石冻胀力测试试验。采用环向渗流-应力耦合岩石渗透性试验装置进行不同渗透压、不同轴压条件下岩石渗透性试验。
     (2)搭建岩石弹塑性损伤MHC耦合程序框架,采用模块化的思想,分别针对各部分程序进行开发,然后按照一定的规则相互调用,以这种方式构成一个有机整体,为开展岩石多场耦合问题提供数值计算手段。基于von Mises本构模型、Drucker-Prager本构模型的完全隐式返回映射算法(Fully implicit return mapping algorithm)以及相对应的一致切线模量(Consistent tangent modulus),采用面向对象的编程方法,利用C++语言编制相应求解程序,作为主控力学程序基本部分。返回映射算法可避免预测应力漂移屈服面的现象,对于准静态变形条件下的本构方程可以获得准确的解,在迭代中使用Newton-Raphson法可获得近似平方的收敛速度,具有较高的精确性和稳定性。结果表明算法的优越性、程序的正确性和工程中的实用性,具有一定的理论价值和实际意义。将岩石弹塑性损伤MHC耦合程序嵌入到差异进化算法(Differential evolution algorithm,DE)中,开发智能反分析程序,对相关程序的计算效率、正确性等进行验证,并在实际工程中应用。
     (3)岩石的软化、损伤特性对渗流场、化学场有重要影响,在展开岩石弹塑性损伤MHC耦合问题研究时,针对岩石软化、损伤特性进行研究,建立相应本构模型并开发求解程序。关于岩土工程材料应变软化问题及有限元对其数值计算时切线刚度矩阵负定造成求解困难的问题进行研究。首先,建立基于Drucker-Prager强度准则的岩石弹塑性应变软化本构模型。其次,考虑弧长法在判断切线刚度矩阵正定性导致效率低的缺点,在弹塑性增量有限元方程的迭代计算中尝试采用Newton-Raphson法和Arc-Length法(NR-AL法)联合迭代求解的思路,即在结构未达到极限荷载前采用Newton-Raphson迭代法,而当结构接近极限荷载时转换为Arc-Length法控制迭代,从而使结构越过峰值点进入软化区直至破坏,NR-AL法汲取了2者迭代求解中具有的优势。最后,利用C++语言对所建应变软化模型的本构求解和弹塑性增量有限元方程迭代求解过程给予程序实现,应用所编程序进行数值计算,分析Drucker-Prager理想弹塑性模型、应变软化模型、应变硬化模型计算的应力-应变曲线的区别,同时将应变软化模型计算结果与试验数据进行对比。研究结果表明所建应变软化本构模型可以较好地模拟岩石材料的峰后软化特性,能够揭示峰后应变软化特性和破坏机制,NR-AL法能够求解由于应变软化造成的负刚度问题,也克服了单独使用弧长法时判断切线刚度矩阵正定性效率低的缺点。
     (4)在实际隧道施工过程中,隧道开挖引起地下岩体应力重分布使得围岩的微裂纹扩展损伤,并伴随有塑性流动变形。为研究损伤引起的刚度退化和塑性导致的流动两种破坏机制的耦合作用,从弹塑性力学和损伤理论的角度出发,同时引入修正有效应力原理来考虑孔隙水压力的作用,建立基于Drucker-Prager屈服准则的弹塑性损伤本构模型。针对该本构模型推导了孔隙水压力作用下弹塑性损伤本构模型的数值积分算法-隐式返回映射算法。大多数弹塑性损伤模型中涉及参数多且不易确定的问题,采用反分析方法获得损伤参数,解决损伤模型参数不易确定的难题。采用面向对象的编程方法使用C++语言编制了弹塑性损伤本构求解程序,并对所建弹塑性损伤模型和所编程序进行试验和数值两方面的验证;最后将其在吉林抚松隧道工程中进行应用,模拟了塑性区和损伤区的发展变化。研究结果表明所建立弹塑性伤损本构模型能够较好地描述岩石的力学性能、塑性和损伤变化趋势,所编程序能够进行实际工程问题的模拟,对现场施工给予一定的指导。同时基于Lemaitre等向硬化弹塑性损伤耦合本构模型,采用C++语言在Visual6.0环境下编制有限元本构求解程序,在塑性损伤修正步中求解返回映射方程时,选取一种简单的形式,只需迭代求解一个标量非线性方程,计算效率较高。通过缺口圆棒数值算例初步验证了程序的正确性。同时丰富了岩石弹塑性损伤MHC耦合程序中主控力学程序的本构模型,为研究岩石等材料损伤问题提供方法和途径。
     (5)在地下水渗流场、应力场、损伤场的耦合作用下,更易造成隧道围岩坍塌或涌水等灾害。首先,将围岩材料视作各向同性连续介质,采用基于前文Drucker-Prager准则建立岩石弹塑性损伤本构模型进行数值求解。其次,根据岩石处于弹塑性状态时渗透系数动态演化公式,建立岩石弹塑性损伤MH耦合模型,并给出三场耦合情况下的数值求解迭代方法。同时针对耦合模型中涉及参数较多且不易测定的问题,基于前文差异进化算法原理建立的智能反分析方法,对耦合模型中的损伤参数进行反演。最后,利用C++语言编制相应的岩石弹塑性损伤MH耦合程序,利用所编程序进行以下计算:①分别采用弹性模型和弹塑性损伤模型进行隧道围岩位移场、应力场的计算。②不考虑力学作用的情况下进行孔隙水压力、渗流量的计算。③采用所建耦合模型计算得到隧道围岩应力场、渗流场以及损伤场的相互影响规律。研究结果表明所建立的耦合模型通过应力、渗流和损伤的相互作用更能够真实地反映出岩石材料的宏观破坏现象,所编计算程序能够模拟地下水渗流场、应力场、损伤场之间的耦合特性,为受地下水影响严重的工程建设提供了方法。采用上述所建模型及程序对大连地铁海事大学试验线路过河段隧道施工过程中的围岩稳定性进行计算。
     (6)关于岩石MHC耦合的研究相对较少,这其中大多数是围绕试验展开的,涉及岩石MHC耦合模型及相关数值程序方面的研究相对较少,如何建立岩石应力-渗流-化学耦合作用的定量关系和数学模型,仍是一个亟待解决的问题和难题。考虑应力场、渗流场、化学场三者的耦合作用,根据力学损伤变量和水化学损伤变量推导岩石弹塑性MHC耦合损伤变量。①基于已有试验研究得出的水化学损伤与超声波速之间的经验公式给出水化学损伤变量的动态演化规律。以耦合损伤变量代替力学损伤变量,采用所编制的弹塑性损伤MH耦合程序进行数值计算,此耦合属于单向耦合方式,只能够反映出水化学场对应力场、渗流场的作用。②基于水化学动力学的计算,采用孔隙度的形式给出水化学损伤变量,将岩石弹塑性损伤MH耦合程序与水化学动力学软件phreeqc结合,开发岩石弹塑性损伤MHC耦合程序,此耦合方式属于松弛耦合方式,通过耦合损伤变量将化学场与应力场、渗流场联系起来,能够反映三场之间的相互作用及影响,采用该程序对受水化学溶液作用影响的问题进行模拟计算。最后对贵阳地铁1号线下穿南明河段隧道进行数值模拟。
Most rock engineerings are not occur in a single geological environment, but in a more complex environment, such as:mechanical field (Mechanical, M), hydrological field (Hydrological, H), thermal field (Thermal, T) and chemical field (Chemical, C). The interaction between them constitutes the hot issues of international society for rock mechanics, namely "multi-field coupling problems of rock". The mechanical-hydrolo-gical-chemical (MHC) coupling problem of rock engineering under the action of load and water-rock has become important increasingly with the large-scale construction of rock engineering in China. In this paper, the numerical calculation method as the priority, the test means as the auxiliary, the elastoplastic damage and MHC coupling problem as the main research content, the program development as clue to research of implementation issues layer of progressive, the interaction between multi-field coupling, failure mechanism as the research target, Dalian subway tunnel engineering, Jilin FuSong tunnel engineering, Guiyang subway tunnel engineering as the background in order to reflect the significance and the value of research work.
     Based on the national natural science fund project (No.51079010:Research of Damage Mechanism and Model of Seabed Rock Excavation with the Mechanical-Hydrological Coupling) and the excellent doctor dissertation fund project of Dalian Maritime University (No.2013YB03:MHC and Damage Coupling Mechanism Test and the Model Research of Tunnel Surrounding Rock under the Action of Seawater), to carry out the research around "the rock elastoplastic damage and MHC coupling problem." Specific to divide it into5subproblems, rock ultrasonic damage, frost heaving force and permeability test, rock elastoplastic softening, damage model establishment and numerical algorithm, rock elastoplastic damage and MH coupling model and program implementation, rock elastoplastic damage and MHC coupling model and program implementation. At the same time, the parameter inversion problem is studied in order to accurately calculate and solve the bottleneck of parameters uncertain in complex model. Mainly in the following research work:
     (1) Compression process of rock with micro crack closure, initiation, extension and penetration, the macro performance deformation and failure process of rock. Acoustic wave velocity as the change law of damage, destruction in the process, using the change law to predict the stability of rock engineering structural has important significance. Testing acoustic wave velocity without stress state and stress state under the dry and saturated fractured schist and wave velocity vary with compressional strain response from the perspective of acoustic wave velocity. Full water wave characteristics of rock and the relationship between the change of wave speed and rock damage, fracture are analyzed. At the same time, fracture and damage of the full water schist are analyed, the tip of the radius of plastic zone of Drucker-Prager criterion is deduced. About fill water rock frost heaving force test device, the report of the ring seepage-stress coupling of rock permeability testing device is also rare. In order to study the frost heaving damage and the change rule of permeability of rock under the ring seepage-stress coupling, the corresponding test apparatus are developed. Different freezing and thawing temperature, moisture content of rock, frost heaving force under the conditions of different freeze-thaw cycles test are conducted using the saturated rock frost heaving force test device. Permeability tests are conducted under the conditions of different osmotic pressure and axial compression using the ring seepage-stress coupling device.
     (2) Set up elastoplastic damage and MHC coupling application framework of rock, each part of the program is developed separately adopting the idea of modularization, and then call each other according to certain rules, constitute an organic whole in this way which provide the numerical calculation method for multi-field coupling problems of rock. The corresponding solving program is compiled using C++language and using object-oriented programming method, based on fully implicit return mapping algorithm (Fully implicit return mapping algorithm) of von Mises constitutive model and Drucker Prager constitutive model as well as the corresponding to the Consistent tangent modulus (Consistent tangent modulus). It is the dominant mechanical basic parts program. Return mapping algorithm can avoid the drift phenomenon of the trial stress, and achieve the accurate solution of the constitutive equation on the condition of the quasi-static deformation, a quadratic convergence rate when using the Newton-Raphson iteration scheme, higher accuracy and stability. The results show that the superiority of the algorithm, and the correctness and the practicality of the program. The coupling procedure of the rock elastoplastic damage and MHC is embedded in differential evolution algorithm (Differential evolution algorithm, DE), then an intelligent back analysis program is developed. The computational efficiency and correctness of the relevant procedure is verification. It is applied in the practical engineering.
     (3) Softening and damage characteristics of rock have important influence on seepage field and chemical field. While researching the coupling problem of rock elastoplastic damage and MHC, rock softening and damage characteristics are studied firstly. Establish corresponding constitutive model and develop the solution program for it. Strain softening problem in geotechnical engineering and the difficult solution problem of the finite element numerical calculation due to the negative tangent stiffness of strain softening model are studied in this article. First of all, the elastoplastic strain softening constitutive model of rock is established based on the Drucker-Prager strength criteria. Then, consider the shortcomings of low efficiency of the arc-length method in judging stiffness matrix, Newton-Raphson scheme and arc-length method are combined to use in the iterative calculation of elastoplastic incremental finite element equations. Namely Newton-Raphson scheme is used before the structure reaches the limit load, and when the structure is close to the limit load turn to the arc-length method, so that the structure over the peak point ino the softening region until destruction. NR-AL method has the advantages of both in the iterative solution. Finally, a program of the built strain softening model and elastoplastic incremental finite element to solve the constitutive equation for the iterative process is compiled using C++language. The program is applied in numerical calculation, and the stress-strain curves of the idealied elastoplastic model, strain softening and strain hardening model based on the Drucker-Prager strength criteria are comparative analyzed. The research results show that the strain softening constitutive model can simulate the characteristics after the post-peak softening of rock material well, and it can reveal the features of the post-peak strain softening and failure mechanism. NR-AL method can solve the negative stiffness problem caused by strain softening and also overcome the shortcomings of low efficiency in judging stiffness matrix using the arc-length only.
     (4) In practical tunnel construction, the stress redistribution of underground rock is caused by tunnel excavation, which is usually made of microcrack of surrounding rock extension damage and accompanied the plastic flow deformation. In order to study the coupling effect of two kinds of failure mechanism which are the stiffness degradation caused by the damage and the flow caused by the plastic, from the perspective of elastoplastic mechanics and damage theory, the correction formula of effective stress is introduced to consider the role of the pore water pressure.The elastoplastic damage constitutive model is established based on the Drucker-Prager yield criterion.The most elastoplastic damage model involve in the problems of much parameters and not easy to determine. The damage parameters are given by back analysis method to solve the problem of damage model parameters are difficult to determine; The elastoplastic damage constitutive solver is compiled by adopting the method of object-oriented programming using C++language, and the experiment and numerical verification have carried on for two aspects of the established elastoplastic damage model and the program; Finally its application in Jilin FuSong tunnel project, the development and change of the plastic zone and the damage zone are simulated. The results show that the established elastoplastic damage constitutive model can describe the mechanical properties, plasticity and damage change trend of the rock well, and the practical engineering problems can be simulate by the program to give certain guidance to the site construction. The research of numerical computing problem involving coupled elastoplastic damage of the complex material not only need to select the appropriate constitutive model to forecast damage, but also need to be a robust and effective constitutive integration algorithm. The basic steps of seting up the elastoplastic damage constitutive model are expounded in the framework of thermodynamics and continuum mechanics. The finite element solving program of the constitutive is compiled using C++language in Visual6.0environment, which is based on Lemaitre's isotropic hardening coupled elastoplastic damage constitutive model, the corresponding constitutive integration algorithm-fully implicit return mapping algorithm and the consistent tangent modulus. The constitutive equation is needed to solve a nonlinear scalar equation, and the form of the constitutive equation improving computational efficiency is simple relatively. The validity of the application program is demonstrated through a numerical example of a cylindrical notched bar. Enrich the constitutive model of dominant mechanical program in the elastoplastic damage and MHC coupling program of rock, provide ways and means for the study of damage and other problems of rock material.
     (5) It is more likely to cause the collapse of tunnel surrounding rock and water disasters under the action of the coupling effect of the groundwater seepage field, the stress field and the damage field. First of all, surrounding rock is regarded as the isotropic continuum material, and the elastoplastic damage constitutive model of rock is established based on the criterion of Drucker Prager. The fully implicit return mapping algorithm is adopted to achieve the numerical solution of elastoplastic damage constitutive equations. Secondly, according to the dynamic evolution formula of permeability coefficient in elastoplastic state based on the above research, the elasoplastic damage and MHC model of rock is established, and the coupling solving iterative method of many fields is presented. Back analysis program is compiled on the basis of the principle of differential evolution algorithm in order to solve the problem that elastoplastic damage model involves many parameters and not easy to determine, and the damage parameters are inversion; Finally, compile the corresponding coupling program of the elastoplastic damage and MHC and parameters inversion program using C++language respectively, the following calculations are conducted by using the program:①The calculation results of the displacement field and the stress field by the elastic model and the elastoplastic model are compared.②The pore water pressure and the seepage flow are calculated without considering the effect of mechanics.③The interaction rules of stress field, seepage field and damage field of tunnel surrounding rock are calculated using the coupling model. Results show that the macro failure of rock material can be more realistically reflect through the interaction of the stress, the seepage and the damage of the built coupling model. The calculation program which provides a method for the engineering construction affected by groundwater severely can simulate the coupling characteristics of groundwater seepage field, stress field and damage field. The stability of surrounding rock of the Dalian Maritime University subway test line over the river in the process of tunnel construction is calculated by the numerical program.
     (6) Research on MHC coupling proplem of rock is relatively small, it mostly revolves around test, and involving MHC coupling model of rock and relevant numerical program are relatively small. How to build a quantitative relationship and mathematical model considering the coupling effect of MHC of rock is still a urgently settled problem. Considering the coupling effect of stress field, seepage field and chemical field, MHC coupling damage variable is deduced according to the mechanical damage variable and the water chemical damage variable.①Given the dynamic evolution of the damage variable water chemistry empirical formula based on water chemistry damage between ultrasonic velocity from the results of experimental studies. The coupling damage variable is instead by the mechanical damage variable, and the numerical calculation is conducted by elastoplastic damage and MH coupling program. This coupling mode belongs to the unidirectional coupling mode, it can reflect the chemical field corresponds to the force field, seepage field only.②The water chemical damage variable is given in the form of porosity based on the calculation of chemical kinetics, and the elastoplastic damage and MHC coupling program of rock is developed combination the elastoplastic damage and MH coupling program and the water chemical dynamics software phreeqc. The coupling mode belongs to the relaxation coupling mode. The simulated calculation of the chemical corrosion problems is conducted. The results show that the deformation and the stress characteristics under the multi-field coupling condition can be analysis with this method to provide reference and basis for engineering. Finally, the tunnel of Guiyang Metro Line1under the Nanming river is simulated.
引文
[1]Wong, R H C, Leung W L, Wang S W. Shear strength studies on rock-link models containing arrayed open joints. Rock Mechanics in National Interest, Elsworth, Tinucci and Iieasley(eds),2001, Swet &Zeitlinger Lisse:843-849.
    [2]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析.岩石力学与工程学报,2000,19(5):573-576.
    [3]朱珍德,孙钧.裂隙岩体非稳定渗流场与损伤场耦合分析本构模型.水文地质工程地质,1999,26(2):35-42.
    [4]郑少河,朱维申,王书法.裂隙岩体渗流场与损伤场耦合模型分析.第五届全国青年岩石力学与工程学术会议论文集,广州:华南理工大学出版社.
    [5]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究:(博士学位论文).沈阳:东北大学,2001.
    [6]周创兵,陈益峰,姜清辉等.复杂岩体多场广义耦合分析导论.北京:中国水利水电出版社,2008.
    [7]周辉,冯夏庭.岩石应力-水力-化学耦合过程研究进展.岩石力学与工程学报,2006,25(4):855-864.
    [8]李鹏.水-岩作用的岩体剪切特性试验与M-H-C耦合数值模拟:(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2010.
    [9]沈珠江.抗风化设计-未来岩土工程设计的一个重要内容·岩土工程学报,2004,26(6):866-869.
    [10]冯夏庭,潘鹏志,丁梧秀等.结晶岩开挖损伤区的温度-水流-应力-化学耦合研究.岩石力学与工程学报,2008,27(4):656-663.
    [11]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法.大自然探索,1999,18(2):35-40.
    [12]刘泉声,刘学伟.多场耦合作用下岩体裂隙扩展演化关键问题研究.岩土力学,2014,35(2):305-320.
    [13]于子望,张延军,张庆等.[OUGHREACT搭接FLAC3D算法.吉林大学学报(地球科学版),2013,43(1):199-206.
    [14]刘杰,王媛,刘宁.岩土工程渗流参数反问题.岩土力学,2002.23(2):152-161.
    [15]仵彦卿.岩土水力学.北京:科学出版社,2009.
    [16]陈惠发,萨里普.弹性与塑性力学.北京:中国建筑工业出版社,2004.
    [17]Ortiz M, Popov E P. Accuracy and stability of integration algorithms for elasto-plastic constitutive relations. International Journal Numerical Methods in Engineering,1985,21:1561-1576.
    [18]Simo J C, Taylor R L. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering,1985,48:101-119.
    [19]Simo J C, Taylor R L. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering,1986,22:649-670.
    [20]Crisfield M A. Non-linear finite element analysis of solids and structures. Volume 1:Essentials. John Wiley & Sons, New York,1991.
    [21]Simo J C, Hughes T J R. Computational inelasticity. Springer-Verlag, New York,1998.
    [22]Neto E A D S, Peri'c D, Owen D R J. Computational methods for plasticity theory and applications. Printed in Singapore by Markono,2008.
    [23]Palazzo V, Rosati L, Valoroso N. Solution procedures for J3 plasticity and viscoplasticity. Computer Methods in Applied Mechanics and Engineering,2001,191(8):903-939.
    [24]Pivonka P, Willam K. The effect of the third invariant in computational plasticity. Engineering Computations,2003,20(5/6):741-753.
    [25]Borja R I, Sama K M, Sanz P F. On the numerical integration of three-invariant elastoplastic constitutive models. Computer Methods in Applied Mechanics and Engineering,2003,192(9):1227-1258.
    [26]Luccioni L X, Pestana J M, Rodriguez-Marek A. An implicit integration algorithm for the finite element implementation of a nonlinear anisotropic material model including hysteretic nonlinearity. Computer methods in applied mechanics and engineering,2000,190(13):1827-1844.
    [27]Tamagnini C, Castellanza R, Nova R. A generalized backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics,2002, 26(10):963-1004.
    [28]Ahadi A, Krenk S. Implicit integration of plasticity models for granular materials. Computer Methods in Applied Mechanics and Engineering,2003,192(31):3471-3488.
    [29]Valoroso N, Rosati L. Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. Part I:Theoretical formulation. International Journal of Solids and Structures,2009,46(1): 74-91.
    [30]陈明祥.关于返回映射算法中应力的四阶张量值函数.力学学报,2010,42(2):228-237.
    [31]Ted Belytschko, Wing Kam Liu, Brian Moran连续体和结构的非线性有限元.庄茁,译.北京:清华大学出版社,2002:241-250.
    [32]彭奇.基于不变量空间的一般各向同性弹塑性本构积分算法:(博士学位论文).武汉:武汉大学,2012.
    [33]Krieg R D, Krieg D B. Accuracies of numerical solution methods for the elastic-perfectly plastic model. Journal Pressure Vessel Technology,1977:510-515.
    [34]Asensio G, Moreno C. Linearization and return mapping algorithms for elastoplasticity models. International Journal for Numerical Methods in Engineering,2003,57(7):991-1014.
    [35]Wang X, Wang L B, Xu L M. Formulation of the return mapping algorithm for elastoplastic soil models. Computers and Geotechnics,2004,31(4):315-338.
    [36]Nukala Phani Kumar V V. A return mapping algorithm for cyclic viscoplastic constitutive models.Comput. Methods Appl. Mech. Engrg,2006,195(1-3):148-178.
    [37]Clausen Johan, Damkilde Lars, Andersen Lars. An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space. Computers and Structures,2007,85: 1795-1807.
    [38]Huang Jinsong, Griffiths D V. Return Mapping Algorithms and Stress Predictors for Failure Analysis in Geomechanics. Journal of Engineering Mechanics,2009,135(4):276-284.
    [39]李健.壳弹塑性问题的返回映射算法.山东省科学院院刊,1988,1(4):8-16.
    [40]张伟欣,童云生.弹塑性本构积分算法.应用力学学报,1991,8(4):1-10.
    [41]魏祖健,黄文彬.有限元分析中硬化弹塑性本构方程积分算法.计算结构力学及其应用,1992,9(3):263-270.
    [42]沈永兴,许跃敏,陈伟球.两种弹塑性算法的比较.应用力学学报,1998,15(1):133-136.
    [43]杨强,陈新,周维垣.基于D-P准则的三维弹塑性有限元增量计算的有效算法.岩土工程学报,2002,24(1):16-20.
    [44]杨强,陈新,周维垣.三维弹塑性计算中的不平衡分析.岩土工程学报,2004,26(3):323-326.
    [45]杨强,杨晓君,陈新.基于D-P准则的理想弹塑性本构关系积分研究.工程力学,2005,22(4):15-19,47.
    [46]杨强,冷矿代,张小寒等.Drucker-Prager弹塑性本构关系积分:考虑非关联流动与各向同性硬化.2012,29(8):165-171.
    [47]詹云刚,袁凡凡,栾茂田.纯摩擦型岩土介质本构积分算法及其在ABQUS中开发应用.岩土力学,2007,28(12):2619-2623,2628.
    [48]陈培帅,陈卫忠,贾善坡,等.Hoek-Brown准则的主应力回映算法及其二次开发.岩土力学,2011,32(7):2211-2218.
    [49]Hinton E, Owen D R J. Finite Elements in Plasticity:Theory and Practice. Swansea, Wales:Pineridge press,1980.
    [50]魏祖健,黄文彬.非线性弹性及全量弹塑性有限元分析中的一致切线模量.应用力学学报,1992,9(1):70-76.
    [51]邢誉峰,钱令希.一致切线刚度法在三维弹塑性有限元分析中的应用.力学学报,1994,26(3): 320-332.
    [52]李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [53]Kachanov L M. On the time to failure under creep condition. Izv Akad Nauk. USSR Otd Tekhn Nauk, 1958,8:26-31.
    [54]Rabotnov Y N. Creep ruptures. In:Hetenyi M, et al. Applied Mechanics, Processing of the 12th International Congress of Applied Mechanics. Berlin:Standfod Springe-Verlag,1969:342-349.
    [55]Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamic loading. Mechanical behavior of materials,1972:540-549.
    [56]Hult J. Creep in continua and structures. In:Topics in applied continuum mechanics. Springer Vienna, 1974:137-155.
    [57]Leckie F A, Onat E T. Tensorial nature of damage measuring internal variables. In:Physical non-linearities in structural analysis. Springer Berlin Heidelberg,1981:140-155.
    [58]Janson J, Hult J. Fracture mechanics and damage mechanics- A combined approach. In:(International Congress of Theoretical and Applied Mechanics,14th, Delft, Netherlands, Aug.30-Sept.4,1976.) Journal de Mecanique Appliquee,1977,1(1):69-84.
    [59]Luccioni B, Oller S, Danesi R. Coupled plastic-damaged model. Computer Methods in Applied Mechanics and Engineering,1996,129:81-89.
    [60]Meschke G, Lackner R, Mang H A. An anisotropic elastoplastic-damage model for plain concrete. International Journal for Numerical Methods in Engineering,1998,42:703-727.
    [61]Chazallon C, Hicher P Y. A constitutive model coupling elatoplasticity and damage for cohesive-frictional materials. Mechanics of Cohesive-Frictional Materials,1998,3:41-63.
    [62]Rudnicki J W. Conditions for compaction and shear bands in a transversely isotropic material. International Journal of Solids and Structures,2002,39(13):3741-3756.
    [63]Salari M R, Saeb S, Willam K J, et al. A coupled elastoplastic damage model for geomaterials. Computer Methods in Applied Mechanics and Engineering,2004,193:2625-2643.
    [64]Chiarelli A S, Shao J F, Hoteit N. Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity,2003,19:23-45.
    [65]Shao J F, Zhou H, Chau K T. Coupling between anisotropic damage and permeability variation in brittle rocks. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29: 1231-1247.
    [66]Shao J F, Jia Y, Kondo D, et al. A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mechanics of Material,2006,38:218-232.
    [67]Wang Zhi liang, Lia Yong chi, Wang J G. A damage-softening statistical constitutive model considering rock residual strength. Computers & Geosciences,2007,33:1-9.
    [68]Graham-Brady L. Statistical characterization of meso-scale uniaxial compressive strength in brittle materials with randomly occurring flaws. International Journal of Solids and Structures,2010,47(18): 2398-2413.
    [69]朱维申,张强勇.节理岩体脆弹性断裂损伤模型及其工程应用.岩石力学与工程学报,1999,18(3):245-249.
    [70]杨松岩,愈茂宏.饱和和非饱和介质的弹塑性损伤模型.力学学报,2000,32(2):198-205.
    [71]唐春安,杨天鸿,李连崇等.孔隙水压力对岩石裂纹扩展影响的数值模拟.岩土力学,2003,24(增):17-20.
    [72]沈新普,沈国晓,陈立新等.梯度增强的弹塑性损伤非局部本构模型研究.应用数学和力学,2005,26(2):201-214.
    [73]韦立德,杨春和,徐卫亚.考虑体积塑性应变的岩石损伤本构模型研究.工程力学,2006,23(1):139-143.
    [74]戴永浩,陈卫忠,伍国军等.非饱和岩体弹塑性损伤模型研究与应用.岩石力学与工程学报,2008,27(4):728-735.
    [75]贾善坡,陈卫忠,于洪丹等.泥岩弹塑性损伤本构模型及其参数识别.岩土力学,2009,30(12):3607-3614.
    [76]房敬年,周辉,胡大伟等.岩盐弹塑性损伤耦合模型研究.岩土力学,2011,32(2):363-368,374.
    [77]袁小平,刘红岩,王志桥.压缩载荷作用下岩石的细观损伤和塑性研究.计算力学学报,2013,30(1):149-155.
    [78]Verruijt A. Elastic storage of aquifers. Flow through porous media,1969:331-376.
    [79]Jun-Mo Kim. A fully completed model for saturated-unsaturated fluid flow in deformable porous and fractured media. The Pennsylvania State University,1996.
    [80]Min K B, Rutqvist J, Tsang C F, et al. Stress-dependent permeability of fractured rock masses:a numerical study. International Journal of Rock Mechanics and Mining Sciences,2004,41(7):1191-1210.
    [81]陶振宇,窦铁生.关于岩石水力模型.力学进展,1994,24(3):409-417.
    [82]陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报,1994,13(4):299-308.
    [83]王媛.多孔介质渗流与应力耦合计算方法.工程勘探,1995,(2):33-37.
    [84]朱维申,申晋,赵阳升.裂隙岩体渗流耦合模型及在三峡船闸分析中的应用.煤炭学报,1999,24(3):289-293.
    [85]梁冰,鲁秀生.裂隙岩体渗流场与应力场的耦合数值分析.水资源与水工程学报,2009,20(4):14-16.
    [86]Kelsall P C, Case J B, Chabannes C R. Evaluation of excavation-induced changes in rock permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1984,21(3):123-135.
    [87]Schulze O, Popp T, Kern H. Development of damage and permeability in deforming rock salt. Engineering Geology,2001,61(2):163-180.
    [88]Selvadurai A P S, Shirazi A. Mandal-Cryer effects in fluid inclusions in damage-susceptible poroelastic geologic media. Computers and geotechnics,2004,31:2285-300.
    [89]Yuan S C, Harrison J P. Development of a hydro-mechnical local degration approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks. International Journal of Rock Mechanics and Mining Sciences,2005,42:961-984.
    [90]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及工程应用.水利学报,1991,(5):19-27.
    [91]朱珍德,孙钧.裂隙岩体渗流场与损伤场耦合分析模型及工程应用.长江科学院院报,1999,16(5):22-27.
    [92]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析.岩土工程力学,2001,23(4):489-493.
    [93]陈卫忠,王者超,伍国军等.盐岩非线性蠕变损伤本构模型及工程应用.岩石力学与工程学报,2007,26(3):467-472.
    [94]谢兴华,郑颖人,张茂峰.岩石变形与渗透性变化关系的研究.岩石力学与工程学报,2009,28(增1):2657-2661.
    [95]Louis C. Rock hydraulics. In:Rock Mechanics, Ed. By L Muller,1974.
    [96]Jones F O. A laboratory study of the effects of confining pressure flow and storage capacity in carbonate rocks. J. Petrol. Technol.,1975,21.
    [97]Kranzz R L, Frankel A D, Engelder T, et al. The permeability of whole and jointed Barre granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1979,16(4):225-234.
    [98]Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. The 23rd US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association,1982.
    [99]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程.岩土工程学报,1995,17(2):13-19.
    [100]彭苏萍,曲洪亮,罗立平等.沉积岩石全应力应变过程的渗透性试验研究.煤炭学报,2000,25(2):113-116.
    [101]徐德敏,黄润秋,张强等.高围压条件下孔隙介质渗透特性试验研究.工程地质学报,2007,15(06):752-756.
    [102]杨建平,陈卫忠,田洪铭.低渗透介质温度-应力-渗流耦合三轴仪研制及其应用.岩石力学与 工程学报,2009,28(12):2377-2382.
    [103]曹树刚,李勇,郭平.型煤与原煤全应力-应变过程渗流特性对比研究.岩石力学与工程学报,2010,29(5):899-906.
    [104]韩国锋,王恩志,刘晓丽.压缩带形成过程中渗透性变化试验研究.岩石力学与工程学报,2011,30(5):991-997.
    [105]Atkinson B K, Meredith P G. Stress corrosion cracking of quartz:a note on the influence of chemical environment. Tectonophysics,1981,77(1):1-11.
    [106]Feucht L J, Logan J M. Effects of chemically active solutions on shearing behavior of a sandstone. Tectonophysics,1990,175(1):159-176.
    [107]Hutchinson A J, Johnson J B, Thompson G E, et al. Stone degradation due to wet deposition of pollutants. Corrosion Science,1993,34(11):1881-1898.
    [108]Karfakis M G, Akram M. Effects of chemical solutions on rock fracturing. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,30(7):1253-1259.
    [109]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究.岩石力学与工程学报,2002,21(4):526-531.
    [110]冯夏庭,丁梧秀,姚华彦等.岩石破裂过程的化学-应力耦合效应.北京:科学出版社,2010.
    [111]周翠英,彭泽英,尚伟等.论岩土工程中水-岩相互作用研究的焦点问题—特殊软岩的力学变异性.岩土力学,2002,23(1):124-128.
    [112]李宁,朱运明,张平等.酸性环境中钙质胶结砂岩的化学损伤模型.岩土工程学报,2003,25(4):395-399.
    [113]速宝玉,张文捷,盛金昌等.渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究.岩土力学,2010,31(11):3361-3366.
    [114]盛金昌,许孝臣,姚德生等.流固化学耦合作用下裂隙岩体渗透特性研究进展.岩土工程学报,2011,23(7):996-1006.
    [115]Nova R, Caltellanza R, Tamagnini C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International Jouenal for Numerical and Analytical Methods in Geomechanics,2003,27(9):705-732.
    [116]Fernandez-Merodo J A, Castellanza, Mabssout M, et al. Coupling transport of chemical species and damage of bonded geomaterial. Computers and Geotechnics,2007,34(4):200-215.
    [117]崔强,冯夏庭,薛强等.化学腐蚀下砂岩孔隙结构变化的机制研究[J].岩石力学与工程学报,2008,27(6):1209-1216.
    [118]Rutquist J, Barr D, Datta R, et al. Coupled thermal-hydrological-mechanical analysis of the yucca mountain drift scale test-Comparison of field measurements to predictions of four different numerical models. International Journal of Rock Mechanics and Mining Sciences,2005,42(5):680-697.
    [119]Poulet T, Karrech A, Regenauer-Lieb K, et al. Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPTRT and ABAQUS. Tectonophysics,2012,526-529.
    [120]Ahola M P, Thoraval A, Chowdhury A H. Distinct element models for the coupled T-H-M processes: Theory and Implementation. Developments in Geotechnical Engineering,1996,79:181-211.
    [121]孙玉杰,邬爱清,张宜虎等.基于离散单元法的裂隙岩体渗流与应力耦合作用机制研究.长江科学院院报,2009,26(10):62-67.
    [122]刘泉声,吴月秀,刘滨.应力对裂隙岩体等效渗透系数影响的离散元分析.岩石力学与工程学报,2011,30(1):176-183.
    [123]潘鹏志.岩石破裂过程及其渗流-应力耦合特性研究的弹塑性细胞自动机:(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2006.
    [124]唐世斌,唐春安,朱万成等.热应力作用下的岩石破裂过程分析[J].岩石力学与工程学报,2006,25(10):2071-2078.
    [125]Guvanasen V, Chan T. A new three-dimensional finite-element ananlysis of hysteresis thermohydromechanical deformation of fractured rock mass with dilatance in fractures. Proceedings of the Second Conference on Mechanics of Jionted and Faulted Rocks. Vienna:Technical University of Vienna, 1995:347-442.
    [126]Kohl T, Hopkirk R J. The finite element program "FRACTure" for the simulation of Hot Dry Rock reservoir behavior[J]. Geothermics,1995,24(3):345-359.
    [127]Noorishad J, Tsang C-F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks:numerical approach. Journal of Geophysical Reasearch,1984,89: 10365-10373.
    [128]Bower K M, Zyvoloski G. A numerical model for thermo-hydro-mechanical coupling in fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1201-1211.
    [129]Rohmer J, Seyedi D M. Coupled large scale hydro-mechanical modelling for caprock failure risk assessment of CO2 storage in deep saline aquifers. Oil & Gas Science and Technology:Rev IFP,2010, 65(3):503-517.
    [130]于子望.多相多组分THCM耦合过程机理研究及其应用:(博士学位论文).长春:吉林大学,2013.
    [131]殷有泉.非线性有限元基础.北京:北京大学出版社.2007.
    [132]江见鲸,陆新征.混凝土结构有限元分析-第2版.北京:清华大学出版社,2013:239-247.
    [133]Kavanagh K T, Clough R W. Finite element applications in the characterization of elastic solids. International Journal of Solids and Structures,1971,7(1):11-23.
    [134]Kirsten H A D. Determination of rock mass elastic moduli by back analysis of deformation measurement. Proceedings of Symposium on Exploration for Rock Engineerings, Johannesbuerg,1976, 1154-1160.
    [135]Maier G, Jurian L, Podolk K. On model identification problems in rock mechanics. Proceedings of Symposium on the Geotechnics of Structurally Complex Formations. Capri,1977:257-261.
    [136]Gioda G. A numerical procedure for defining the values of soil parameters affecting consolidation, Proc.7th E. C. S. M. F. E., Brighton,1979:169-172.
    [137]Sakuri S, Abe S. A design approach to dimensioning underground opening. Proceedings of the 3rd International Symposium on Field Measurements in Rock Mechanics, Zurich,1977.
    [138]杨志法,刘竹华.关于位移反分析问题的初步研究.中国科学院地质研究所资料,1979,6.
    [139]孙均,蒋树屏,袁勇等.岩土力学反演问题的随机理论与方法.汕头:汕头大学出版社,1996.
    [140]王芝银,李云鹏.地下工程位移反分析法及程序.西安:陕西科学出版社,1993.
    [141]杨林德.岩土工程问题的反演理论与工程试验.北京:科学出版社,1996.
    [142]冯夏庭.智能岩石力学导论.北京:科学出版社,2000.
    [143]高玮.基于粒子群优化的岩土工程反分析研究.岩土力学,2006,27(6):795-798.
    [144]袁文华.人工冻土黏弹塑性本构参数反分析研究.岩土力学,2013,34(11):3091-3095.
    [145]刘杰,王媛.改进的遗传算法及其在渗流参数反演中的应用.岩土力学,2003,24(2):237-241.
    [146]祁涛,张均锋.某水电站坝址区三维渗流参数反演.岩石力学与工程学报,2005,24(20):3766-3770.
    [147]巍进兵,邓建辉,高春玉等.三峡库区泄滩滑坡非饱和渗流分析及渗透系数反演.岩土力学,2008,29(8):2262-2266.
    [148]李筱艳.基于位移反分析的深基坑渗流场与应力场完全耦合分析.岩石力学与工程学报,2004,23(8):1269-1274.
    [149]王媛,刘杰.基于敏感性分析的裂隙岩体渗流与应力静态全耦合参数反演.岩土力学,2009,30(2):311-317.
    [150]刘成学,杨林德,李鹏.渗流-应力耦合问题的多参数优化反演研究.第三届全国水工岩石力学学术会议论文集,2010.
    [151]吴创周,杨林德,刘成学等.各向异性岩应力-渗流耦合问题的反分析.2013,34(4):1156-1162.
    [152]Meulenkamp F. Application of neutral networks for the prediction of the unconfined compressive strength from Equotip hardness. Int. J. of Rock mechanics and mining Sciences,1999,69:63-67.
    [153]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析.土木工程学报,2001,23(1):120-122.
    [154]宋志宇,李俊杰,汪红宇.混沌人工鱼群算法在重力坝材料参数反演中应用.岩土力学,2007, 28(10):2193-2196,2202.
    [155]张研,苏国韶,燕柳斌.隧道围岩损失位移估计的智能优化反分析.岩土力学,2013,34(5):1383-1388.
    [156]汤连生,周翠英.渗透与水化学作用之受力岩体的破坏机理.中山大学学报,1996,35(6):95-100.
    [157]周翠英,邓毅梅,谭祥韶.饱水软岩力学性质软化的试验研究与应用.岩石力学与工程学报,2005,24(1):33-38.
    [158]赵明阶.受载岩石混过凝土的声学特性及其应用.北京:科学出版社,2009.
    [159]Thill R E, Bur T R, Steckley R C. Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1973,10(6):535-557.
    [160]Nur A. Effects of stress on velocity anisotropy in rock with cracks. Journal of Geophysical Research, 1971,76(8):2022-2034.
    [161]邓涛,韩文峰,保翰璋.饱水大理岩的波速变化特性研究.岩石力学与工程学报,2000,19(6):726-765.
    [162]邓涛,杨林德.各向异性岩石纵、横波的波速比特性研究.岩石力学与工程学报,2006,25(10):2023-2029.
    [163]王大兴,辛可峰,李幼铭等.地层条件下砂岩含水饱和度对波速及衰减影响的实验研究.地球物理学报,2006,49(3):908-914.
    [164]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究.岩土工程学报,2000,22(6):720-722.
    [165]李刚,陈正汉,谢云等.超声波三轴压缩试验机及其应用.岩土工程学报,2007,29(5):657-663.
    [166]郑贵平,赵兴东,刘健坡等.岩石加载过程声波波速变化规律试验研究.东北大学学报(自然科学版),2009,30(8):1197-1200.
    [167]赵奎,金解放,王晓军等.岩石声速与其损伤及声发射关系研究.岩土力学,2007,28(10):2105-2114.
    [168]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究.岩石力学与工程学报,2008,27(3):557-563.
    [169]高赛红,曹平,汪胜莲.水压力作用下岩石中Ⅰ型和Ⅱ型裂纹断裂准则.中南大学学报(自然科学版),2012,43(3):1087-1091.
    [170]刘涛影,曹平,章立峰等.高渗压条件下压剪岩石裂纹断裂损伤演化机制研究.岩土力学,2012,33(6):1801-1808.
    [171]韩涛,杨维好,杨志江等.多孔介质固液耦合相似材料的研制.岩土力学,2011,32(5): 1411-1417.
    [172]康永水,刘泉声,赵军等.岩石冻胀变形特征及寒区隧道冻胀变形模拟.岩石力学与工程学报,2012,31(12):2518-2526.
    [173]黄润秋,徐德敏,付小敏等.岩石高压渗透试验装置的研制与开发.岩石力学与工程学报,2008,27(10):1981-1992.
    [174]陈卫忠,于洪丹,王晓全等.双联动软岩渗流-应力耦合流变仪的研制.岩石力学与工程学报,2009,28(11):2176-2183.
    [175]冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验.岩石力学与工程学报,2005,24(9):1465-1473.
    [176]王军祥.基于差异进化算法和非线性有限元的隧道围岩参数反分析:(硕士学位论文).大连:大连海事大学,2011.
    [177]赵阳升.多孔介质多场耦合作用及其工程响应.北京:科学出版社,2010.
    [178]贾善坡,陈卫忠,于洪丹等.泥岩隧道施工过程中渗流场与应力场全耦合损伤模型研究.岩土力学,2009,30(1):19-26.
    [179]冉启全,顾小芸.油藏渗流与应力耦合分析.1998,20(2):69-73.
    [180]Owen D R J, Hinton E.塑性力学有限元-理论与应用.曾国平,译.北京:兵器工业出版社,1989.
    [181]候新录.结构分析中的有限元法与程序设计—用Visual C++实现.北京:中国建材工业出版社,2004.
    [182]Forde B W R, Foschi R O, Stiemer S F. Object-oriented finite element analysis. Computers and Structures,1990,34(3):355-374.
    [183]Mackie R I. Object oriented programming of the finite element method. International Journal for Numerical Methods in Engineering,1992,35(2):425-436.
    [184]Dubois-Pelerin Y, Zimmermann T. Object-oriented finite element programming:Part Ⅲ:An efficient implementation in C++. Compute Methods in Applied Mechanics and Engineering,1993, 108(1-2):165-183.
    [185]Dubois-Pelerin Y, Pegon P. Object-oriented programming in nonlinear finite element analysis. Computers and Structures,1998,67(4):225-241.
    [186]Archer G C, Fenves G, Thewalt C. A new object-oriented finite element analysis program architecture. Computers and Structures,1999,70(1):63-75.
    [187]Pantale O, Caperaa S, Rakotomalala R. Development of an object-oriented finite element program: application to metal-forming and impact simulations. Journal of Computational and Applied Mathematics, 2004,168(1-2):341-351.
    [188]孔祥安.C++语言与面向对象有限元程序设计.成都:西南交通大学出版社,1995.
    [189]曹中清,周本宽,陈大鹏.面向对象有限元程序几种新的数据类型.西南交通大学学报,1996,31(2):119-125.
    [190]张向,许晶月,沈启或,等.面向对象的有限元设计.计算力学学报,1999,16(2):216-226.
    [191]魏泳涛,于建华,陈君楷.面向对象的有限元程序构架.四川大学学报(工科版),2000,32(3):34-38.
    [192]马永其,冯伟.面向对象有限元分析程序设计及VC++实现.应用数学和力学,2002,23(12):1283-1288.
    [193]李晓军,朱合华.地下工程有限元程序面向对象的设计与实现.同济大学学报,2004,32(5):580-584.
    [194]David M. Potts, Lidija Zdravkovic岩土工程有限元分析:理论.周建等,译.北京:科学出版社,2010.
    [195]项阳,平扬,葛修润.面向对象有限元方法在岩土工程中的应用.岩土力学,2000,21(4):346-349.
    [196]赵阳升,杨栋,冯增朝等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用.岩石力学与工程学报,2008,27(7):1321-1328.
    [197]Minkoff S E, Stone C M, Bryant S, et al. Coupled fluid flow and geomechanical deformation modeling[J]. Journal of Petroleum Science and Engineering,2003,38(1):37-56.
    [198]李宏,唐春安,刘建军等.解算多场耦合过程的现状和研发设计.第三届废物地下处置学术研讨会议论文集,2010.
    [199]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟.岩石力学与工程学报,2006,25(增1):3029-3033.
    [200]Dean R H, Gai X, Stone C M, et al. A comparison of techniques for coupling porous flow and geomechanics. SPE Journal,2006,11(1):132-140.
    [201]茹忠亮.三维进化弹塑性并行有限元反分析系统研究:(博士学位论文).沈阳:东北大学,2004.
    [202]Kenneth V. Price, Rainer M. Storn, Jouni A. Lampinen. Differential Evolution-A practical approach to global optimization, Springer-Verlag Berlin Heidelberg,2005.
    [203]Rainer Storn, Kenneth Price. Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Technical Report TR-95-012. Berkeley:International Computer Science Institute,1995.
    [204]Rainer Storn, Kenneth Price. Differential evolution-A Simple and Efficient Heuristic for Global Optimization Over Continous Spaces. Journal of Global Optimization,1997,11:341-359.
    [205]Rui Mendes, Arvind S. Mohais DynDE:A Differential evolution for dynamic optimization problems. Proceedings of Congress on Evolutionary Computation.2005,3:2808-2815.
    [206]陈卫忠,曹俊杰,于洪丹等.强风化花岗岩弹塑性本构模型研究(Ⅱ):工程应用.岩土力学,2011,32(12):3541-3547.
    [207]孙钧,戚玉亮.隧道围岩稳定性正算反演分析研究—以厦门海底隧道穿越风化深槽施工安全监控为例介绍.岩土力学,2010,31(8):2353-2360.
    [208]韩建新,李术才,李树忱,等.基于强度参数演化行为的岩石峰后应力-应变关系研究.岩土力学,2013,34(2):342-346.
    [209]Naghdi P M, Trapp J A. The significance of formulating plasticity theory with reference to loading surfaces in strain space. International Journal Engineering Science,1975,13(9):785-797.
    [210]阎金安,张宪宏.岩石材料应变软化模型及有限元分析.岩土力学,1990,11(1):19-27.
    [211]吴玉忠.岩石应变软化弹塑性有限元分析.有色金属,1990,42(1):1-8.
    [212]王兵,陈炽昭,张金荣.考虑岩石应变软化特性隧道的弹-塑性分析.铁道学报,1992,14(2):86-95.
    [213]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算.清华大学学报(自然科学版),1995,35(2):22-27.
    [214]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究.岩土力学,2002,23(6):695-697,701.
    [215]Alonso E, Alejano L R, Varas F, et al. Ground response curves for rock masses exhibiting strain-softening behaviour. International Journal Numerical and Analytical Methods in Geomechanics,2003, 27(13):1153-1185.
    [216]张帆,盛谦,朱泽奇等.三峡花岗岩峰后力学特性及应变软化模型研究.岩石力学与工程学报,2008,27(增1):2651-2655.
    [217]周家文,徐卫亚,李明卫等.岩石应变软化模型在深埋隧洞数值分析中的应用.岩石力学与工程学报,2009,28(6):1116-1127.
    [218]王水林,王威,吴振君.岩土材料峰值后区强度参数演化与应力-应变曲线关系研究.岩石力学与工程学报,2010,29(8):1524-1529.
    [219]李文婷,李树忱,冯现大等.基于摩尔-库仑准则的岩石峰后应变软化力学行为研究.岩石力学与工程学报,2011,30(7):1460-1466.
    [220]李英杰,张顶立,刘保国.考虑变形模量劣化的应变软化模型在FLAC3D中的开发与验证.岩土力学,2011,32(增2):647-652,659.
    [221]赵启林,牛海清,卓家寿.应变软化材料的几个基本问题研究进展.水利水运工程学报,2001,3: 73-77.
    [222]江见鲸,陆新征.混凝土结构有限元分析-第2版.北京:清华大学出版社,2013:239-247.
    [223]郑宏,葛修润,李焯芬.脆塑性岩体的分析原理及其应用.岩石力学与工程学报,1997,16(1):8-12.
    [224]Wempner G A. Discrete approximation related to nonlinear theories of solids. International Journal of Solids and structures,1971,7(11):1581-1599.
    [225]Riks E. The application of Newton's method to the problem of elastic stability. Journal of Applied Mechanics,1972,39(4):1060-1065.
    [226]Riks E. An incremental approach to the solution of snapping and bucking problems. International Journal of Solids and Structures,1979,15:529-551.
    [227]Crisfield M A. A fast incremental iterative solution procedure that handles "snap-through". Computer and Structures,1981,13:55-62.
    [228]Crisfield M A. Non-linear finite element analysis of solids and structures. Volume 1:Essential. New York:John Wiley & Sons,1991:266-286.
    [229]Ramm E. Strategies for tracing the nonlinear response near limit points. New York:Springer Berlin Heidelberg,1981:63-89.
    [230]竺润祥,派列希.解非线性有限元问题的组合弧长法.西北工业大学学报,1984,2(3):291-303.
    [231]刘国明,卓家寿,夏颂佑.求解非线性有限元方程的弧长法及在工程稳定分析中的应用.岩土力学,1993,14(4):57-67.
    [232]李元齐,沈祖炎.弧长法中初始荷载增量参数符号确定准则的改进.工程力学,2001,18(3):24-39.
    [233]周应华,周德培,封志军.三种红层岩石常规三轴压缩下的强度与变形特性研究.工程地质学报,2005,13(4):477-480.
    [234]段廉康,赵阳升,张文等.孔隙水压作用下煤体有效应力规律的研究.北方岩石力学会议论文集,1991,
    [235]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究.岩土工程学报,1995,17(3):26-31.
    [236]冯陪德,鲜学福,钱耀敏.煤体有效应力规律的实验研究.矿业安全与环保,1999,2:16-18.
    [237]冯增朝,吴海,赵阳升.裂隙岩体有效应力规律数值试验研究.太原理工大学学报,2003,34(6):713-715.
    [238]Lemaitre J. A course on damage mechanics.2nd edn. Springer,1996.
    [239]Vaz M Jr, Owen DRJ. Aspects of ductile fracture and adptive mesh refinement in damaged elasto-plastic materials. International Journal for Numerical Methods in Engineering,2001,50:29-54.
    [240]Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology,1985,107:83-89.
    [241]Lemaitre J, Chaboche J L. Mechanics of Solid Material. Cambridge University Press,1990.
    [242]Steinmann P, Miehe C, Stein E. Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile metals. Computational Mechanics,1994,13:458-474.
    [243]De Souza Neto EA, Peric D, Owen DRJ. A model for elastoplastic damage at finite strains: algorithmic issues and applications. Engineering Computations,1994,11:257-281.
    [244]Doghri I. Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. International Journal for Numerical Methods in Engineering,1995,38:3403-3431.
    [245]Bouchard P O, Bourgeon L, Fayolle S, et al. An enhanced lemaitre model formulation for materials processing damage computation. International Journal of Forming Processes,2011,4(3):299-315.
    [246]Benallal A, Billardon R, Doghri I. An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations. Communications in Applied Numerical Methods,1988,4:731-740.
    [247]Neto E A D S, Peric D. A computational framework for a class of models for fully coupled elastoplastic damage at finite strains with reference to the linearization aspets. Computer Methods in Applied Mechanics and Engineering,1996,130:179-193.
    [248]Singh A K, Pandey P C. An implicit integration algorithm for plane stress damage coupled elastoplasticity. Mechanics Research Communications,1999,26(6):693-700.
    [249]Neto E A D S. A fast, one-equation integration algorithm for Lemaitre ductile damage model. Communications in Numerical Methods in Engineering,2002,18:541-554.
    [250]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅰ:基本公式.土木工程学报,2005,38(8):14-20.
    [251]Tai W H, Yang B X. A new microvoid-damage model for ductile fracture. Eng. Fract. Mech.,1986, 48:151-166.
    [252]Chandrakanth S, Pandey P C. An isotropic damage model for ductile material. Eng. Fract. Mech., 1995,50:457-465.
    [253]Bonora N. A nonlinear CDM model for ductile failure. Eng. Fract. Mech,1997,58:11-28.
    [254]李根,唐春安,李连崇.水岩耦合变形破坏过程及机理研究进展.力学进展,2012,42(5):593-619.
    [255]张巍,肖明,范国邦.大型地下洞室群围岩应力-损伤-渗流耦合分析.岩土力学,2008,29(7):1813-1818.
    [256]刘仲秋,章青.考虑渗流-应力耦合效应的深埋引水隧洞衬砌损伤演化分析.岩石力学与工程学报,2012,31(10):2147-2153.
    [257]沈振中,张鑫,孙粤琳.岩体水力劈裂的应力-渗流-损伤耦合模型研究.计算力学学报,2009,26(4):523-528.
    [258]赵延林,王卫军,黄永恒等.裂隙岩体渗流-损伤-断裂耦合分析与工程应用.岩土工程学报,2010,32(1):24-32.
    [259]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用.南京:河海大学出版社,1999.
    [260]叶源新,刘光廷.岩石渗流应力耦合特性研究.岩石力学与工程学报,2005,24(14):2518-2525.
    [261]Taylor D W. Fundamentals of Soil Mechanics. New York:John Wiley & Sons.,1948.
    [262]Samarasinghe A M, Huang Y H. Permeability and consolidation of normally consolidated soils. Journal of the Geotechnical Engineering Division, ASCE,1982,108(GT6):835-850.
    [263]Lousi C. Rock hydraulics. In:Muller Led. Rock Mechanics. New York:Elsevier Science,1974.
    [264]Nelson. Fracture permeability in porous reservoirs:Experimental and field approach. Texas: Department of Geology, Texas A and M University.1975.
    [265]沈新普,泽农·慕容子,徐秉业.岩石材料弹塑性正交异性损伤耦合本构理论.应用数学和力学,2001,22(9):927-933.
    [266]李术才,宋曙光,李利平等.海底隧道流固耦合模型试验系统的研制及应用.岩石力学与工程学报,2013,32(5):883-890.
    [267]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应.岩石力学与工程学报,2003,22(4):547-551.
    [268]汤连生,王思敬.岩石水化学损伤的机理及定量化方法探讨.岩石力学与工程学报,2002,21(3):314-319.
    [269]姚华彦,冯夏庭,崔强等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究.岩土力学,2009,30(2):338-344.
    [270]汪亦显,曹平.水化学腐蚀下岩石损伤力学效应研究.南华大学学报(自然科学版),2009,23(1):27-30.
    [271]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨.岩石力学与工程学报,2005,24(8):1283-1288.
    [272]Merkel B J, Planer-Friedrich B地下水地球化学模拟的原理及应用.朱义年等,译.武汉:中国地质大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700