用户名: 密码: 验证码:
涡轮泵及诱导轮流动不稳定性及空化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在国家自然科学基金重点项目“水力机械空化特性及对策”(51239005)、国家自然科学基金项目“离心泵进口流场畸变诱导低频频率特性的研究”(51349004)和江苏省博士创新计划“离心泵内部低频汽蚀机理及规律研究”(CXLX11_0577)的资助下开展工作的。
     涡轮泵是液体火箭动力装置系统的重要组件之一,必须满足在高温高压的苛刻环境下安全工作的需要。随着航天技术的进一步发展,涡轮泵的高效、高抗空化性及其稳定运行是火箭动力装置的关键指标。目前,在火箭发动机涡轮泵前加装诱导轮已成为保证涡轮泵获取优越空化性能的关键技术。通过在涡轮泵前加装诱导轮,主要目的是对推进剂进行加压,从而产生一定的扬程来提高涡轮泵叶轮入口压力,进而可避免涡轮泵内部发生空化破坏和产生不稳定流动现象,以提高涡轮泵的抗空化性能。因此,本文基于数值模拟和实验相结合的方法对涡轮泵及诱导轮的水力性能、空化特性及其不稳定流动特性进行了系统的研究。本文的主要工作和创新性成果有:
     1.总结了火箭发动机涡轮泵及诱导轮的国内外研究现状:包括诱导轮的类型、内部流动理论及其内部流动不稳定现象,例如,旋转失速、旋转颤振、喘振现象、旋转空化、不对称叶片空化、回流漩涡空化及高阶旋转不稳定现象的发生条件,以及它们相应的特性。
     2.总结了意大利比萨航空推进公司Alta空化泵转子动力测试系统CPRTF的主要测试设备、测试功能及相关试验内容的实验步骤:如水力性能测试、空化性能试验以及压力脉动试验等。同时,也介绍了涡轮泵及诱导轮内部非定常流动与空化流动的数值模拟理论与方法。
     3.系统地研究了预测火箭涡轮泵及诱导轮内部流动及其水力性能的方法:考虑了不同网格、边界条件、湍流模型、进出管道长度、进出口静压读取位置以及工作介质温度对DAPROT3诱导轮与VAMPIRE涡轮泵水力性能的影响,并通过与其相应的试验数据对比。研究结果表明,DAPROT3诱导轮性能受湍流模型、进出口管道长度、进出口静压采集位置、叶顶间隙,以及温度的影响较大,尤其在小流量下这一影响更明显;基于较短的进出口管道与叶顶间隙较小(0.8mm)的DAPROT3诱导轮扬程-流量曲线明显较高于进出口管道较长且叶顶间隙较大的DAPROT3诱导轮扬程-流量曲线。但这些因素对VAMPIRE涡轮泵水力性能的计算结果影响较小。结果表明DAPROT3诱导轮与VAMPIRE涡轮泵水力性能的计算结果与其试验结果吻合较好。
     4.针对不同温度对各工况下VAMPIRE涡轮泵与2种不同叶顶间隙的DAPROT3诱导轮的空化流动同时进行了数值模拟与实验研究。结果表明,在小流量工况下,叶顶间隙为0.8mm的DAPROT3诱导轮在温度升高时其整个空化性能影响不大;随着叶顶间隙的增加,DAPROT3诱导轮内部发生了不稳定空化现象,使得诱导轮扬程出现振荡变化的趋势。另外,针对DAPROT3诱导轮的内部空化流动数值模拟结果与空化可视化试验研究结果进行对比,发现DAPROT3诱导轮叶片上的空泡分布与其空化可视化实验中各叶片前缘及叶片背面出现的空泡体积分布规律吻合较好。而在小流量下与大流量下VAMPIRE涡轮泵的空化特性出现明显不同,且受温度的影响较显著。
     5.首次通过数值模拟与实验相结合的方法,研究低温与高温下加装与不加装DAPROT3诱导轮对VAMPIRE涡轮泵的水力性能与空化性能的影响,发现加装DAPROT3诱导轮对各小流量工况下VAMPIRE涡轮泵的扬程影响较大,VAMPIRE涡轮泵的空化性能得到明显改善。
     6.首次获得基于Rayleigh-Plesset均相流空化模型预测常温下VAMPIRE涡轮泵扬程下降3%以前的空化性能相对准确,且预测高温下VAMPIRE涡轮泵扬程下降5%相对准确的结论;但当涡轮泵内部发生较严重的空化,扬程下降量为5%-10%时,该均相流空化模型预测涡轮泵的性能与其试验结果存在一定的偏差。可见,基于Rayleigh-Plesset均相流空化模型在高温与空化发生较严重时,其预测结果有局限性。
     7.通过DAPROT3诱导轮叶片内部非定常数值模拟与压力脉动实验研究,首次针对不同工况下DAPROT3诱导轮内部不稳定流动现象进行了分类研究。结果表明,在小流量工况下,DAPROT3诱导轮中轴频及其以下的频率占主导地位,说明小流量工况下其内部存在较复杂的不稳定流动现象。
     8.针对IS65-50-160型低比转速离心泵内部流动不稳定现象与空化流动进行数值模拟与试验研究,得到小流量下模型泵空化性能曲线上在扬程突降前存在的-段匍匐下降区域与σ/2a的关系。通过压力脉动试验发现,各小流量工况下,模型离心泵进口管道内的压力脉动主频均在48.2Hz-51.2Hz范围内,说明此时泵内产生了旋转空化现象。
     9.综合小流量工况下IS65-50-160型低比转速离心泵与VAMPIRE涡轮泵内部空化流动的数值模拟与试验研究结果,可发现它们内部均出现了不稳定空化现象,例如旋转空化或不对称叶片空化现象等。
This work is supported by the State Key Program of National Natural Science Funds of China "Cavitation Characteristics and its Countermeasures of Hydraulic Machinery"(Grant No.51239005), National Natural Science Funds of China "Low Frequency Characteristics Induced by Inlet Deformation Within Centrifugal Pumps"(Grant No.51349004), and Jiangsu Provincial Project for Innovative Postgraduates "The Mechanism and Characteristics of Low-Frequency Cavitation in the Centrifugal Pump"(Grant No. CXLX11_0577).
     As one of the critical components of the liquid propellant rocket engines, the turbopump should be capable of meeting the requirement of operating under high pressure and temperature condition. As the development of aerospace technology, the turbopump with high efficiency and cavitation performance becomes one of the key impacts of the space rocket transportation system. Current rocket turbopump often employs an inducer upstream to improve the suction performances. The main role of an inducer is to pressurize the flow sufficiently to increase the head as well as the inlet pressure of the impeller of the turbopump to avoid unacceptable cavitation and flow instabilities. Therefore, the hydraulic performances, cavitation characteristics associated with the flow instabilities in the inducer and the turbopump were studied based on CFD and experimental methods in this dissertation. The main work and creative achievements are:
     1. The present research work both at home and abroad on the rocket engine inducer and turbopump has been systematically reviewed, including the type of inducer, the internal flow theory as well as the onset and the characteristics of flow instabilities, for example, rotating stall, rotating chock, surge, rotating cavitation, asymmetric blade cavitation, backflow vortex cavitation and high-order rotating instabilities.
     2. The main test facilities, test items in the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Alta, Pisa, Italy, as well as the corresponding experimental procedures such as hydraulic performances, cavitation performances and pressure fluctuation were systematically overviewed. Meanwhile, the basic theory and approaches for numerically simulating the unsteady flow and cavitating flow in the turbopump and inducer has been also briefly introduced.
     3. The numerical approach of predicting the internal flow and the hydraulic performances of the VAMPIRE turbopump and DAPROT3inducer under different working fluid temperatures were systematically investigated by considering the following factors:the mesh elements, the boundary conditions, turbulence models, the lengths of inlet and outlet pipes, and the locations of the inlet and outlet pressure taps. The results showed that:these factors such as turbulence models, the lengths of the inlet and outlet pipes, the positions of the inlet and outlet pressure taps for measuring the pressure as well as the working fluid temperatures, had a significant influence on the hydraulic performances of the DAPROT3inducer, especially at low flow rates; the H-Q curves of the DAPR0T3inducer based on the short inlet and outlet pipes as well as the small tip clearance (0.8mm) is positioned above those based on the long inlet and outlet pipes. However, these above factors had less effect on predicting the hydraulic performances of the VAMPIRE Turbopump. Finally, the hydraulic performances of the VAMPIRE Turbopump and the DAPROT3inducer predicted by CFD are in good agreement with their corresponding experimental data.
     4. The cavitating flow in both the VAMPIRE turbopump and the DAPROT3inducer with two different tip clearances under different water temperatures were investigated for a wide range of flow rates based on numerical and experimental methods. It can be found that at low flow rates, the temperature increase has less effect on the suction performances of the DAPROT3inducer with the tip clearance of0.8mm; as the tip clearance increased, the cavitation induced flow instabilities occurs, causing an oscillating portion to the head-drop curve of the DAPROT3inducer. In addition, in comparison with the cavitating flow patterns on each blade leading edge based on the flow visualization test on DAPROT3inducer, it can be found that the vapor volume distribution obtained from the numerical simulations were in good agreement. The cavitation characteristics of the VAMPIRE turbopump at low flow rates are different from those at high flow rates, which could be easily affected by the working fluid temperature.
     5. The pumping and the suction performances of the VAMPIRE turbopump with or without the DAPROT3inducer under low and high water temperatures have been investigated based on CFD and experimental methods, and it could be found that the hydraulic performances of the VAMPIRE turbopump with the DAPROT3inducer has obviously changed, especially at low flow rates. The cavitation performances of the VAMPIRE turbopump have been significantly improved.
     6. The homogeneous cavitation model based on Rayleigh-Plesset equations could provide a more accurate prediction of the cavitating flow in the VAMPIRE turbopump as the head-drop was less than3%at low temperature, while for a high temperature that amount of the head-drop was less than5%. However, this cavitation model has the limitation in predicting the serious cavitation occurring in the turbopump when its head-drop amount was in the range between5%and10%.
     7. The numerical simulations for the unsteady flow in the DAPROT3inducer were carried out for different flow rates. The characteristics of flow instabilities in the DAPROT3inducer were first clarified in present study. Meanwhile, a series of pressure fluctuation tests were further carried out to investigate the cavitation induced flow instabilities. It can be found that the main frequencies in the DAPROT3inducer were or even lower than the rotational frequency in low flow rates, indicating the complex flow phenomena like flow instability occurring.
     8. The characteristics of flow instabilities as well as the cavitation phenomenon in a centrifugal pump typed IS65-50-160operating at low flow rates were studied by experimental and numerical methods, respectively. Cavitation proved to occur over a wide range of low flow rates, producing a characteristic creeping shape of the head-drop curve and depend on the parameter σ/2α, which is the relationship between the flow incidence angle and cavitation number. The experimental results of the pressure fluctuation showed that the unsteady behavior of the internal flow in the centrifugal pump operating at low flow rates had the characteristics of a peculiar low-frequency oscillation with the frequencies ranged from48.2Hz to51.2Hz. The pressure fluctuations were closely correlated to the flow instabilities induced by the occurrence of cavitation phenomena at low flow rates such as rotating cavitation.
     9. Based on numerical and experimental results of the cavitating IS65-50-160centrifugal pump and the cavitating VAMPIRE turopump, it could be found that the cavitation instabilities such as rotating cavitation or the asymmetric blade cavitation had occurred in both of them.
引文
[1]Cervone A, Torre L, Pasini A et al. Cavitation and turbopump hydrodynamics research at ALTA S.p.A. and Pisa University [C]. Proceedings of 4th International Symposium on Fluid Machinery and Fluid Engineering, NO.4ISFMFE-IL16,2008, Beijing, China
    [2]d'Agostino L. Turbomachinery developments and cavitation [C]. VKI Lecture Series on Fluid Dynamics Associated to Launcher Developments, STO-AVT-LS-206, Paper No.12-1, von Karman Institute of Fluid Dynamics, Rhode-Saint-Genese,2013, Belgium
    [3]荣克林,张建华,马道远等.CZ-2F火箭POGO问题研究[J].载人航天,2011,(4):8-18
    [4]谭永华.大推力液体火箭发动机研究[J].宇航学报,2013,34(10):1303-1308
    [5]窦唯,刘占生.液体火箭发动机涡轮泵轴承支承刚度及轴向位置对转子系统临界转速的影响[J].导弹与航天运载技术,2013,326(3):18-22
    [6]Valentini D, Pasini A, Pace G et al. Experimental validation of a reduced order for radial turbopump design [C]. Proceedings of 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2013, San Jose, CA
    [7]陈晖,张恩昭,李斌.诱导轮旋转空化-诱发不稳定现象的研究与进展[J].推进技术,2006,(2):1-5
    [8]陈晖,李斌,张恩昭等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术,2009,30(4):390-395
    [9]陈晖,张恩昭,谭永华等.高速平板诱导轮的结构设计与分析[J].火箭推进,2009,35(3):1-5
    [10]张召磊,张楠,窦唯等.诱导轮对高速离心泵性能的影响分析[J].火箭推进,2011,37(3):26-31
    [11]d'Agostino L, Torre L, Pasini A et al. A reduced order model for preliminary design and performance prediction of tapered inducers [C]. Proceedings of 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2008, Honolulu, Hawaii, USA
    [12]d'Agostino L, Torre L, Pasini A et al. A reduced order model for preliminary design and performance prediction of tapered inducers:comparison with numerical simulations [C]. Proceedings of 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 5119,2008, Hartford, CT, USA
    [13]d'Agostino L, Torre L, Pasini A et al. On the preliminary design and noncavitating performance of tapered axial inducers [J]. ASME J. Fluids Eng.,2008,130(11): 111303
    [14]Torre L, Pasini A, Cervone A et al. Experimental performance of a tapered axial inducer:comparison with analytical predictions [C]. Proceedings of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2009, Denver, Colorado
    [15]Torre L, Pasini A, Cervone A et al. Effect of tip clearance on the performance of a three-bladed axial inducer [J]. AIAA Journal of Propulsion and Power,2011,27(4): 890-898
    [16]Cervone A, Pace G, Torre L et al. Effects of the leading edge shape on the performance of an axial three bladed inducer [C]. Proceedings of 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-14,2012, Honolulu, HI, USA
    [17]Kim J H, Acosta A J. Unsteady flow in cavitatingturbopumps [J]. ASME J. Fluids Eng.,1975,97(4):412-417
    [18]Brennen C E. Hydrodynamics of Pumps [M]. Concepts ETIInc. and Oxford University Press,1994
    [19]Grist E. Cavitation and the Centrifugal Pump [M]. USA:Tarloy Francis,1998
    [20]Brennen C E. A review of the dynamics of cavitating pumps [C]. IOP Conference Series:Earth and Environmental Science,2012
    [21]陈红勋,林育战,朱兵.缝隙引流叶轮离心泵空化试验研究[J].排灌机械工程学报,2013,31(7):570-574
    [22]施卫东,李通通,张德胜等.不同叶顶间隙对轴流泵空化性能及流场的影响[J].华中科技大学学报(自然科学版),2013,41(4):21-25
    [23]王勇.离心泵空化及其诱导振动噪声的研究[D].镇江,江苏大学,博士论文,2011
    [24]王勇,刘厚林,袁寿其等.叶片数对离心泵空化诱导振动噪声的影响[J].哈尔滨工程大学学报,2012,33(11):1405-1409
    [25]王勇,刘厚林,袁寿其等.不同叶片包角离心泵空化振动和噪声特性[J].排灌机械工程学报,2013,31(5):390-393
    [26]高波,杨敏官,李忠等.空化流动诱导离心泵低频振动的实验研究[J].工程热物理学报,2012,33(6):965-968
    [27]靳栓宝,王永生.基于三元设计及数值试验轴流泵抗空化性能[J].排灌机械 工程学报,2013,31(9):763-767
    [28]Huang J D, Aoki M, Zhang J T. Alternate blade cavitationon inducer [J]. JSME International Journal, Series B,1998,41:1-6
    [29]Yury A, Fujii A, Tsujimoto Y. Rotating choke in cavitatingturbopump inducer [J]. ASME J. Fluids Eng.,2004,126:87-93
    [30]Hashimoto T, Yoshida M, Watanabe M. Experimental study on rotating cavitation of rocket propellant pump inducers [J]. AIAA Journal of Propulsion and Power, 1997,13(4):488-494
    [31]Braisted D, Brennen C E. Observations on instabilities of cavitating inducers [C]. Joint Symposium on the Design and Operation of Fluid Machinery, New York, USA,1978
    [32]Zoladz T F. Overview of rotating cavitation and cavitation surge in the fastrac engine LOX turbopump [C]. Proceedings of 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2000, Huntsville, Alabama
    [33]Tan D Y, Miorini R L, Keller J et al. Flow visualization using cavitation within blade passage of an axial waterjet pump rotor [C]. Proceedings of ASME Fluids Engineering Division Summer Meeting (FEDSM2012),2012,1:395-404, Puerto Rico, USA
    [34]Cervone A, Torre L, Pasini A et al. Cavitation and flow instabilities in a 4-bladed axial inducer designed by means of a reduced order analytical model [C]. Proceedings of 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2011, San Diego, California, USA
    [35]Pasini A, Torre L, Cervone A et al. Rotordynamic forces on a four bladed inducer [C].46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2010, Nashville, USA
    [36]Pasini A, Torre L, Cervone A et al. Charaterization of the rotordynamic forces on tapered axial inducers by means of a rotating dynamometer and high-speed movies [C]. WIMRC 3rd International Cavitation Forum,2011, UK
    [37]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    [38]陈杰,黄国平,梁德旺等.叶片数对微型斜流叶轮性能的影响[J].航空动力学报,2008,23(9):1707-1712
    [39]姚志峰,王福军,肖若富等.离心泵压力脉动测试关键问题分析[J].排灌机械工程学报,2010,28(3):219-223
    [40]袁建平,付燕霞,刘阳等.基于大涡模拟的离心泵蜗壳内压力脉动特性分析[J].排灌机械工程学报,2010,28(04):310-314
    [41]裴吉.离心泵瞬态水力激振流固耦合机理及流动非定常性研究[D].镇江,江苏大学,博士论文,2013
    [42]袁寿其,黄萍,骆寅等.基于小波包分解的离心泵关死点流动状态[J].排灌机械工程学报,2011,29(4):282-286
    [43]袁寿其,梁赞,袁建平等.离心泵进口回流流场特性的数值模拟及试验[J].排灌机械工程学报,2011,29(6):461-465
    [44]李红,冯世峰,王涛等.轴向间隙对纸浆泵性能的影响规律[J].排灌机械工程学报,2011,29(3):190-193
    [45]谈明高,王勇,刘厚林等.叶片数对离心泵内流诱导振动噪声的影响[J].排灌机械工程学报,2012,31(2):131-135
    [46]袁建平,金荣,陈红亮等.离心泵用赫姆霍兹水消声器声学特性数值模拟[J].排灌机械工程学报,2012,30(02):141-146
    [47]王凯,刘厚林,袁寿其等.离心泵多工况水力性能优化设计方法[J].排灌机械工程学报,2012,30(1):20-24
    [48]董亮,刘厚林,谈明高等.离心泵全流场与非全流场数值计算[J].排灌机械工程学报,2012,30(3):274-278
    [49]李亚林,袁寿其,汤跃等.离心泵内流场PIV测试中示踪粒子跟随性的计算[J].排灌机械工程学报,2012,30(1):6-10
    [50]崔宝玲,黄达钢,史佩琦等.叶顶间隙对低比转数半开式离心泵性能的影响[J].排灌机械工程学报,2012,30(3):283-287
    [51]袁寿其,胡博,陆伟刚等.中比转数离心泵多工况设计[J].排灌机械工程学报,2012,30(5):497-502
    [52]蒋庆磊,戴维平,吴大转等.离心泵内泄漏流计算及其对转子振动的影响[J].排灌机械工程学报,2012,28(3):202-206
    [53]袁寿其,吴登昊,任芸等.不同叶片数下管道泵内部流动及振动特性的数值与试验研究[J].机械工程学报,2013,49(20):115-122
    [54]吴登昊,袁寿其,任芸等.叶片几何参数对管道泵径向力及振动的影响[J].排灌机械工程学报,2013,31(4):277-283
    [55]常书平,王永生,靳栓全等.载荷分布规律对混流泵叶轮设计的影响[J].排灌机械工程学报,2013,31(2):123-127
    [56]郭建平,高忠信,覃大清等.高扬程大流量离心泵CFD水力优化设计[JJ].排灌机械工程学报,2013,31(3):220-224
    [57]施卫东,吴苏青,张德胜等.叶片数对高比转速轴流泵空化特性的影响[J].农业机械学报,2013,44(11):72-77
    [58]祝磊,袁寿其,袁建平等.阶梯隔舌对离心泵压力脉动和径向力影响的数值模拟[J].农业机械学报,2010,41:21-26
    [59]黄建德,丁力,周建华等.离心泵空泡脉动主动控制的实验研究[J].上海交通大学学报,1998,32(7):10-13
    [60]Bakir F, Rey R, Gerber A et al. Numerical and experimental investigations of the cavitating behavior of an inducer [J]. International Journal of Rotating Machinery, 2004,10:15-25
    [61]IGA Y, Hiranuma M, Yoshida Y et al. Numerical analysis of cavitation instabilities and the suppression in cascade [J]. Journal of Environment and Engineering,2008, 3(2):240-249
    [62]Coutier-Delgosha O, Dazin A, Caignaert G et al. Analysis of cavitation instabilities in a four-blade inducer [J]. International Journal of Rotating Machinery,2012: 213907
    [63]Jafarzadeh B, Hajari A, Alishahi M M et al. The flow simulation of a low-specific-speed high-speed centrifugal pump [J]. Applied Mathematical Modelling,2011,35:242-249
    [64]Goncalves E, Fortes Patella R. Numerical simulation of cavitating flows with homogeneous models [J]. Computers & Fluids,2009,38(9):1682-1696
    [65]Yang S, Kong F, Qu X et al. Influence of blade number on the performance and pressure pulsations in a pump used as a turbine [J]. ASME J. Fluids Eng.,2012, 134(12):124503
    [66]Zhou L, Shi W, Lu W et al. Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers [J]. ASME J. Fluids Eng., 2012,134(7):071102
    [67]Yuan J P, Fu Y X, Yuan S Q. A study of cavitation flow in a centrifugal pump at part load conditions based on numerical analysis [C]. Proceedings of ASME Fluids Engineering Division Summer Meeting (FEDSM2012),2012,2:193-202, Puerto Rico, USA
    [68]Tang F, Li J-W. Numerical simulation of rotating cavitation in a liquid hydrogen pump inducer [C]. Proceedings of the 13th Asian Congress of Fluid Mechanics, Dhaka,2010, Bangladesh
    [69]Ding H, Visser F C, Jiang Y et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications [J]. ASME J.Fluids Eng.,2011,133(1):011101
    [70]Grotjans H, Menter F. Wall functions for general application CFD codes [J]. In ECCOMAS,1998,98(1998):1112-1117
    [71]Friedrichs J, Kosyna G. Rotating cavitation in a centrifugal pump of low specific speed [J]. ASME J. Fluids Eng.,2002,124:356-362
    [72]Balaka R, Rachman A, Delly J. Blade number effect for a horizontal axis river current turbine at a low velocity condition utilizing a parametric study with mathematical model of blade element momentum [J]. Journal of Clean Energy Technologies,2014,2(1):1-5
    [73]Chakraborty S, Pandey K M, Roy B. Numerical analysis on effects of blade number variations on performance of centrifugal pumps with various rotational speeds [J]. International Journal of Current Engineering and Technology,2012, 2(1):143-152
    [74]Kangvanskol K, Bunyajitradulya A. Preliminary hydraulic design and test of a centrifugal blood pump:effects of Reynolds Number and blade number [C]. The Second TSME International Conference on Mechanical Engineering,2011, Krabi
    [75]Singh P, Nestmann F. Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines [J]. Renewable Energy,2011,36(1):272-281
    [76]Castelli M R, Betta S D, Benini E. Effect of blade number on a straight-bladed vertical-axis darreius wind turbine [J]. World Academy of Science, Engineering and Technology,2012,61:305-311
    [77]Barrio R, Fernandez J, Blanco E et al. Estimation of radial load in centrifugal pumps using computational fluid dynamics [J]. European Journal of Mechanics-B/Fluids,2011,30(3):316-324
    [78]Pasini A. Pumping Performance Similarity, Cavitation-Induced Instabilities And Fluid-Induced Rotordynamic Forces In Tapered Inducers [D]. PhD Thesis, Pisa University,2010
    [79]Jokebsen J K. Liquid rocket engine turbopump inducers [R]. NASA SP-8052, Space Vehicle Design Criteria Manuals,1971
    [80]Cooper P. Analysis of single-and two-phase flows in turbopump inducers [C]. ASME J. Eng. Power,1967,89(4):577-586
    [81]Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford University Press,1995
    [82]Stripling L, Acosta A. Cavitation in turbopumps-Part 1 [J]. ASME J. Basic Eng., 1962,84:326-338
    [83]Brennen C E, Acosta A. Theoretical, quasi-static analysis of cavitation compliance in turbopumps [J]. J. Fluid Mechanics,1978,89, part 2:223-240
    [84]Tsujimoto Y, Kamijo K, YoshidaY. A theoretical analysis of rotating cavitation in inducers [J]. ASME J. Fluids Eng.,1993,115:135-141
    [85]Tsujimoto Y. Simple rules for cavitaion instabilities in turbomachinery [C]. Invited Lecture, Proc.2001 Symposium on Cavitation, CAV2001,2001, Pasadena, California, USA
    [86]Watanabe S, Sato K, Tsujimoto Y et al. Analysis of rotating cavitation in a finite pitch cascade using a closed cavity model and a singularity method [J]. ASME J. Fluids Eng.,1999,121:834-840
    [87]Watanabe S, Uchinono Y, Ishizaka K et al. Suction performance and internal flow of a 2-bladed helical inducer with inlet asymmetric plate [J]. Journal of Thermal Science,2012,21(1):395-403
    [88]Horiguchi H, Watanabe S, Tsujimoto Y et al. A theoretical analysis of alternate blade cavitation in inducers [J]. ASME J. Fluids Eng.,2000,122:156-163
    [89]Horiguchi H, Arai S, Fukutomi J et al. Quasi-three-dimensional analysis of cavitation in an inducer [J]. ASME J. Fluids Eng.,2004,126:709-715
    [90]d'Agostino L,Venturini-Autieri M. Rotordynamic fluid forces on whirling and cavitating finite-length inducers [C].9th Int.Symp.on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9),2002, Honolulu, USA
    [91]d'Agostino L,Venturini-Autieri M. Three-dimensional analysis of rotordynamic fluid forces on whirling and cavitating radial impellers [C]. International Symposium on Cavitation, CAV 2003,2003, Osaka, Japan
    [92]Smenov Y, Fujii A, Tsujimoto Y. Rotating chock in cavitatingturbopump inducer [J]. ASME J. Fluids Eng.,2004,126:87-93
    [93]Lakshminarayana B. Fluid dynamics of inducers-a review [J]. ASME J. Fluids Eng.,1982,104:411-427
    [94]Bramanti C, Cervone A, d'Agostino L. A simplified analytical model for evaluating the noncavitating performance of axial inducers [C].43rd AJAA/ASME/SAE/ASEE Joint Propulsion Conference,2007, Cincinnati, OH, USA
    [95]Kamijo K, Shimura T, Watanabe M. An experimental investigation of cavitating inducer instability [J]. ASME Paper 77-WA/FE-14, WA/FE(14),1977
    [96]Greitzer E M. The instability of pumping systems-the 1980 freeman scholar lecture [J]. ASME J. Fluids Eng.,1981,103:193-242
    [97]Lieblein S. Experimental flow in two-dimensional cascades, Aerodynamic design of axial flow compressors [R]. NASA SP-36A,1965:101-149
    [98]Murai H. Observations of cavitation and flow patterns in an axial flow pump at low flow rates [J]. Mem. Inst. High Speed Mech., Tohoku Univ,1968:24(246)
    [99]Tsujimoto Y, Semenov. New types of cavitation instabilities in inducers [C]. Space Launcher Liquid Propulsion:4th International conference on Space Launcher Technology,2012, Liege, Belgium
    [100]Cervone A, Testa R, Bramanti C et al.Thermal effects on cavitation instabilities in helical inducers [J]. AIAA Journal of Propulsion and Power,2005,21(5):893-899
    [101]Cervone A, Torre L, Bramanti C et al. Experimental characterization of cavitation instabilities in a two-bladed axial inducers [C]. AIAA Journal of Propulsion and Power,2006,22(6):1389-1395
    [102]Cervone A, Bramanti C, Torre L et al. Setup of a high-speed optical system for the characterization of flow instabilities generated by cavitation [J]. AIAA Journal of Propulsion and Power,2007,129(7):877-885
    [103]Uchiumi M, Kamijo K. Occurrence range of a rotating-stall-type phenomenon in a high head liquid hydrogen inducer [C]. Proceedings of ISROMAC-12-the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2008, Honolulu, Hawaii, USA
    [104]Hashimoto T, Yamada H, Funatsu S et al. Rotating cavitation in three and four-bladed inducers [C].33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference,1997, Seattle, USA
    [105]Tsujimoto Y, Yoshida Y, Maekawa Y et al. Observations of oscillating cavitation of an inducer [J]. ASME J. Fluids Eng.,1997,119(4):775-881
    [106]Furukawa A, Ishizaka K, Watanabe S. Experimental estimate of helical inducer blade forces in cavitation surge condition [C]. International Symposium on Cavitation, CAV2001,2001, Pasadena, California, USA
    [107]Wade R B, Acosta A J. Experimental observations on the flow past a plano-convex hydrofoil [J]. J. of Basic Eng.,1966,87:273-283
    [108]Young W, Murphy R, Reddecliff J. Study of cavitating inducer instabilities [R]. Pratt and whitney aircraft, Florida Research and Development Center, Rept. PWAFR-5131,1972
    [109]Rosenmann W. Experimental investigation of hydrodynamically induced shaft forces with a three bladed inducer [C]. Proc. ASME Symp.on Cavitation in Fluid Machinery,1965
    [110]Ohta T, Kajishima T. Transition of different unsteady cavitating flows in 2D cascade with flat blades [C]. Proceedings of ISROMAC-12-the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2008, Honolulu, Hawaii, USA
    [111]Hashimoto T, Yoshida Y, Watanabe M et al. Experimental study on rotating cavitation of rocket propellent pump inducers [J]. AIAA Journal of Propulsion and Power,1997,13(4):488-494
    [112]Zoladz T. Observations on rotating cavitation and cavitation surge from the development of the Fastrac engine turbopump [C].36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2000, Huntsville, USA
    [113]Horiguchi H, Semenov Y, Nakano M et al. Linear stability analysis of the effects of camber and blade thickness on cavitation instabilities [C]. International Symposium on Cavitation, CAV2003,2003, Osaka, Japan
    [114]Kimura T, Yoshida Y, Hashimoto T et al. Numerical simulation for unsteady cavitating flow in a turbopump inducer [C]. International Symposium on Cavitation, CAV2006,2006, Wageningen, TheNeitherlands
    [115]Kang D, Cervone A, Yonezawa K et al. Effect of blade geometry on tip leakadge vortex of inducer [C]. The 9th Asian International Conference on Fluid Machinery,2007, Jeju, South Korea
    [116]Shimiya N, Fujii A, Horiguchi H et al. Suppression of cavitation instabilities in an inducer by J-Goove [C]. International Symposium on Cavitation, CAV2006,2006, Wageningen, TheNeitherlands
    [117]Furukawa A, shizakaK, Watanabe S. Experimental study of cavitation induced Oscillation in two bladed inducers [C]. Space Launcher Liquid Propulsion:4th International conference on Space Launcher Technology, Liege, Belgium,2012
    [118]Shimagaki M, Hashimoto T, Watanabe M et al. Unsteady pressure fluctuations in an inducer [J]. JSME Int. J. Fluids & Thermal Eng.,2006, Series B,49(3): 806-811
    [119]Yoshida Y,KazamiY,Nagaura K et al. Interaction between uneven cavity length and shaft vibration at the inception of synchronous rotating cavitation [C]. Proceedings of ISROMAC-12-the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2008, Honolulu, Hawaii, USA
    [120]Imamura H, Kurokawa J, Matsui J et al. Suppression of cavitating flow in inducer by J-Goove [C]. International Symposium on Cavitation, CAV2003,2003, Osaka, Japan
    [121]Braisted D M, Brennen C E. Auto-oscillation of cavitating inducers [J]. Polyphase flow and transport technology,1980:157-166
    [122]Sack L E, Nottage H B. System Oscillations associated to cavitating inducers [J]. ASME J. Basic Eng.,1965,87:917-924
    [123]Yamamoto K. Instability in a cavitating centrifugal pump [J]. JSME Int. J., Ser.2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, 1991,(1):9-17
    [124]Badowski H R. An explanation for instability in cavitating inducers [C]. ASME Cavitation Forum,1969:38-40
    [125]Hartmann M J, Soltis R S. Observations of cavitation in a low hub-tip ratio axial flow pump [C]. Proc. Gas Turbine Power and Hydraulic Conf.,1960, ASME paper, No.60-HYD-14
    [126]NASA, Prevention of coupled structure-propulsion instability [R]. NASA SP-855, 1970
    [127]Enomoto N, Kim J H, Ishizaka K et al. Suppression of cavitation surge of a helical inducer occurring in partial flow conditions [C]. International Symposium on Cavitation, CAV2003,2003, Osaka, Japan
    [128]Kim J H, Ishizaki M, Ishizaka K et al. Suppression of cavitation surge of pump inducer by inserting ring-shaped inlet plate [C]. International Symposium on Cavitation, CAV2006,2006, Wageningen, The Neitherlands
    [129]Fujii A, Azuma S, Yoshida Y et al. High order rotating cavitation in a inducer [C]. Proceedings of ISROMAC-9-the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2002, Honolulu, Hawaii, USA
    [130]Subbaraman M, Patton M. Suppression high-order cavitation phenomena in axial inducers [C]. International Symposium on Cavitation, CAV2006,2006, Wageningen, The Neitherlands
    [131]郭鹏.高速锅炉给水泵诱导轮和首级叶轮的内流场的数值模拟[D].镇江,江苏大学,硕士论文,2005
    [132]崔宝玲.高速诱导轮离心泵的理论分析与数值模拟[D].杭州,浙江大学,博士学位论文,2006
    [133]孙健.低汽蚀余量泵诱导轮的研究[D].镇江,江苏大学,硕士论文,2006
    [134]吴玉珍.诱导轮流动特性数值模拟及实验研究[D].北京,中国运载火箭技术研究院,博士论文,2006
    [135]季凤来,吴玉珍.高性能变螺距诱导轮设计分析[J].化工设备与管道,2007,44(3):35-37
    [136]罗芳.带前置诱导轮的复合叶轮型离心泵数值研究[D].西安,西安理工大 学,硕士论文,2008
    [137]宋风强.喷淋泵诱导轮设计与流动分析[D].大连,大连理工大学,博士论文,2010
    [138]黄建德.诱导轮泵的汽蚀特性和内部流场的研究[J].工程热物理学报,1997,18(2):181-185
    [139]郭晓梅,朱祖超,崔宝玲等.诱导轮内部流场数值计算及汽蚀特性分析[J].机械工程学报,2010,46(4):122-128
    [140]唐飞,李家文,夏德新等.提高氧泵诱导轮汽蚀性能的方法研究[J].航空动力学报,2008,23(9):1743-1747
    [141]唐飞,李家文.诱导轮平面叶栅汽蚀不稳定现象的数值分析[J].火箭推进,2011,37(1):34-39
    [142]唐飞,李家文,陈晖等.采用环形入口壳体的诱导轮汽蚀性能研究[J].机械工程学报,2011,47(4):171-176
    [143]宋沛原,李家文,唐飞.轮毂形状对诱导轮性能的影响[J].火箭推进,2012,38(2):38-43
    [144]唐飞,李家文,李永等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进,2013,39(3):44-49
    [145]唐飞,李家文,李永等.热力学效应对低温诱导轮旋转汽蚀影响的数值研究[J].火箭推进,2013,39(2):29-34
    [146]吴晓霞,张华余,马空军.超声空化泡运动特性的研究进展[J].应用力学,2012,31(6):418-422
    [147]王小波,王国玉,时素果等.诱导轮内部液氢空化流动特性[J].火箭推进,2011,31(7):558-564
    [148]时素果,王国玉,马瑞远.低温流体空化特性的数值计算研究[J].工程力学,2012,29(5):61-67
    [149]时素果,王国玉,赵宇等.空化热力学效应对相间质量传输过程的影响[J].北京理工大学学报,2012,32(9):926-931
    [150]时素果,王国玉,胡常莉.热力学效应对液氮空化流动的影响[J].北京理工大学学报,2012,32(5):484-487
    [151]李晓俊,袁寿其,刘威等.带诱导轮的离心泵空化条件下的效率下降规律 [J].排灌机械工程学报,2011,29(3):185-189
    [152]褚宝鑫,须村,张晓娜等.诱导轮空化对流固耦合应力分析[J].火箭推进,2012,38(2):44-48
    [153]江传惠,李壮云.一种汽蚀初生诊断新判据[J].液压与气动,1992,1992(2):51-53
    [154]江传惠,李壮云.对液压元件初生汽蚀伴生低频压力脉动机理的新探索[J].机床与液压,1993,1993(2):97-102
    [155]姚新.液压泵压力脉动分析及衰减措施[J].机床与液压,2004,2004(8):171-172
    [156]徐祖家,黄建德.对离心泵在小流量时发生汽泡脉动的分析[J].流体机械,1998,27(7):25-28
    [157]徐祖家,尹勐.离心泵的低频汽蚀脉动现象[J].流体机械,1998,26(1):5-9
    [158]Tan L, Zhu B S, Cao S Let al. Cavitation flow simulation for a centrifugal pump at a low flow rate [J]. Chinese Science Bulletin,2013,58(8):949-952
    [159]Pasini A, Valentini D, Pace G, et al. A reduced order model for optimal centrifugal pump design [C].14th International Symposium on Transport phenomena and Dynamics of rotating machinery,2012, Honolulu, Hawaii, USA
    [160]Valentini D, Pasini A, Pace G et al. Experimental validation of a reduced order model for optimal centrifugal pump design [C].49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2013, San Jose, California, USA
    [161]Rapposelli E, Cervone A, d'Agostino L. A new cavitating pump rotordynamic test facility [C]. AIAA Paper 2002-4285,38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2002, Indianapolis, IN, USA
    [162]Pace G, Pasini A, Torre L et al. The cavitating pump rotordynamic test facility at ALTA S.p.A.:upgraded capabilities of a unique test rig [C].2012 Space Propulsion Conference,2012, Bordeaux, France
    [163]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [164]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    [165]ANSYS Inc. Theory Reference. ANSYS Inc,2012
    [166]Cheah K W, Lee T S, Winoto S H. Unsteady fluid flow study in a centrifugal pump by CFD method [C].7th ASEAN ANSYS Conference,2008, Biopolis, Singapore
    [167]Coutier-Delgosha O, Fortes-Patella R, Reboud J L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J]. ASME J. of Fluids Eng.,2003,125(1):38-45
    [168]Wilcox D C. Multiscale model for turbulent flows [J]. AIAA Journal,1988, 26(11):1311-1320
    [169]Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering.1974,3(2):269-289
    [170]肖霞平.500万吨/年高温减压塔底泵提高汽蚀性能的研究[D].镇江,江苏大学,硕士学位论文,2009
    [171]Shen Y, Dimotakis P. The influence of surface cavitation on hydrodynamic forces [C]. Proc.22nd ATTC,1989, St. Hohns,44-53
    [172]Gerber A G. A CFD model for devices operating under extensive cavitation conditions [C]. In ASME 2002 International Mechanical Engineering Congress and Exposition,2002:341-349.
    [173]Torre L, Pasini A, Cervone A et al. Experimental characterization of the rotordynamic forces on space rocket axial inducers [J]. ASME J. Fluids Eng., 2011,133(10):101102
    [174]Pasini A, Torre L, Cervone A et al. Continuous spectrum of the rotordynamic forces on a four bladed inducer [J]. ASME J. Fluids Eng.,2011,133(12):121101
    [175]Torre L, Cervone A, Pasini A et al. Experimental characterization of thermal cavitation effects on space rocket axial inducers [J]. ASME J. Fluids Eng.,2011, 133(11):111303
    [176]Ferziger J H, Peric M. Computational methods for fluid dynamics [M]. Berlin: Springer,1996
    [177]Kalitzin G, Medic G, Iaccarino G et al. Near-wall behavior of RANS turbulence models and implications for wall functions [J]. Journal of Computational Physics, 2005,204(1):265-291
    [178]Karlsson M, Nilsson H, Aidanpaa J O. Influence of inlet boundary conditions in the prediction of rotordynamic forces and moments for a hydraulic turbine using CFD [C]. Proceedings of 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-12,2008, Honolulu, HI, USA
    [179]Pace G, Torre L, Pasini A et al. Experimental characterization of the dynamic transfer matrix of cavitating inducers [C]. Proceedings of 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2013, San Jose, CA
    [180]车琴琴.离心泵汽蚀性能自动测试系统的研究[D].兰州,兰州大学,硕士学位论文,2008
    [181]Hofmann M, Stoffel B, Friedrichs J et al. Similarities and geometrical effects on rotating cavitation in two scaled centrifugal pumps [C]. Proceedings of the 2001 Symposium on Cavitation, CAV 2001,2001, Pasadena, California, USA
    [182]Cheah K W, Lee T S, Winoto S H et al. Numerical flow simulation in a centrifugal pump at design and off-design conditions [J]. International Journal of Rotating Machinery,2007:1-8
    [183]Coutier-Delgosha O, Caignaert G, Bois G et al. Influence of the blade number on inducer cavitating behavior [C]. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, FEDSM2009-78405,2009, Vail, Colorado, USA
    [184]Friedrichs J, Kosyna G. Unsteady PIV flow field analysis of a centrifugal pump impeller under rotating cavitation [C]. Proceedings of the 5th International Symposium on Cavitation, CAV2003,2003, Osaka, Japan
    [185]Pouffary B, Patella R, Rebound, J et al. Numerical analysis of cavitation instabilities in inducer blade cascade [J]. ASME J. Fluids Eng.,2008,130(4): 041302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700