用户名: 密码: 验证码:
桥梁钢混结合段力学特性理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技技术的不断发展,钢混组合结构由于能够同时发挥钢材和混凝土两者的优点,以其优异的力学性能,已经被越来越多的桥梁结构所釆用。钢混组合结构组合结构能否充分发挥其自身的力学性能,很大程度上取决于钢材与混凝土是否能良好连接,因此需要对桥梁结构中的钢混结合段进行充分研究和探讨。本文采用结构试验、数值分析、解析推导三种途径,系统研究了钢混结合段的受力性能,并对其中的PBL剪力键进行了重点分析。
     本文的主要研究内容有以下几个方面:
     在回顾了钢混结合段发展历史和研究背景的基础上,依据相似原则,对某公铁两用斜拉桥公路桥面钢混结合段进行了结构试验,测试了荷载作用下试验模型的控制断面和主要构件的应变、位移情况,结合有限元分析,对钢混结合段的传力机理和力学性能进行了研究。
     在综合考虑某桥主塔钢混结合段的受力及构造特点的基础上,采用几何、物理以及边界条件相似原则对结合段进行了结构试验,分别考虑正常使用极限状态与承载能力极限状态对试验模型进行加载,测试了试验模型的控制断面和控制构件的应力、变形随加载历程的变化形态,得到了结合段的应力状态、钢与混凝土的相对滑移等性能参数,将模型试验与有限元分析相结合,分析了结合段的传力机理及传力性能。
     在该桥桥塔钢混结合段大比例模型试验的基础上,对某桥主塔钢混结合段进行了精细化的非线性有限元分析。详细模拟了钢混结合段的细部构造,分析了1.7倍设计极限荷载(包含最大弯矩、最大轴力)作用下结合段的应力状态和应力分布规律。
     依据钢混结合段中的PBL剪力键的受力特点,对其进行了合理简化,将钢混结合段中单个PBL剪力键的弹性受力问题,简化为混凝土圆环的平面应变问题和贯穿钢筋的Winkler弹性地基梁问题,并得到了相应的解析解答。混凝土圆环问题是一个在圆环内外同时承受非轴对称载荷的厚壁圆柱壳体的平面应变问题,在假设接触应力分布函数之后,借助于Airy应力函数得到了应力解答,并通过区分弹性体位移和刚体位移,由应力得到了其位移解答,通过与有限元解的对比,证明了解析解的可靠性。将贯穿钢筋模拟为无限长的Winkler弹性地基梁,得到了其位移解答和应力解答。
     本文进行了板桁组合结构钢混结合段的模型试验,丰富了板桁组合结构钢混结合段的试验数据,揭示了板桁组合结构钢混结合段的传力机理。在国内首次进行了上塔肢采用钢结构、下塔肢采用混凝土结构、结合段内设置钢锚箱的斜拉桥桥塔钢混结合段的结构试验,研究了该种钢混结合段的受力特点。将钢混结合段中单个PBL剪力键的弹性受力问题,简化为混凝土圆环的平面应变问题和贯穿钢筋的Winkler弹性地基梁问题,给出了圆环内外同时承受非轴对称载荷的厚壁圆柱壳体平面应变问题的应力解析解答和位移解析解答,为解决类似力学问题提供了基础。
As technology continues to develop, steel-concrete composite structures have beenmore and more used in bridge structures because of excellent mechanical properties.Mechanical properties of steel-concrete composite structures depend largely on whetherthe well connection is achieved, so steel-concrete composite sections need to bethoroughly studied and discussed. With three ways of structural testing, numerical analysis,analytic derivation, steel-concrete composite sections are systematically studied, and theemphasis is put on the PBL shear connectors.
     The following aspects are included in this paper:
     After reviewing the history of the development of steel-concrete composite sections,based on the similarity principle, push-out tests are carried ouf for the steel-concretecomposite sections of a cable-stayed bridge railway-road bridge. The strain anddisplacement of control section and the main components are tested. The force transfermechanism and mechanical properties of steel-concrete composite sections are studiedwith combination of the finite element analysis.
     After considering a combination of the force transfer mechanism and structuralfeatures of a steel-concrete composite section, a push-out test is carried out based onsimilar principles of geometry, physics and boundary conditions. The test model areloaded separately based on the serviceability limit state and the bearing capacity limit state,and the stress and deformation history with load changes are measured for the controlsections and the control members. Based on the stress state and the relative slip of steeland concrete of steel-concrete composite sections, the force transfer mechanism andmechanical performance are analyzed.
     A refined non-linear finite element analysis of steel-concrete composite sections isperformed based on large scale model tests. The stress state and stress distribution areanalyzed by a detailed simulation considering1.7times the design limit loads (includingmaximum bending moment, the maximum axial force).
     Based on the mechanical characteristics of the PBL shear connector, it is reasonably simplified as a concrete ring's plain strain problem and a perforating rebar's Winklerelastic foundation beam problem, and the corresponding analytical solutions are found out.The concrete ring problem is a plane strain of thick-walled cylindrical shell withstandingnon-axisymmetric loads at the inner and the outer board-line. On the assumption that thecontact stress distribution function, stress solutions are obtained by means of Airy stressfunction. The displacement solutions are found out from the stress solutions bydistinguishing between elastic displacement and rigid displacement. The analyticalsolutions are proved by contrast with the finite element solution. The perforating rebar ismodeled as an infinitely long Winkler elastic foundation beam, and their displacement andstress solutions are obtained.
     The model test of the plate-truss composite structure's steel-concrete compositesections is conducted. Its test data enrich the research findings and reveal the force transfermechanism. The domestic first model test for the steel-concrete composite section of acable-stayed bridge tower with steel upper leg, concrete bottom leg, and steel anchor boxis carried out. The PBL shear connector is reasonably simplified as a concrete ring's plainstrain problem and a perforating rebar's Winkler elastic foundation beam problem, and thestress solutions and displacement solutions are found out for the plane strain problem ofthick-walled cylindrical shell withstanding non-axisymmetric loads at the inner and theouter board-line.
引文
[1]聂建国.钢-混凝土组合梁结构——试验、理论与应用[M].北京:科学出版社,2005:14-25.
    [2]肖林.钢混组合结构中PBL剪力键的静力及疲劳性能研究[D].成都:西南交通大学博士学位论文,2012:1-10.
    [3] Ollgaard J, Slutter R G, Fisher J W. The strength of stud shear connection in lightweight andnormal-weight concrete [J]. AISC Engineering Journal,1971,8(1):55-64.
    [4]李小珍,肖林,黄玲,等.混合梁斜拉桥钢-混结合段静力行为[J].哈尔滨工业大学学报,2013,45(6):75-82.
    [5]肖林,强士中,李小珍,等.考虑开孔钢板厚度的PBL剪力键力学性能研究[J].工程力学,2012,29(8):282-288,296.
    [6]李小珍,肖林,张讯,等.斜拉桥钢-混凝土结合段PBL剪力键承载力试验研究[J].钢结构,2009,24(9):22-27.
    [7] Richard J Y. Advances in steel concrete composite structures [M]. Singapore: ResearchPublishing Services,2012:1-15.
    [8] Narayanan R. Steel-Concrete Composite Structures[M]. Boca Raton: CRC Press,2011:9-21.
    [9] Dennis L. Steel Concrete Composite and Hybrid Structures [M]. Singapore: Research PublishingServices,2009:17-35.
    [10]肖林.钢混组合结构中剪力连接件试验研究[D].成都:西南交通大学硕士学位论文,2008:1-12.
    [11]郭小土,郑史雄.斜拉桥钢混组合结构的新发展[J].四川建筑,2010,30(2):120-121.
    [12]杜鹏,骆春雨,孙东利.钢混组合结构斜拉桥抗震性能研究[J].城市道桥与防洪,2011,(12):38-42.
    [13] Ivan M V. Review of research on composite steel concrete beams[J]. Transactions of theAmerican Society of Civil Engineers,1961,126(2):1101-1120.
    [14] Viewst I M. Investigation of Stud Shear Connectors for Composite Concrete and Steel T-Beams[J]. ACI Journal,1956,52(4):875-892.
    [15] Xie E. Fatigue strength of shear connectors [R]. Portugal: University of Minho,2011:1-4.
    [16] Smith A L, Couchman G H. Strength and Ductility of Headed Stud Shear Connectors in ProfiledSteel Sheeting [J]. Journal of Constructional Steel Research.2010,66(6):748-754.
    [17] Hicks S J. Strength and ductility of headed stud connectors welded in modern profiled steelsheeting. The Structural Engineer,2007(5):32-38.
    [18] AASHTO. AASHTO LRFD bridge design specifications [S]. Washington DC: AASHTO,2010:95-123.
    [19] Richard M B, Jay A P. Design of highway bridges: based on AASHTO LRFD bridge designspecifications [M]. New York: Wiley&Sons Inc,1997:78-152.
    [20] AASHTO. AASHTO LRFD bridge construction specifications [S]. Washington DC: AASHTO,2010:87-112.
    [21] AISC. Steel Construction Manual [M]. Chicago: AISC,2011:245-256.
    [22] Paul W R. Build With Steel: A Companion to the AISC Manual [M]. Nevada: CreateSpaceIndependent Publishing Platform,2012:74-83.
    [23] Akbar T. Handbook of steel connection design and details [M]. New York: McGraw-HillProfessional,2009:452-485.
    [24]黄彩萍,张仲先,陈开利.混合梁斜拉桥钢混结合段试验与传力机理研究[J].华中科技大学学报,2012,40(1):67-71.
    [25]魏胜勇,袁月芳.混合梁斜拉桥动力特性分析[J].城市道桥与防洪,2013,(3):55-59.
    [26]聂建国,陶慕轩,吴丽丽.钢-混凝土组合结构桥梁研究新进展[J].土木工程学报,2012,45(6):110-122.
    [27] Durham S A,Heymsfield E,Schemmel J J. Structural evaluation of precast concrete channelbeams in bridge superstructures[R].Washington,DC: Transportation Research Board,2003:79-87.
    [28]张振博,梁伟,李涛.连接件在组合结构桥梁中的发展及应用[J].公路交通科技(应用技术版),2012,(4):277-279.
    [29] Nishiumi K, Okimoto M. Shear strength of perfobond rib shear connector under theconfinement.Proceedings of JSCE,1999(633):193-203.
    [30]周宗尧,唐细彪.混合梁悬索桥钢混结合段局部应力分析[J].世界桥梁,2013,41(3):57-61.
    [31]张鹏,王学礼,郝宪武.钢-混凝土连续混合梁结合段合理位置确定方法[J].公路交通科技,2012,29(12):90-95.
    [32]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996:11-32.
    [33]罗杰,张平.剪力连接件在组合结构桥梁中的设计与新理念[J].重庆建筑,2013,12(1):34-37.
    [34]林磊,郑建荣.钢-混凝土组合梁剪力连接件试验研究[J].科学技术与工程,2011,11(5):1125-1134.
    [35]陈玲珠,蒋首超,张洁.栓钉剪力连接件的承载能力研究综述[J].钢结构,2010,25(9):5-10.
    [36] Leonhardt E F, Andrae W, Andrae H P, et al. New Improved Shear Connector With High FatigueStrength for Composite Structures[C]. Beton--UndStahlbetonbau,1987,12:325-331.
    [37] Ahn J H,Kim S H,Jeong Y J.Shear behaviour of perfobond rib shear connector under static andcyclic loadings[J].Magazine of Concrete Research,2007,60(5):347-357.
    [38]林云,王清远. PBL剪力连接件力学性能研究进展[J].四川建筑科学研究,2012,38(5):24-30.
    [39]王振海,李乔,赵灿晖. PBL剪力连接件破坏形态的试验研究[J].公路交通科技,2012,29(8):64-70.
    [40]欧阳雯欣,王清远,石宵爽. PBL剪力连接件的疲劳试验与分析[J].浙江大学学报(工学版),2012,46(6):1090-1096.
    [41]张勇.南京长江第三大桥桥塔钢混结合段结构特性研究[D].成都:西南交通大学硕士学位论文,2006:3-9.
    [42]占玉林,赵人达,毛学明,等.钢-混凝土组合桥面板试验研究与理论分析[J].西南交通大学学报,2006,41(3):360-365.
    [43]梁会东.钢-混凝土接头试验研究与受力性能分析[D].成都:西南交通大学硕士学位论文,2006:1-10.
    [44]胡建华,侯文崎,黄琼.混合梁自锚式悬索桥钢混接合段结构形式的对比试验研究[J].铁道科学与工程学报,2007,4(5):28-34.
    [45]刘荣,余俊林,刘玉擎,等.鄂东长江大桥混合梁结合段受力分析[J].桥梁建设,2010,(3):33-35,62.
    [46]卫星,李小珍,李俊,等.钢-混凝土混合结构在大跨度连续刚构桥中的应用[J].中国铁道科学,2007,28(5):43-46.
    [47] Velendanda M R, Hosain M U. Behaviour of Perfobond Rib Shear Connector: Push-out Tests[J]. Canadian Journal of Civil Engineering.1992,19(1): l-10.
    [48] Oguejioforand E C, Hosain M U. A Parametric Study of Perfobond Rib Shear Connectors[J].Canadian Journal of Civil Engineering.1994,21(4):614-625.
    [49] Roberts W S, Heywood R J. Development and Testing of a New Shear Connector for SteelConcrete Composite Bridges[J]. Proceedings of the4th International Bridge EngineeringConference on Short and Medium Span Bridges. Halifax, Novia Scotia, Canada,1994:137-145.
    [50]平陽兵,天野玲子,大塚一雄.孔あき鋼板ジベルの疲勞特性[R].コソクト工学年次论文报告集,1997,19(2):1503-1508.
    [51] Hosaka T, Mitsuki K, Hiragi H, et al. An Experimental Study on Shear Characteristics ofPerfobond Strip and It's Rational Strength Equations[J]. Journal of the Structural Engineering,JSCE2000,46A:1593-1604.
    [52] Jiri S, Josef M, Ales K, et al. Perforated Shear Connector for Composite Steel and ConcreteBeams[C]. Proceedings of the Conference: Composite Construction in Steel and Concrete IV,2000:367-378.
    [53] Ushijima Y, Hosaka T, Mitsuki K, et al. An Experimental Study on Shear Characteristics ofPerfobond Strip and Its Rational Strength Equations[C]. Proceedings of the InternationalSymposium on Connections Between Steel and Concrete. University of Stuttgart,2001:1066-1075.
    [54] Medberry S B, Shahrooz B M. Perfobond Shear Connector for Composite Construction[J]. AISCChicago,2002:2-12.
    [55] Isabel Valente, Paulo J S. Experimental Analysis of Perfobond Shear Connection between Steeland Lightweight Concrete[J]. Journal of Constructional Steel Research,2004,60:465-479.
    [56] Peter C, Jiri S. Load Capacity of Perforated Shear Connector [J]. An International Journal forEngineering and Information Sciences,2006,1(3):23–30.
    [57] Ahn J H, Lee C G, Won J H, et al. Shear Resistance of the Perfobond-rib Shear ConnectorDepending on Concrete Strength and Rib Arrangement[J]. Journal of Constructional SteelResearch,2010,66:1295-1307.
    [58] Candido-Martins J P S, Costa-Neves L F, DaS Vellasco P C G. Experimental Evaluation of theStructural Response of Perfobond Shear Connectors[J]. Engineering Structures,2010,32:1976-1985.
    [59]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报,1999,27(6):61-66.
    [60]张清华,李乔,唐亮.桥塔钢-混凝土结合段剪力键破坏机理及极限承载力[J].中国公路学报,2007,20(1):85-90.
    [61]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究(I)——理论模型[J].土木工程学报,2011,44(4):71-77.
    [62]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设,2006,(6):1-4.
    [63]周伟翔.连续组合梁桥钢与混凝土连接试验研究[D].上海:同济大学硕士学位论文,2007:1-13.
    [64]胡建华,叶梅新,黄琼. PBL剪力连接件承载力试验[J].中国公路学报,2006,19(6):65-72.
    [65]李小珍,肖林,张迅,等.钢-混凝土结合段PBL剪力键承载力试验研究[J].哈尔滨工业大学学报,2009, S2(41):181-186.
    [66]许燕,刘平,王仪. ECC混凝土应用于PBL剪力键试验研究[J].混凝土,2010,(3):43-45.
    [67]蔡军伟,杨勇,周丕健,等.采用轻骨料砼的PBL剪力键受力性能[J].广西大学学报(自然科学版),2010,(1):39-43.
    [68]夏嵩,赵灿晖,张育智,等. PBL传剪器极限承载力的试验研究[J].西南交通大学学报,2009,44(2):166-170.
    [69] Oguejiofor E C,Hosain M U. Behaviour of Perfobond Rib Shear Connectors in CompositeBeams Full Size Tests [C]. Proceedings of1990CSCE Annual Conference and1st BiennialEnvironmental Speciality Conference, Hamilton, Ont, Cannada.1990,4(2):751-759.
    [70] Oguejiofor E C,Hosain M U. Behavior of Perfobond Rib Shear Connectors in Composite BeamsFull-size Tests[J]. Canadian Journal of Civil Engineering.1992,19(2):224-235.
    [71] Oguejiofor E C,Hosain M U. Tests of Full-size Composite Beams with Perfobond rib Connectors[J]. Canadian Journal of Civil Engineering.1995,22(3):80-92.
    [72] Roberts W S, Heywood R J. An Innovation to Increase the Competitiveness of Short Span SteelConcrete Composite Bridges[C]. Proceedings of Fourth International Conference on Short andMedium Span Bridges. Halifax, Novia Scotia, Canada,1994:1160-1171.
    [73] Machacek J, Studnicka J. Perforated Shear Connectors [J]. Steel and Composite Structures,2002,2(1):51-66.
    [74] Medberry S B, Shahrooz B M. Perfobond Shear Connector for Composite Construction [J].Engineering Journal,2002,39(1):2-12.
    [75] Kim H Y,Jeong Y J. Experimental Investigation on Behaviour of Steel-concrete CompositeBridge Decks with Perfobond Ribs [J]. Journal of Constructional Steel Research,2006,62(5):463-471.
    [76]强士中,卫星.重庆石板坡长江大桥加宽改造工程钢-砼接头试验设计研究报告[R].成都:西南交通大学,2005:1-22.
    [77]田军伟,郑罡,唐光武,等.重庆石板坡长江大桥复线桥钢-混凝土接头模型静载与疲劳试验研究[J].公路交通技术,2007,(2):113-117.
    [78]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究(II)——极限承载力[J].土木工程学报,2011,44(5):101-108.
    [79]占玉林,赵人达,毛学明,等.钢-混凝土组合桥面板试验研究与理论分析[J].西南交通大学学报,2006,41(3):360-365.
    [80]任剑.钢-混凝土组合结构疲劳性能试验研究[D].成都:西南交通大学硕士论文,2006:3-15.
    [81]胡建华,蒲怀仁. PBL剪力键钢混结合段设计与试验研究[J].钢结构,2007,22(2):62-68.
    [82]杨勇,祝刚,周丕健,等.钢板-混凝土组合桥面板受力性能与设计方法研究[J].土木工程学报,2009(12):135-141.
    [83] Kent L. ANSYS Workbench Tutorial Release13[M]. Mission: SDC Publications,2011:1-34.
    [84] Logan D L. A First Course in the Finite Element Method[M]. Boston: Cengage Learning,2012:572-598.
    [85] Jack Z, Fereydoon D. ANSYS Workbench Tutorial with Multimedia CD Release12[M]. Mission:SDC Publications,2009:1-7.
    [86] Oguejiofor E C, Hosain M U. Numerical Analysis of Push-out Specimens with Perfobond RibConnectors [J]. Computers&Struetures.1997,62(4):617-624.
    [87] Nishido T, Fujii K, Ariyoshi T. Slip Behavior of Perfobond Rib Shear Connectors and ItsTreatment in FEM [C]. Proceedings of the Conference: Composite Construction in Steel andConcrete IV, Banff, Alta, Canada,2000:379-390.
    [88]张清华,李乔,唐亮.剪力连接件的三维非线性仿真分析方法[J].西南交通大学学报,2005,40(5):595-599.
    [89]张霞.钢-混凝土组合梁剪力连接件的受力性能研究[D].重庆交通学院硕士学位论文,2005:2-8.
    [90] Suhaib Y K, Chen A, Liu Y Q. Finite Element Simulation and Parametric Studies of PerfobondRib Connector [J]. American Journal of Applied Sciences,2007,4(3):122-127.
    [91]刘玉擎.有限元弹簧在桥梁结构分析中的应用研究[J].桥梁建设,2005,6:19-22.
    [92]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J].工程力学,2009,26(4):105-112.
    [93]崔冰,赵灿辉,董萌,等.南京长江第三大桥主塔钢混结合段设计[J].公路,2009,5:100-107.
    [94]韩宝远.有限元法在钢混结构非线性分析中的应用[J].唐山学院学报,2008,21(4):43-45.
    [95]肖林,李小珍,卫星. PBL剪力键静载力学性能推出试验研究[J].中国铁道科学,2010,31(3):15-20.
    [96] Andra H P. Economical Shear Connectors with High Fatigue Strength[C]. IABSE Symposium,1990:167-172.
    [97] Klaiber F W, Wipf T J, Nauman J C, et al. Investigation of Two Bridge Alternatives for LowVolume Road-Beam In Slab Bridge[R]. Iowa State University of Sicience and Technology,2000:51-72.
    [98]杨勇,霍旭东,薛建阳,等.钢板-混凝土组合桥面板疲劳性能试验研究[J].工程力学,2011,28(8):37-44.
    [99] Kim J Y, Jeong Y J. Steel-concrete composite bridge deck slab with profiled sheeting [J]. Journalof Constructional Steel Research,2009,65:1751―1762.
    [100] Ahn Y H, Chungwook S, Jeong Y J, et al. Fatigue behavior and statistical evaluation of the stresscategory for a steel-concrete composite bridge deck [J]. Journal of Constructional Steel Research,2009,65:373―385.
    [101] Gukhman A A. Introduction to the Theory of Similarity [M]. Salt Lake City: Academic Press,1965:7-58.
    [102] Roger J. Designers' guide to eurocode4: design of composite buildings [M]. Telluride: ICEPublishing,2011:74-87.
    [103] Teodor M A, Ardeshir G. Theory of elasticity for scientists and engineers [M]. Ottawa:Birkh user,2012:223-263.
    [104] Timoshenko S P, Goodier J N. Theory of elasticity[M]. New York: Mcgraw-Hill,1951:55-125.
    [105] Yiannopoulos A C. A simplified solution for stresses in thick-wall cylinders for various loadingconditions[J]. Computers&Structures.1996,60(4):571-578.
    [106] Yiannopoulos A C. A general formulation of stress distribution in cylinders subjected tonon-uniform external pressure[J]. Jounal of Elasticity.1999,56(3):181-198.
    [107] Rafael J I J, Valéria de M I. Fourier analysis and partial differential equations[M]. Cambridge,Cambridge University Press,2012:79-131.
    [108] Arthur P B, Ken C, James D L. Elasticity in engineering mechanics[M]. New Jersey: Wiley&Sons, Inc,2011:65-146.
    [109] Douglas B M, Michael M, Cheung C K, et al. Getting started with maple [M]. Hoboken: JohnWiley&Sons Inc,2009:34-38.
    [110] William P F. Mathematical modeling with maple [M]. Boston: Cengage Learning,2011:285-429.
    [111] Inna S, Carlos L C. Maple and mathematica: a problem solving approach for mathematics [M].Wurzburg,2009:207-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700