用户名: 密码: 验证码:
机载光电平台扰动力矩抑制与改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载光电平台是一种光、机、电高度集成的精密侦察设备,在火力控制、导航、侦察系统中有着广泛的应用。伺服系统作为光电精密跟踪技术中的一项核心技术,是机载光电平台保持较高视轴稳定精度的重要保证。伺服系统对扰动力矩的抑制能力是衡量机载光电平台伺服系统性能的重要标志,也是机载光电平台伺服系统研究的主要课题之一。本文主要研究内容是提高机载光电平台伺服系统的扰动力矩抑制能力,从而改善机载光电平台低速性能,达到提高机载光电平台视轴稳定精度的目的。
     本文以某型两轴四框架机载光电平台为研究对象,对两轴四框架机载光电平台各框架耦合进行了分析研究,指出平台各框架间的运动耦合和转动惯量耦合是由机载光电平台机械结构带来的,由运动耦合和转动惯量耦合产生的扰动力矩会对机载光电平台伺服系统性能产生影响,而转动惯量耦合还对控制对象的准确建模造成影响。机载光电平台正常工作时,处于频繁地起动、制动状态中,尤其是在长焦距跟踪目标时,一般工作于低速模式下,且受摩擦、风阻、载体晃动、线扰等所带来的扰动力矩影响,工作环境较为恶劣,对伺服系统动态性能要求很高,这就要求机载光电平台的伺服系统具有较强的动态抗扰性能。传统的机载光电平台伺服系统一般作为经典的单输入单输出系统(SISO),采用的是带有位置环、速度环、电流环的传统三闭环控制模式,控制律一般采用PI控制律。这就造成了伺服系统对扰动力矩抑制能力较弱,难以有效克服扰动力矩这一关键影响因素。这在机载光电平台工作在低速段时尤为明显,具体表现为机载光电平台视轴晃动量比较大,导致成像质量下降,甚至造成跟踪失败。
     在设计机载光电平台伺服系统时,需要把扰动转矩也看作输入,则伺服系统可以看作双输入(脱靶量和扰动力矩)单输出(脱靶量)系统(DISO)。充分考虑这一性质,本文设计机载光电平台伺服系统时,在伺服系统中引入了加速度反馈环节来提高机载光电平台的扰动力矩抑制能力,并改善机载光电平台的低速性能,进而提高机载光电平台视轴稳定精度。针对两轴四框架机载光电平台控制对象难以准确建模的问题,提出了对框架轴角加速度直接测量的方法,使加速度反馈闭环的实现不基于控制对象模型,从而避免了机载光电平台控制对象模型难以准确建立的问题。
     本文对机载光电平台伺服系统引入加速度反馈环节进行了原理性分析与研究,分析与研究结果表明在机载光电平台伺服系统中引入加速度反馈环节后增强了伺服系统的动态力矩刚度,提高了对扰动力矩的抑制能力,并改善了机载光电平台的低速性能。以某型两轴四框架机载光电平台为实验平台,对其伺服系统中引入加速度反馈环节进行了实验。实验结果表明,在机载光电平台伺服系统的经典PI控制律中引入加速度反馈环节后,机载光电平台低速性能得以明显改善;其伺服系统对0.3N·m突加扰动力矩抑制能力提高了约5dB;在载机仿真转台θ=sin4πt位置正弦运动时,其对运动耦合带来的周期性力矩扰动抑制能力提高了约14dB;在载机仿真转台做θ=sin2πt位置正弦运动时,其视轴稳定精度由48.39μrad提高到28.75μrad。
Airborne Electro-Optical Platform (AEOP) is precision reconnaissanceequipment with highly integrated optical, mechanical and electrical, which has beenwidely used in the firepower control, navigation and reconnaissance system. As a coretechnology in the photoelectric precision tracking technology, servo system is theimportant guarantee of high precision optical axis stability to the airborneoptoelectronic platform. The ability of resisting disturbance torques is an importantsymbol to measure the performance of AEOP servo system, and is one of the maintopics of AEOP servo system. The main research contents of this paper is how toimprove the ability of AEOP servo system in resisting disturbance torque, in order toimprove the low speed performance of airborne photoelectric platform, to improvethe line of sight (LOS) stabilization accuracy of AEOP.
     In this paper, the object is AEOP with a two axis four framework, and eachframe of AEOP coupling were analyzed. This paper pointed out that the movementcoupling and inertia coupling between different frames are caused by mechanicalstructure of AEOP, are the cause of disturbance torques that affected the servo systemperformance of AEOP. And the inertia coupling also affects the accuracy of thecontrol object model. AEOP always is operated in frequent starting and braking state,especially tracked the target in the long focal length, generally work in low-speedmode, working environment is very bad because of the influence of friction,disturbance resistance, carrier sloshing and line disturbance brings, so high dynamicperformance is required,which requires AEOP servo system has strong dynamic anti- disturbance performance. Traditional servo system of AEOP as a classic Single-inputSingle-output system (SISO), is used with traditional three closed-loop control modethat includes position loop, velocity loop, current loop, and control law generally usethe Proportional Integral (PI) controller. This has resulted in ability of resistingdisturbance torques of servo control system is weak, difficult to effectively overcomedisturbance torques. It is particularly, such as LOS stabilization accuracy of AEOP isbad, degrade image quality and even cause tracking failure, when AEOP is operatedunder low speed,.
     In the design of AEOP servo system, the disturbance torque is seen as the input,the servo system is a Dual-input (Miss Distance and Disturbance Torques) Single-output (Miss Distance) system (DISO). So designing of AEOP servo system in thispaper, the acceleration feedback is introduced in the servo system to improve the lowspeed performance and the ability of resisting disturbance torques, and then improvethe AEOP stabilization accuracy. Because the control object model of AEOP with twoaxes and four frame is established difficultly, a method of direct measurement of shaftangular acceleration was adopted in this paper. So the acceleration feedback loop isnot based on the control object model, and the problem that the control object modelof the AEOP is difficult to establish was avoided.
     In this paper, the acceleration feedback introduced in the servo system of theAEOP is analyzed and researched, and analysis results show that the accelerationfeedback loop enhances dynamic stiffness of the servo system, improves the ability tosuppress disturbance moment in the servo system of the AEOP. The accelerationfeedback was put to test in the servo system of AEOP with two axis four framework.Experimental results show that, when the acceleration feedback loop was introducedin the classical PI control system, rejection disturbance torques ability of the servosystem raised about5dB on0.3N·m sudden disturbance torque; raised about14dB onposition sinusoidal motion at θ=sin4πtwith aircraft simulation turntable; and LOSstabilization accuracy was raised from48.39μrad to28.75μrad on position sinusoidalmotion at θ=sin2πtwith aircraft simulation turntable.
引文
[1]陈建.某机载红外测量吊舱系统图[J].红外技术,2004,26(5):55-57.
    [2]倪国强,秦庆旺,肖蔓君等.中国红外成像技术发展的若干思考[J].科技导报,2008,26(22):88-93.
    [3]温杰.以色列空军正式装备“埃坦”无人机[N].中国航空报,2010年3月2日第003版.
    [4]李富栋.机载红外搜索与跟踪系统的现状与发展[J].激光与红外,2008,38(5):409-412.
    [5]Bai Lianfa,ZhangYi,Qian Weixian,et al.Technique of pulse infrared laser assistant nightvision[J]. Infrared and Laser Engineering,2005,34(6):676-680.
    [6]Timothy P. Ricks, Megan M. Burton, William Cruger, et al. Stabilized electro-optical airborneinstrumentation platform[C]. Chemical and Biological Standoff Detection,2004,SPIE ProceedingsVol.5268:202-209.
    [7]郑烨,张伯虎,李孔震.光电侦察设备的现状与发展前景探析[J].科技资讯,2012,1:4-6.
    [8]刘洵,王国华,毛大鹏等.军用飞机光电平台的研发趋势与技术剖析[J].中国光学与应用光学,2009,2(4):269-288.
    [9]赵超,杨号.红外制导的发展趋势及其关键技术[J].电光与控制,2008,28(5):48-53.
    [10]陈希林,傅裕松,尉洵楷.机载光电瞄准系统的现状及发展[J].2004,26(2):18-22,28.
    [11]高凯,马凌,魏国福等.法国空军的目标指示吊舱——达摩克利斯[J].飞航导弹,2011,7:6-9,14.
    [12]田桂荣,张宇,谷阿函.光电/红外传感器的军事应用与发展[J].舰船电子工程,2007,27(6):46-50,114.
    [13]赵红颖,金宏,熊经武.电子稳像技术概述[J].光学精密工程,2001,9(4):353-359.
    [14]沈宏海,刘晶红,贾平等.摄像稳定技术[J].光学精密工程,2001,9(2):l15-120.
    [15]Mitsuo Hashimoto, Tetsuya Kuno, Hiroaki Sugiura. A New Image-stabilization Method byTransferring Electric Charges[C]. IEEE Transactions on Consumer Electronics,2007,53(4):1230-1236.
    [16]刘晶红,孙辉,张葆等.航空光电成像平台的目标自主定位[J].光学精密工程,2007,15(8):1305-1310.
    [17]钟平.机载电子稳像技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [18]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D]:[博士学位论文].南京:东南大学,2006.
    [19]刘洵,戴明.无人机光电载荷的研制与改进[J].光电工程,2008,35(3):1-5.
    [20]Junlan Yang, Dan Schonfeld, Magdi Mohamed. Robust Video Stabilization Based on ParticleFilter Tracking of Projected Camera Motion [C]. IEEE Transactions on Circuits andSystems,2009,19(7):945-954.
    [21]朱娟娟.电子稳像理论及其应用研究[D]:[博士学位论文].西安:西安电子科技大学,2009.
    [22]孙辉.航空光电侦察平台关键技术与发展[J].光学精密工程,2007,15(3):412-416.
    [23]波音打造太阳能无人飞机可不间断飞行5年[J].科技传播.2010,19:244.
    [24]范金荣.21世纪前20年精确制导技术发展预测[J].现代防御技术,2003(1):30-33.
    [25]吴晗平,易新建,杨坤涛.机械结构因素对光电跟踪伺服系统性能的影响[J].应用光学,2004,25(3):11-14.
    [26]杨元恺,郎需英.精密转台中摩擦力矩的动态补偿[J].自动化学报,1983,9(4):248-252.
    [27]周旺平,徐欣圻.大型天文光学望远镜超低速跟踪控制[J].光电工程,2007,34(11):1-4.
    [28]于志伟,曾鸣,乔大鹏.采用复合控制的直流力矩电机摩擦补偿[J].电机与控制学报,2008,12(5):539-544.
    [29]鲍文亮,黄显林,尹航.光电平台惯性稳定系统的自适应动态摩擦补偿[J].电光与控制,2012,19(4):50-54.
    [30]胡浩军,毛耀,马佳光等.稳定转台摩擦参数的测量及其对稳定精度的影响[J].光电工程,2007,34(5):5-9.
    [31]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989,81(3):1-41.
    [32]朱江红.低速球轴承摩擦力矩的分析研究[J].导弹与航空运载技术,2000,5:20-25.
    [33]张茂亮,彭晓红.降低圆锥滚子轴承摩擦力矩的方法[J].轴承,2006,9:4-5.
    [34]荒牧宏敏.降低滚动轴承摩擦力矩的技术[J].国外轴承技术,2005,3:42-47.
    [35]王玲,黄克威,杨昆元.C7046112轴承摩擦力矩的研究[J].摩擦学学报,1993,13(1):69-72.
    [36]刘东菊,陈德富,苏文.跟踪测量平台密珠轴系的摩擦与控制研究[J].光电技术应用,2005,20(3):30-32.
    [37]薛景文.摩擦学及润滑技术[M].北京:兵器工业出版社,1992.
    [38]LIU G. Decomposition-based friction compensation of mechanical systems[J].Mechatronics,2002,12(37):755-769.
    [39]张卯瑞,梅晓榕,庄显义.高精度液压伺服系统改善低速性能的几项措施[J].哈尔滨工业大学学报,1998,30(4):66-69.
    [40] Brian Asmstrong-Helouvry, Pierre Dupont, Carlos Canudas de Wit. A Survey of Models,Analysis Tools and Compensation Methods for the Control of Machines withFriction[J].Autonmfica.1994.30(7):1083-1138.
    [41]翟百臣.直流PWM伺服系统低速平稳性研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [42]朱华征,范大鹏,张文博等.质量不平衡力矩对导引头伺服机构性能影响分析[J].红外与激光工程,2009,38(5):767-772.
    [43]MCKERLEY C W.A model for a two degree of freedom coupled seeker with massimbalance[C]. Southeastcon'96. Bringing Together Education, Science and Technology,Proceedings of the IEEE,1996,9(1):84-87.
    [44]于兵,渠继峰.干扰力矩对光电平台稳定精度的影响[J],科学技术与工程,2011,11(20):4888-4892.
    [45]Mitsuo Hashimoto, Tetsuya Kuno, Hiroaki Sugiura. A New Image-stabilization Method byTransferring Electric Charges [C]. IEEE Transactions on Consumer Electronics,2007,53(4):1230-1236.
    [46]Joon Lyou, MinSig Kang, HwyKuen Kwak. Dual stage and digital image basedmethod forsight stabilization [J]. Journal of Mechanical Science and Technology,2008,5:1114-1119.
    [47]钟平.机载电子稳像技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [48]宋彦,高慧斌,张淑梅等.直流力矩电机力矩波动的自适应补偿[J].光学精密工程,2010,18(10):2212-2220.
    [49]王帅,王建立,李洪文.光电跟踪系统力矩波动的自抗扰控制[J].光电工程,2012,39(4):7-13.
    [50]张文海,李家会,徐丽.永磁直流力矩电机力矩波动的实验分析[J].微电机,2004,37(6):64-66.
    [51]Zhao S,Tan K K. Adaptive feedforward compensation of force ripples in linearmotors[J].Control Engineering Practice,2005,13(9):1081-1092.
    [52]姜玉宪.伺服系统低速跳动问题[J].自动化学报.1982,8(2):136-144.
    [53]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社.
    [54]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [55]李嘉全,丁策,沈宏海等.机载光电侦察平台的自抗扰控制技术研究[J].测控技术,2010,29(7):41-45.
    [56]邱宝梅,万吉权,王建文.机载摄影稳定平台的自抗扰控制[J].光电工程,2012,39(4):21-26.
    [57]黄浦,葛文奇,李友一等.航空相机前向像移补偿的线性自抗扰控制[J].光学精密工程,2011,19(4):812-819.
    [58]陈娟.伺服系统低速特性和抖动补偿研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [59]杨松,曾鸣,苏宝库.一种新的重复自适应摩擦补偿方法及其在高精度伺服系统中的应用[J].东南大学学报(自然科学版),2006,36(增刊1):74-78.
    [60]George W Younkin. Compensating Structural Dynamics for Servo Driven IndustrialMachines with Acceleration Feedback[C]. Industry Applications Conference,2004,39th IASAnnual Meeting. Conference Record of the2004IEEE Vol.3:1881-l890.
    [61]Peter B. Schmidt, Robert D. Lorenz. Design Principles and Implementation of AccelerationFeedback to Improve Performance of dc Drives[C]. IEEE Transactions on Industry Applications,1992,28(3):594-599.
    [62]克晶,苏宝库,曾鸣.一种具有参数不确定性的直流电机自适应摩擦补偿方法[J].中国电机工程学报,2003,23(7):118-122.
    [63]Brown L J,Qing Zhang.Control for canceling periodic disturbances with uncertain frequency[C].Decision and Control,2001Proceedings of the40th IEEE Conference on Vol.5:4909—4914.
    [64]王忠山,付强,曾鸣等.仿真转台周期性干扰抑制的研究[J].航空精密制造技术,2006,42(3):21-23,27.
    [65]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003:49-50.
    [66]郭富强,于波,汪淑华.陀螺稳定装置及其应用[M].西安:西北工业大学出版社,1995.
    [67]纪明.多环架光电稳定系统及分析[J].应用光学,1994,15(4):60-64.
    [68]恰尔兹布洛克斯梅耶.惯性导航原理[M].北京:国防工业出版社,1972.
    [69]董期林.三轴陀螺稳定平台的惯量耦合问题研究[J].航空精密制造技术,2007,46(6):17-18,9.
    [70]Li B,Hullender David,DiRenzo M. Nonlinear induced disturbance rejection in inertialstabilization[C]. IEEE Transactions on Control Systems Technology,1998,6(3):421-427.
    [71]WALDMANN J.Line-of-sight rate estimation and linearizing control of an imaging seekerin a tactical missile guided by proportional navigation[C].IEEE Transactions on Control SystemsTechnology,2002,10(4):556-567.
    [72]李海霞,高钟毓,张嵘等.四环空间稳定平台的稳定性分析[J].中国惯性技术学报,2007,15(3):255-264.
    [73]Kennedy P J, Kennedy R L. Direct versus indirect line of sight(LOS) stabilization[C].IEEETransactions on Control System Technology.2003,11(1):3-15.
    [74]于爽,付庄,赵辉等.三轴惯性平台耦合问题研究[J].机械科学与技术,2010,29(6):832-835.
    [75]毕永利.多框架光电平台控制系统研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [76]李慧鹏,唐文彦,张春富等.导弹转动惯量测试系统及误差分析[J].兵工学报,2007,28(2):206-208.
    [77]杨庚辰.结构因素对控制系统低速爬行的影响[J].电机机械工程,1986,1:15-21.
    [78]崔向群. LAMOST项目及进展[J].天文学进展,2001,19(2):123-129.
    [79]周旺平,徐欣圻.大型天文光学望远镜超低速跟踪控制[J].光电工程,2007,34(11):1-4.
    [80]Dario Mancini, Pietro Schipani. Tracking performance of the TNG telescope[C]. Proceedingsof SPIE, Advanced Telescope and Instrumentation Control Software2000, Vol.4009:355-365.
    [81]汪达兴,杜福嘉.大型天文望远镜摩擦传动系统低速特性的研究[J].光学精密工程,2006,14(2):274-278.
    [82]张锦江.三轴仿真转台的控制问题研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学.1999.
    [83]Dario Mancini.The Galileo Italian National Telescope(TNG) Drive System ComponentsMethods and Performance[C].SPIE, Advanced Technology Optical Telescopes V,1994,Vol.2199:352-363.
    [84]Hussein F.Soliman, A.A.Attia,M.A.L.Badr.Fuzzy Logic Controller for electric motordriving the Astronomical Telescope[J].SPIE, Telescope Control Systems III,1998,Vol.3351:415-424.
    [85]马佳光,尹义林.778光电经纬仪跟踪控制系统[J].光学工程,1986,1:50-59.
    [86]Lorinc Marton. On analysis of limit cycles in positions systems near stribeckvelocities[J].Mechatronics,2008,18(1):46-52.
    [87]张锦江,吴宏鑫,李季苏等.高精度伺服系统低速问题研究[J].自动化学报,2002,28(3):431-434.
    [88]丛爽,邓科,尚伟伟等.陀螺稳定平台建模分析[J].科技导报,2011,29(9):42-47.
    [89]王平,王伟,丁金伟等.机载光电侦察平台复合减振设计[J].光学精密工程,2011,19(1):83-89.
    [90]赵鹏.振动对航空相机成像质量影响的分析[J].红外与激光工程,2001,31(4):240-242.
    [91]张葆,贾平,黄猛.动载体成像模糊的振动被动控制技术[J].光学技术,2003,29(3):281-283.
    [92]朱保利,昂海松,张绪坤.一种扑翼微型飞行器驱动机构速度波动研究[J].中国科学院研究生院学报.2007,24(4):516-519.
    [93]Segio B, Varella Gomes, Josue Jr G Romos. Airship dynamic modeling for autonomousoperation[C] Robotics and Automation,1998. Proceedings.1998IEEE International Conferenceon Vol.4:3462-3467.
    [94]刘家燕.机载光电平台风阻分析[J].长春理工大学学报,2011,34(2):80-82,89.
    [95]叶菲莫夫.飞机的飞行原理[M].北京:国防工业出版社,1960.
    [96]第三机械工业部.航空机械设计手册[M].北京:国防工业出版社,1974.
    [97]常文恕.力矩电机转矩波动分析[J].控制微电机,1979,4:7-17.
    [98]王凤昌.“切向式稀土永磁直流力矩电机”力矩波动的分析[J].微特电机,1984,3:14-17.
    [99]Sheng-MingYang, Shuenn-Jenn.Ke.Performance evaluation of a velocity observer foraccurate velocity estimation of servo motor drives[C]. Industry Applications Conference,1998.Thirty-Third IAS Annual Meeting. The1998IEEE Vol.3:1697-1702,.
    [100]Corres. J.M, Gil.P.M. High-performance feedforward control of IM using speed anddisturbance torque observer with noise reduction of Shaft Encoder[C]. Industrial Electronics,2002.ISIE2002. Proceedings of the2002IEEE International Symposium on Vol.2:403-408.
    [101]Yan Song, Huibin Gao, Shumei Zhang, et al. The Analysis and Design of Low VelocityEstimation Based on Observer[C].2009IEEE International conference on automation andlogistics,2009:766-771.
    [102]何玉庆,韩建达.一种新的角加速度估计方法及其应用[J].控制理论与应用,2007,24(1):6-12.
    [103]George Ellis.控制系统设计指南(第3版)[M].北京:电子工业出版社,2006.
    [104]于艾,杨耕,徐文立.具有扰动观测器调速系统的稳定性分析及转速环设计[J].清华大学学报(自然科学版),2005,45(4):521-524.
    [105]周文雅,何朕,王毅.扰动观测器和等价性[J].电机与控制学报,2006,10(3):256-259.
    [106]张钊,周勇,王钤.扩展状态观测器在陀螺稳定平台中的应用仿真[J].兵工自动化,2011,30(11):83-85
    [107]Yu S, ZhaoY.-Z. Simulation study on a friction compensation method for the inertialplatform based on the disturbance observer[C]. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering.2008.222(3):341-346.
    [108]孔德杰,戴明,程志峰等.动基座光电稳定平台伺服系统中加速度反馈的实现[J].光学精密工程,2012.20(8):1782-1788.
    [109]陈伯时.电力拖动自动控制系统——运动控制系统(第3版)[M].北京:机械工业出版社,2004.
    [110]熊皑,范永坤,吴钦章.光电跟踪系统力矩波动干扰抑制的研究[J].电光与控制,2009,16(4):72-74,81.
    [111]黄永梅,张桐,马佳光.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19,35.
    [112]John Studenny Pierre R. BClanger. Robot Manipulator Control By AccelerationFeedback[C].Proceedings of25th Conference on Decision and Control, Athens, Greece,1986:80-85.
    [113]徐国柱,刘樾,孟凡军.利用加速度反馈改善转台低速性能[J].中国惯性技术学报,2008,16(4):502-504.
    [114]唐涛,黄永梅,付承毓等.跟踪系统中多闭环控制模式的分析和实现[J].光电工程,2008,35(7):1-5.
    [115]杨文淑,张以谟,马佳光.加速度观测器设计与仿真[J].天津大学学报,2002,35(5):623-626.
    [116]邱志成.基于加速度反馈的挠性智能结构振动主动控制[J].机械工程学报,2008,44(3):143-151.
    [117]王旭.基于加速度反馈的直接驱动系统低速摩擦补偿方法实验研究[D]:[硕士学位论文].沈阳:中国科学院沈阳自动化研究所,2002.
    [118]Masahito Kobayashi, Takashi Yamaguchi, Takashi Yoshida,et al.Multi-sensing servo withcarriage-acceleration feedback for magnetic disk drives[C]. Proceedings of the American ControlConference hiladelphia, Pennsylvania June1998:3038-3042.
    [119]Han J D, He Y Q, Xu W L. Angular acceleration estimation and feedback control: anexperi-mental investigation [J]. Mechatronics,2007,17(9):524-532.
    [120]Deur J, Peric N. A comparative study of servo systems with acceleration feedback [C].2000IEEE Industry Applications Conference, Vol.3,2000:1533-1540.
    [121]Michael Swamp, Colin Stevens, Peter Hoffstetter. Improvement to transient fidelity ofHWIL flight tables using acceleration feedback[C].Proceeding of SPIE: Aerosense,2002:32-45.
    [122]刘强,尔联洁.飞行仿真转台基于干扰观测器的鲁棒跟踪控制[J].北京航空航天大学学报,2003,29(2):181-184.
    [123]Chen Xiankai, Komada S, Fukuda T. Design of a nonlinear disturbance observer[C]. IEEETransactions on Industry Electronics,2000,47(2):429-437.
    [124]方一鸣,王乐,王益群等.基于等效负载扰动观测器的直流电机转速鲁棒控制[J].电机与控制学报,2002,6(4):297-300.
    [125]Wang Hong-bin, Yao Hong-lei.Simulation of Adaptive Sliding Mode Control for InvertedPendulum Based on Disturbance Observer[J].系统仿真学报,2010,22(6):1476-1480.
    [126]李书训,姚郁,马杰.基于观测器的伺服系统低速摩擦补偿分析[J].电机与控制学报,2000,4(1):27-30.
    [127] K. Yamada, S. Komada, M Ish ida, et al. Analysis of servo system realized by disturbanceobserver [C]. IEEE Advanced Motion Control,1996. AMC '96-MIE. Proceedings,19964thInternational Workshop on, Vol.1:338-343.
    [128]孟凡军,徐国柱,郭晓月.基于状态观测器的扰动补偿在转台控制中的应用[J].中国惯性技术学报,2009,17(4):488-492.
    [129]贾松涛,朱煜,杨开明等.精密工作台扰动观测器的设计[J].微细加工技术,2007,4:39-42.
    [130]Yamada.K, Komada.S, Ishida.M, et al. Analysis and classical control design of servo systemusing high order disturbance observer[C].Industrial Electronics, Control and Instrumentation,1997. IECON97.23rd International Conference on, Vo.1:4-9.
    [131]于艾,杨耕,徐文立.具有扰动观测器调速系统的稳定性分析及转速环设计[J].清华大学学报(自然科学版).2005,45(4):521-524.
    [132]杨耕,罗应立等.电机与运动控制系统[M].北京:清华大学出版社,2006.
    [133]孔德杰,程志峰,沈宏海等.动基座光电平台伺服系统扰动力矩抑制能力仿真与分析[J].长春理工大学学报(自然科学版),2011,34(2):67-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700