用户名: 密码: 验证码:
脉动热管内脉动流动和传热的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉动热管是一种结构简单,成本廉价且性能高效的传热装置。然而其传热过程涉及气液两相传热,机理复杂,以至于到目前的理论研究仍未全面地解释其机理,对实验中的现象不能完全解释,从而不能对实际应用进行有效的理论指导和设计。
     本文研究了微型圆管内被施以不同周期性压力波的振荡流体的传热性能,以确定振荡压力是如何影响流体流动和传热性能的。本文以微型圆管内的液柱为研究对象,以圆管外壁施加恒定热通量、驱动压力梯度随时间呈周期性变化作为前提条件,对不可压缩的脉动流体在压力波为正弦波和三角波的情况展开研究。对两种波形下传热性能变化进行理论分析,求解其解析解,从数学上精确刻画两种波形对传热性能的影响,明确其影响因素,从而从理论上回答流体的脉动是提高传热还是降低传热的难题。同时,基于压力波在气相和液相的传播速度不同的事实,探索充液率影响OHP中振荡运动产生的数学模型,从理论上回答充液率上限和OHP最小启动功率的问题。
     通过研究所获得的解析解发现,流体的脉动对传热的影响,取决于流动流体本身特性参数:脉动频率,ω*,脉动压力的振幅,γ,和普朗特数Pr以及波形。对于微圆管内的层流脉动流动,给定适当的振荡压力可以提高传热系数。外部施加的振荡周期对流体传热特性的影响在低频下比高频下更强。三角波压力下和正弦波压力下的努塞尔数的分析和对比则表明,在低频下,三角波动对强化传热更具影响力,更容易达到强化传热的目的。随着无量纲脉动频率ω*的增长,波形对强化传热的影响逐渐减弱。此外,充液率影响0HP中振荡运动产生的数学模型更表明,在0HP内流体开始发生振荡运动所需的能量取决于充液率。当充液率增加时,需要增加热能输入以激发振荡运动;充液率存在上限且该上限依赖于工作流体的性质。
Oscillating heat pipe (OHP) is a heat transfer device which has unique features of simple structure, low cost and high performance. However, the heat transfer process in an OHP is involving liquid-vapor two-phase flow and oscillated forced convection. Fluid flow and heat transfer mechanisms have not been fully understood. In the current investigation, an analytical study of oscillating flow in a capillary tube was conducted to determine the oscillatory flow effect on the heat transfer coefficient and find whether there exists an optimum condition for the maximum heat transfer coefficient Based on a uniform heat flux boundary condition, the analytical solutions of temperature distribution and Nussek number for a pulsating laminar flow are obtained to analyze the effects of thermal and mechanical properties on the heat transfer performance. The reseach are foucus on the sine waveform and triangular waveform to find how the waveform affects the heat transfer coefficient in a capillary tube. Furthermore, based on the fact that pressure wave speed in vapor phase is different in liquid phase, a mathematical model predicting the filling ratio effect on the startup of oscillating motion in an OHP is established to slove the question about the relation of the mininmu heat toad vs. the filling ratio. The analytic solutions obtained in the current investigation show that not only the dimensionless pulsation frequency, ω*, amplitude, Y, and Prandtl number, Pr, are primary factors affecting the heat transfer performance of an oscillating flow in a capillary tube, but also fluid properties and oscillating waveform. More importantly, the triangular waveform of oscillating motion can result in a higher heat transfer coefficient by comparison to the sine waveform. Furthermore, a mathematical model that predicts the filling ratio effect on the start-up power of a one-turn OHP is presented. It shows that the heat input needed to start the oscillating motion in an OHP depends on the filling ratio. When the filling ratio increases, the heat input required to start up the oscillating motion increases. And there exists an upper limit, which is dependent on the properties of the working fluid.
引文
[1]Akachi H. Structure of a heat pipe. U.S., Patent 4,921,041.1990.
    [2]杨蔚原,张正芳,马同泽.脉动热管运行的可视化实验研究.工程热物理学报,2001,22,Suppl:117-120.
    [3]曲伟,马同泽.脉动热管的工质流动和传热特性实验研究.工程热物理学报,2002,23(5):596-598
    [4]杨蔚原,张正芳,马同泽.回路型脉动热管的运行与传热.上海交通大学学报,2003,37(9):1398-1401.
    [5]Kim J S, Bui N H, Jung H S, et al. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe. KSME international journal,2003, 17(10):1533-1542
    [6]Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes:Part A:parametric experimental investigations. Applied Thermal Engineering,2003,23(16): 2009-2020.
    [7]曲伟,范春利,马同泽.脉动热管的接触角滞后和毛细滞后阻力.工程热物理学报,2003,24(2):301-303.
    [8]徐进良,张显明,施慧烈.脉动热管中的热力型脉动现象及实验测量.自然科学进展,2004,14(4):436-441.
    [9]曹小林,席战利,周晋等.脉动热管运行可视化及传热与流动特性的实验研究.热能动力工程,2004,19(4):411-415.
    [10]曹小林,周晋,晏刚.脉动热管的结构改进及其传热特性的实验研究.工程热物理学报,2004,25(5):807-809.
    [11]Khandekar S. Thermo-hydrodynamics of closed loop pulsating heat pipes:[dissertation]. Germany:Universitaet Stuttgart,2004.
    [12]Khandekar S, Groll M. Insights into the performance modes of closed loop pulsating heat pipes and some design hints.18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, Guwahati, India.2006.
    [13]尹大燕,贾力.脉动热管传热性能的实验研究.工业加热,2006,35(6):23-25.
    [14]汪双凤,西尾茂文.加热段冷却段长度分配对脉动热管性能的影响.华南理工大学学报(自然科学版),2007,35(11):59-62.
    [15]曹小林,王伟,陈杰等.环路型脉动热管的工质流动和传热特性实验研究.热科学与技术,2007,6(1):56-59.
    [16]周岩,曲伟.脉动热管的毛细管结构和尺度效应实验研究.工程热物理学报,2007,28(4):646-648.
    [17]杨洪海,Groll M K S单回路闭式脉动热管内流型的实验研究.流体机械,2007,35(1):60-63.
    [18]徐荣吉,王瑞祥,丛伟等.脉动热管启动过程的实验研究.西安交通大学学报,2007,41(5):530-533.
    [19]徐荣吉,王瑞祥,丛伟等.脉动热管实验台的搭建及可视化实验研究.流体机械,2007,35(6):59-61.
    [20]Charoensawan P, Terdtoon P. Thermal performance of horizontal closed-loop oscillating heat pipes. Applied Thermal Engineering,2008,28(5):460-466.
    [21]Yang H, Khandekar S, Groll M. Operational limit of closed loop pulsating heat pipes. Applied Thermal Engineering,2008,28(1):49-59.
    [22]周岩,曲伟.微小型脉动热管的传热性能实验研究.中国科学院研究生院学报,2007,24(4):425-430.
    [23]傅烈虎.脉动热管传热性能实验研究.制冷,2008,27(2):7-11.
    [24]胡建军,徐进良.汞-水混合工质脉动热管实验研究.化工学报,2008,59(5):1083-1090.
    [25]Wilson C,. Borgmeyer B, Winholtz R A, et al. Visual observation of oscillating heat pipes using neutron radiography. Journal of Thermophysics and Heat Transfer,2008,22(3): 366-372.
    [26]李惊涛,韩振兴,李志宏等.脉动热管运行和传热特性的可视化实验研究.现代化工,2008,28(11):68-72.
    [27]李惊涛,李志宏,韩振兴等.脉动热管的流型及流向分析.热能动力工程,2009,24(3):347-351.
    [28]李惊涛,肖海平,董向元等.脉动热管内微尺度两相流的电容层析成像测量.中国电机工程学报,2009,29(17):103-107.
    [29]李惊涛,李志宏,韩振兴等.脉动热管流型的电容层析成像识别及热管换热特性.动力工程,2009,29(1):73-77.
    [30]李燕,贾力.脉动热管传热性能实验研究.中国电机工程学报,2009,29(11):75-80.
    [31]杨洪海,韩洪达.倾斜角及充液率对脉动热管运行性能的影响.动力工程,2009,29(2):159-162.
    [32]杨洪海,张晨,Manfred G圆管式及方槽板式脉动热管的比较.流体机械,2009,37(6):70-72.
    [33]曹小林,王伟,陈杰等.环路型脉动热管启动特性的试验研究.流体机械,2009,37(5):57-60.
    [34]冯剑超,曲伟.纳米流体脉动热管的性能实验.中国科学院研究生院学报,2009,26(1):50-57.
    [35]Khandekar S, Gautam A P, Sharma P K. Multiple quasi-steady states in a closed loop pulsating heat pipe. International Journal of Thermal Sciences,2009,48(3):535-546.
    [36]林梓荣,汪双凤,张伟保等.功能热流体强化脉动热管的热输送特性.化工学报,2009,60(6):1373-1379.
    [37]汪双凤,林梓荣,张伟保.微胶囊流体脉动热管的热输送性能.华南理工大学学报,2009,37(3):58-61.
    [38]杨洪海,Khandekar S, Groll M多弯头数平板状闭式回路脉动热管流动及试验运行机理的可视化试验研究.流体机械,2009,37(3):56-59.
    [39]杨洪海,万勃,韩洪达.常规工况下多弯头数脉动热管运行性能的实验研究.热能动力工程,2009,24(1):77-80.
    [40]Wang D, Cui X. Experiment research on pulsating heat pipe with different mixtures working fluids. The 21st International Symposium on Transport Phenomena.;-2010.
    [41]Lips S, Bensalem A, Bertin Y, et al. Experimental evidences of distinct heat transfer regimes in pulsating heat pipes (PHP). Applied Thermal Engineering,2010,30(8):900-907.
    [42]Smoot C D, Ma H B. An experimental investigation of hybrid oscillating heat pipe. Frontiers in Heat Pipes (FHP),2011,2(2).
    [43]Mameli M, Khandekar S, Marango M. An exploratory study of a pulsating heat pipe operated with a two component fluid mixture. Proceedings of the 21st National and 10th ISHMT-ASME Heat and Mass Transfer conference.2011.
    [44]韩洪达,杨洪海,尹世永等.脉动热管用于空调系统排风余热-冷-回收初探.设备开发暖通空调HV&AC.2009,39(5):109-110
    [45]Hemadri V A, Gupta A, Khandekar S. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations. Applied Thermal Engineering,2011,31(6): 1332-1346.
    [46]Pastukhov V G, Maydanik Y F. Development and experimental investigation of a heat-transfer, system on the basis of a loop and a pulsating heat pipe,16th International Heat Pipe Conference (16th IHPC),Lyon, France,2012.
    [47]Okazaki S, Fuke H, Ogawa H, et al. Development of a meter-scale U-shaped Oscillating Heat Pipe for GAPS.42nd International Conference on Environmental Systems.2012.
    [48]Narasimha K R, Sridhara S N, Rajagopal M S, et al. Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe. Journal of Applied Fluid Mechanics,2012,5(2):33-42.
    [49]Yoon I, Wilson C, Borgmeyer B, et al. Neutron phase volumetry and temperature observations in an oscillating heat pipe. International Journal of Thermal Sciences,2012, 60:52-60.
    [50]Qu J, Wu H, Cheng P. Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes. International Journal of Heat and Mass Transfer,2012.
    [51]Taslimifar M, Mohammadi M, Afshin H, et al. Overall thermal performance of ferrof luidic open loop pulsating heat pipes:An experimental approach. International Journal of Thermal Sciences,2013,65:234-241.
    [52]Verma B, Yadav V L, Srivastava K K. Experimental Studies on Thermal Performance of a Pulsating Heat Pipe with Methanol/DI Water. Journal of Electronics Cooling and Thermal Control,2013,3:27-34
    [53]Chamkha A J. Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. International journal of heat and fluid flow,2000,21(6): 740-746.
    [54]Faghri A, Zhang Y. Thermal modeling of unlooped and looped pulsating heat pipes. J. Heat Transfer,2001,123:1159-1172.
    [55]Zhang Y, Faghri A. Heat transfer in a pulsating heat pipe with open end. International Journal of Heat and Mass Transfer,2002,45(4):755-764.
    [56]Khandekar S, Charoensawan P, Groll M, et al. Closed loop pulsating heat pipes part b:visualization and semi-empirical modeling. Applied Thermal Engineering,2003,23(16): 2021-2033.
    [57]Du X Z, Zhao T S. Analysis of film condensation heat transfer inside a vertical micro tube with consideration of the meniscus draining effect. International journal of heat and mass transfer,2003,46 (24):4669-4679.
    [58]曲伟,马同泽.环路型脉动热管的稳态运行机制.工程热物理学报,2004,25(2):323-325.
    [59]Elgsaeter S M. Modelling and control of growing slugs in horizontal multiphase pipe flows. Modeling, Identification and Control,2006,27(3):157-169.
    [60]苏磊,张红.回路脉动热管运行稳定性分析.化工学报,2007,58(8):1931-1934
    [61]曲伟,周岩,马同泽.高功率脉动热管的流动和传热特性.工程热物理学报,2007,28(2):328-330
    [62]曲伟,周岩,马鸿斌.尺度效应对脉动热管启动和运行的影响.工程热物理学报,2007,28(1):140-141
    [63]杨洪海,Khandekar S, GROLL M.单回路闭式脉动热管内流型的模拟研究.流体机械,2007,35(12):58-60
    [64]Qu W, Ma H B. Theoretical analysis of startup of a pulsating heat pipe. International Journal of Heat and Mass Transfer,2007,50(11):2309-2316.
    [65]Ma H B, Borgmeyer B, Cheng P. Heat transport capability in an oscillating Heat Pipe. Journal of Heat Transfer,2008,130:081501.
    [66]Khandekar S, Groll M. Roadmap to realistic modeling of closed loop pulsating heat pipes.Proceedings of the 9th International Heat Pipe Symposium.2008:17-20.
    [67]苏磊,张红.回路型脉动热管稳定运行传热模型的建立及分析.化工学报,2008,59(11):2718-2725
    [68]李玉华,曲伟,周岩.角管脉动热管的流动和传热分析.工程热物理学报,2008,29(8):1367-1369
    [69]傅烈虎.脉动热管的力学分析.制冷,2008,27(4):6-11.
    [70]傅烈虎,王瑞祥,李青冬等.基于中心复合设计的平板型脉动热管传热性能研究.西安交通大学学报,2008,42(9):1102-1106
    [71]Chen P H, Lee Y W, Chang T L. Predicting thermal instability in a closed loop pulsating heat pipe system. Applied Thermal Engineering,2009,29(8):1566-1576.
    [72]Song Y, Xu J. Chaotic behavior of pulsating heat pipes. International Journal of Heat and Mass Transfer,2009,52(13):2932-2941.
    [73]杨彬,曲伟.平板脉动热管的流动和传热特性研究.工程热物理学报,2009,30(5):827-830
    [74]Yuan D, Qu W, Ma T. Flow and heat transfer of liquid plug and neighboring vapor slugs in a pulsating heat pipe. International Journal of Heat and Mass Transfer,2010,53(7): 1260-1268.
    [75]Das S P, Nikolayev V S, Lefevre F, et al. Thermally induced two-phase oscillating flow inside a capillary tube. International Journal of Heat and Mass Transfer,2010,53(19): 3905-3913.
    [76]Dobson R T, Swanepoel G. An experimental investigation of the thickness of the liquid-film deposited at the trailing end of a liquid plug moving in the capillary tube of a pulsating heat pipe. Frontiers in Heat Pipes (FHP),2010, 1(1).
    [77]Khandekar S, Silwal V, Bhatnagar A, et al. Global effectiveness of pulsating heat pipe heat exchangers:modeling and experiments. Heat Pipe Science and Technology. An International Journal,2010, 1(3):279-302
    [78]Ma H B, Thompson S. A statistical analysis of temperature oscillations on a flat-plate oscallating heat pipe with tesla-type check valves. Frontiers in Heat Pipes (FHP),2012, 2(3).
    [79]E J(鄂加强),ZHU R(朱蓉甲),CHEN J(陈健美)et al. Oscillation heat transfer dynamic model for new type oscillation looped heat pipe with double liquid slugs. J. Cent. South Univ.,2012,19(11):3194-3201
    [80]Chiang C M, Chien K H, Chen H M, et al. Theoretical study of oscillatory phenomena in a horizontal closed-loop pulsating heat pipe with asymmetrical arrayed minichannel. International Communications in Heat and Mass Transfer,2012,39(7):923-930.
    [81]Borkar R S, Pachghare P R. State of The Art on Closed Loop Pulsating Heat Pipe. International Journal of Emerging Technology and Advanced Engineering,2012, 2(10):202-207.
    [82]Liu X D, Chen Y P, Shi M H. Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). International Journal of Thermal Sciences,2013,65:224-233
    [83]Dilawar M, Pattamatta A. A parametric study of oscillatory two-phase flows in a single turn Pulsating Heat Pipe using a non-isothermal vapor model. Applied Thermal Engineering, 2013,51 (1-2):1328-1338
    [84]杨洪海,Khandekar S, Manfred G脉动热管技术的研究现状及前沿热点.东华大学学报(自然科学版),2006,32(3):134-138
    [85]曹小林,王伟,陈杰.脉动热管的研究综述.能源研究与利用,2006,5:17-19
    [86]方书起,史启辉.脉动热管及其传热特性影响因素研究进展.现代化工,2007,27(2):27-30
    [87]Zhang Y, Faghri A. Advances and unsolved issues in pulsating heat pipes. Heat transfer engineering,2008,29(1):20-44.
    [88]林梓荣,汪双凤,吴小辉.脉动热管技术研究进展.化工进展,2008,27(10):1526-1532
    [89]Richardson E G, Tyler E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established. Proceedings of the Physical Society, London,1929,42:1-15.
    [90]Sellars J R, Tribus M, Klein J..Heat transfer to laminar flow in a round tube or flat conduit:the Graetz probem extended. WADC Technical Reports,1954.
    [91]Womersley J R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. The Journal of physiology,1955,127(3): 553-563.
    [92]Christiansen E B, Jensen G E, Tao F S. Laminar flow heat transfer. AIChE Journal,1966, 12(6):1196-1202.
    [93]Shemer L, Kit E, Wygnanski I. On the impedance of the pipe in laminar and turbulent pulsating flows. Experiments in fluids,1985,3(4):185-189.
    [94]Siegel R. Influence of oscillation-induced diffusion on heat transfer in a uniformly heated channel. Journal of Heat Transfer (Transcations of the ASME (American Society of Mechanical Engineers), Series C);(United States),1987,109(1):244-247.
    [95]Kim S Y, Kang B H, Hyun J M. Heat transfer in the thermally developing region of a pulsating channel flow. International journal of heat and mass transfer,1993,36(17): 4257-4266.
    [96]Zhao T, Cheng P. A numerical solution of laminar forced convection in a heated pipe subjected to a reciprocating flow. International journal of heat and mass transfer,1995, 38(16):3011-3022.
    [97]Zhao T S, Cheng P. Oscillatory heat transfer in a pipe subjected a reciprocating flow. ASME Journal of Heat Transfer,1996,118:592-598.
    [98]Zhao T S, Cheng P. The friction coefficient of a fully-developed laminar reciprocating flow in a circular pipe. International Journal of Heat and F]uid Flow,1996,17(2):167-172
    [99]Guo Z, Sung H J. Analysis of the Nusselt number in pulsating pipe flow. International journal of heat and mass transfer,1997,40(10):2486-2489.
    [100]Guo Z, Kim S Y, Sung H J. Pulsating flow and heat transfer in a pipe partially filled with a porous medium. International journal of heat and mass transfer,1997,40(17): 4209-4218.
    [101]Moschandreou T, Zamir M. Heat transfer in a tube with pulsating flow and constant heat flux. International journal of heat and mass transfer,1997,40(10):2461-2466.
    [102]Sert C, Beskok A. Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels. Journal of Heat Transfer,2003,125(3):403-412
    [103]Waters S L, Pedley T J. Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube. Journal of Fluid Mechanics,1999,383(1): 327-352.
    [104]Ainola L, Koppel T, Laehdeniemi M. Heat transfer in the thermally developing region for pulsating tube flow, Proceedings of the Estonian Academy of Sciences, Engineering, 1999,5:41-52
    [105]Yakhot A, Arad M, Ben-Dor G. Numerical investigation of a laminar pulsating flow in a rectangular duct. International journal for numerical methods in fluids,1999,29(8): 935-950.
    [106]Hemida H N, Sabry M N, Abdel-Rahim A, et al. Theoretical analysis of heat transfer in laminar pulsating flow. International journal of heat and mass transfer,2002,45 (8): 1767-1780.
    [107]Habib M A, Attya A M, Eid A I, et al. Convective heat transfer characteristics of laminar pulsating pipe air flow. Heat and mass transfer,2002,38(3):221-232.
    [108]Wang X, Zhang N. Numerical analysis of heat transfer in pulsating turbulent flow in a pipe. International journal of heat and mass transfer,2005,48(19):3957-3970.
    [109]Yu J C, Li Z X, Zhao T S. An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux. International journal of heat and mass transfer, 2004,47(24):5297-5301.
    [110]Akdag U, Ozguc A F. Experimental investigation of heat transfer in oscillating annular flow. International journal of heat and mass transfer,2009,52(11):2667-2672.
    [111]Pendyala R, Jayanti S, Balakrishnan A R. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations. Heat and Mass Transfer, 2008,44(7):857-864.
    [112]Elshafei E A M, Safwat Mohamed M, Mansour H, et al. Experimental study of heat transfer in pulsating turbulent flow in a pipe. International Journal of Heat and Fluid Flow,2008, 29(4):1029-1038.
    [113]Mehta B, Khandekar S. Effect of periodic pulsations on heat transfer in simultaneously developing laminar flows:a numerical study. Proceeding of International Heat Transfer Conference,2010, IHTC14-22519
    [114]Shailendhra K, AnjaliDevi S P. On the enhanced heat transfer in the oscillatory flow of liquid metals. Journal of Applied Fluid Mechanics,2011,4(2):57-62.
    [115]Modern Mathematics Handbook Compilation Committee. Modern Mathematics Handbook (classical mathematics). Huazhong University of Science and Technology Press, 2000:487-491
    [116]Zhao N, Ma H B, Pan X. Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, Denver, Colorado, USA,2011, IMECE2011-63632
    [117]Groll M, Khandekar S. State of the art on pulsating heat pipes. Keynote Paper, ASME, 2nd Int. Conf. on Microchannels and Minichannels,2004
    [118]Khandekar S, Groll M, Charoensawan P, et al. Closed and open loop pulsating heat pipes, Proc.13th Int. Heat Pipe Conf.2004:38
    [119]Yang H, Khandekar S, Groll M. Performance characteristics of pulsating heat pipes as integral thermal spreaders. International Journal of Thermal Sciences,2009,48(4): 815-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700