用户名: 密码: 验证码:
航空光电稳定平台扰动抑制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空光电稳定平台广泛应用于敌情侦察、目标定位、打击校射和效果评估等领域。其中,视轴的稳定精度是衡量其性能的一项关键指标,稳定精度越高,航空光电稳定平台成像越清晰,信息获取越准确。然而在实际工作过程中,飞机飞行姿态的不断变化,发动机的振动、气流扰动等因素均会导致驱动电机的输出力矩不能够完全准确地驱动框架,如此一来,便使得视轴不能按照期望的方式稳定在目标位置。由此可见,如何提高系统的扰动抑制能力,是提高航空光电稳定平台视轴稳定精度的关键技术之一。
     本文对两轴四框架航空光电稳定平台中的扰动作用原理进行深入研究,并提出了主动抗扰与被动抗扰相结合的引导型自抗扰控制策略对系统中的扰动进行抑制。本文研究的主要内容如下:
     1.本文首先根据两轴四框架光电稳定平台的结构,从系统运动学动力学耦合方程出发,提出了减小框架间耦合的具体方法。从机械结构优化设计的角度,对两轴四框架光电稳定平台的控制系统提出了设计要求。
     2.对平台中每一框架均进行了电流环设计,以保证电机的输出力矩恒定。并结合航空光电稳定平台的工作特点,对系统中的各种干扰进行综合分析,并按照其作用位置将其分为模型干扰、电机干扰、力矩干扰等三类,以此为依据,采用“等效扰动电压”的方式建立了系统的被控模型,如此一来,不仅避免了各种扰动力矩复杂的建模过程,同时为主动抗扰策略的应用奠定了基础。
     3.在速度稳定回路中,分别采用平方滞后控制器和平方PI控制器,显著地提高了低频段的开环增益,取得了令人满意的被动抗扰效果。详细论述了采用传统控制策略时,系统扰动隔离度受机械谐振频率严格限制的原因,进而引入快速反射镜,从结构设计的角度进一步发挥了传统控制策略对扰动的抑制能力。同时,在不改变机械结构单纯依靠控制策略的角度,提出了二级引导型自抗扰控制器,以主动与被动相结合的方式进一步对系统中的扰动进行抑制,极大程度的提高了系统的扰动隔离度。
     4.在飞行模拟转台中测试二级引导型自抗扰控制器对2.5Hz以内任意频率扰动的抑制能力,并与目前航空光电稳定平台中常用的平方滞后超前校正方法进行对比。实验结果表明:相比于传统的平方滞后控制器,采用引导型自抗扰控制器,系统的扰动隔离度至少提高8.52dB,且随着扰动频率大于0.5Hz,该控制器的扰动抑制能力更为明显,扰动隔离度最多提高了13.06dB;同时,引导型自抗扰控制器具有很强的鲁棒性,允许被控对象参数在15%的范围内任意变化;除此之外,在高低温和振动冲击等可靠性实验中,“引导型”自抗扰控制器也表现出至少优于传统平方滞后控制器1倍以上的性能,充分体现了“引导型”自抗扰控制器的优越性,对提高航空光电稳定平台控制系统的抗扰动性能具有较高的实用价值。
Aerial photoelectrical stabilized platform is widely used in the zone of enemyinvestigation, target location, attack collation and effect evaluation. Optic axisstability is an important metric for charactering the stable plan. With higher optic axisstability, the accuracy and image quality of the plan will consequently raise.Nevertheless, limited by the rigid body motion of the plane, engine vibration andturbulence of the airflow, the output moment of the electric-motor cannot be totallytransferred to the frame and this leads to the deviation from the perfect location ofpointing model.so we place significance on the robust of the plan system.
     In this article, after processing the specification of the turbulence in theory, wedegrade the restrain strategy into two individual parts: the active restrain and thepassive one and this paper will be organized as follows.
     To begin with, according to the mechanical structure of the stable plan, wedevelop a method from the motion and dynamic equations to restrain the couplingamong the frames. Thus, the optimize design of the plan provides a requirement forthe control system of the plan.
     In the second place, we design the current loop separately for every frame, inorder to provide a smooth moment output.The analytical determination that how thesensitivity for the various kinds of turbulence moment influences the plan pointingaccuracy will be received.Based on the current loop, we investigate the control currentwhich specifies both the turbulence moment and model error. Modeling in this way, for one thing, we can understand the error model more easily.For another, theconstruction of active control strategy will benefits from it.
     In speed stability loop, the traditional square lag-lead compensation method andsquare PI controller can provide adequate passive restraint and improve theperformance of the controller in the low part of the frequency domain. The two-stageADRC whose estimated value of disturbance is oriented by target value, combines theactive and passive strategy, is involved for contribution to the iso-vibration of thesystem and optic axis stability.
     Lastly, an experiment was performed to test the disturbance rejectionperformance of the ADRC based on current loop when the speed disturbance is from0.1Hz to2.5Hz as compared with the traditional square lag-lead compensation method.Experiment results show that ADRC can reduce the disturbance error8.52dB at least.And the isolation degree of disturbance is improved obviously when the perturbationfrequency is more than0.5Hz. The best isolation degree of disturbance is increased13.06dB. And the ADRC have strong robustness, allowing the range of systemparameters to change in15%. In addition, the disturbance rejection performance ofthe ADRC whose estimated value of disturbance is oriented is improved more thanone time in the temperature test and vibration experiment.In conclusion, the ADRCwhose estimated value of disturbance is oriented satisfies the performancerequirements of aerial photoelectrical stabilized platform and have higher practicalvalue.
引文
[1]刘向.线加速度计在平台稳定系统中应用的理论研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [2]温杰.以色列空军正式装备埃坦无人机[N].中国航空报,2010年3月2日第003版.
    [3]李富栋.机载红外搜索与跟踪系统的现状与发展[J].激光与红外,2008,38(5):409-412.
    [4] Bai Lianfa,ZhangYi,Qian Weixian,et al.Technique of pulse infrared laser assistantnight vision[J]. Infrared and Laser Engineering,2005,34(6):676-680.
    [5] Timothy P. Ricks, Megan M. Burton, William Cruger, et al. Stabilizedelectro-optical airborne instrumentation platform[C]. Chemical and BiologicalStandoff Detection,2004,SPIE Proceedings Vol.5268:202-209.
    [6]郑烨,张伯虎,李孔震.光电侦察设备的现状与发展前景探析[J].科技资讯,2012,1:4-6.
    [7]刘洵,王国华,毛大鹏等.军用飞机光电平台的研发趋势与技术剖析[J].中国光学与应用光学,2009,2(4):269-288.
    [8]潘雪萍.虚拟光电平台仿真软件研究[D]:[硕士学位论文].西安:西北工业大学,2007.
    [9]陈建.某机载红外测量吊舱系统图[J].红外技术,2004,26(5):55-57.
    [10]倪国强,秦庆旺,肖蔓君等.中国红外成像技术发展的若干思考[J].科技导报,2008,26(22):88-93.
    [11]高凯,马凌,魏国福等.法国空军的目标指示吊舱达摩克利斯[J].飞航导弹,2011,7:6-9,14.
    [12]陈希林,傅裕松,尉洵楷.机载光电瞄准系统的现状及发展[J].2004,26(2):18-22,28.
    [13]田桂荣,张宇,谷阿函.光电/红外传感器的军事应用与发展[J].舰船电子工程,2007,27(6):46-50,114.
    [14]赵红颖,金宏,熊经武.电子稳像技术概述[J].光学精密工程,2001,9(4):353-359.
    [15]沈宏海,刘晶红,贾平等.摄像稳定技术[J].光学精密工程,2001,9(2):l15-120.
    [16]Mitsuo Hashimoto, Tetsuya Kuno, Hiroaki Sugiura. A New Image-stabilizationMethod by Transferring Electric Charges[C]. IEEE Transactions on ConsumerElectronics,2007,53(4):1230-1236.
    [17]刘晶红,孙辉,张葆等.航空光电成像平台的目标自主定位[J].光学精密工程,2007,15(8):1305-1310.
    [18]钟平.机载电子稳像技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [19]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D]:[博士学位论文].南京:东南大学,2006.
    [20]刘洵,戴明.无人机光电载荷的研制与改进[J].光电工程,2008,35(3):1-5.
    [21]Junlan Yang, Dan Schonfeld, Magdi Mohamed. Robust Video Stabilization Basedon Particle Filter Tracking of Projected Camera Motion [C]. IEEE Transactions onCircuits and Systems,2009,19(7):945-954.
    [22]朱娟娟.电子稳像理论及其应用研究[D]:[博士学位论文].西安:西安电子科技大学,2009.
    [23]孙辉.航空光电侦察平台关键技术与发展[J].光学精密工程,2007,15(3):412-416.
    [24]吴晗平,易新建,杨坤涛.机械结构因素对光电跟踪伺服系统性能的影响[J].应用光学,2004,25(3):11-14.
    [25]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [26]陈星.自抗扰控制器参数整定方法及其在热工过程中的应用[D]:[硕士学位论文].北京:清华大学,2008
    [27]苏位峰.异步电机自抗扰矢量控制调速系统[D]:[博士学位论文].北京:清华大学,2004.
    [28]马幼捷,刘增高,马云斌.一种具有自抗扰调速电路的三相鼠笼异步电机[P].中国专利,CN101499769A,2008.
    [29]李乔.并联型混合有源电力滤波器的自抗扰与H∞鲁棒控制[D]:[博士学位论文].广州:华南理工大学,2005.
    [30]宋金来,王晓燕,韩京清,等.卫星制导炸弹控制回路中的自抗扰控制[J].航天控制,2008,26(3):25-29.
    [31]廉明,韩振宇,富宏亚.自抗扰技术在卫星姿态模拟系统中的应用[J].光学精密工程,2010,18(3):616-622.
    [32]徐乐.主动磁控小卫星自抗扰姿态控制系统研究[D]:[硕士学位论文].黑龙江:哈尔滨工业大学,2006.
    [33]宋金来,韩京清.平台惯导系统的快速初始对准方法的研究[J].中国惯性技术学报,2002,10(1):25-29.
    [34]宋金来,杨雨,许可康,等.捷联式惯导系统静基座快速初始对准方法的研究[J].系统仿真学报,2002,14(10):1352-1354.
    [35]黄焕袍,武利强,韩京清,等.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173.
    [36]焦连伟,陈寿孙,王晓峰.电力系统自抗扰控制器[J].清华大学学报(自然科学版),1999,39(3):27-29.
    [37]孟凡东.自抗扰控制器的设计与应用研究[D]:[硕士学位论文].哈尔滨:哈尔滨理工大学,2009.
    [38]B.X.S.Alexander, Richard Rarick, Lili Dong. A Novel Application of AnExtenden State Observer for High Performance Control of NASA’s HSS Flywheeland Fault Detection[C]. Proceedings of the2008American Control Conference,Washington, USA,2008:4425-4430.
    [39]Qing Zheng, Lili Dong, Zhiqiang Gao. Control and rotation Rate Estimation ofVibrational MEMS Gyroscopes[C].Proceedings of the16th IEEE InternationalConference on Control Applications, Part of IEEE Multi-conference on Systems andControl,Singapore,2007:118-123
    [40]Lili Dong, Qing Zheng, David Avanesov. The Design and Implementation ofDriving Mode Control for Vibrational Gyroscopes[C].Proceedings of the2008American Control Conference,Washington,USA,2008:4419-4424
    [41]Lili Dong,Qing Zheng,Zhiqiang Gao. On Control System Design for theConventional Mode of Operation of Vibrational Gyroscopes[J].IEEE SensorJournal,2008,8(11):1871-1878
    [42]Qing Zheng,Lili Dong.A Disturbance Rejection Based Control System Design forZ-Axis Vibratory Rate Gyroscopes[C].Proceedings of IEEE International conferenceon Control and Automation,Guangzhou,China,2007:2015-2110
    [43]Qing Zheng,Zhongzhou Chen,Zhiqiang Gao.A Dynamic Decoupling ControlApproach and Its Applications to Chemical Processes[C].Proceedings of the2007American Control Conference,New York,USA,2007:5176-5181.
    [44]Zhongzhou Chen,Qing Zheng,Zhiqiang Gao.Active Disturbance RejectionControl of Chemical Processes[C].Proceedings of the16th IEEE InternationalConference on Control Applications,Part of IEEE Multi-conference on Systems andControl,Singapore,2007:855-861.
    [45]Bosheng Sun,Zhiqiang Gao.A DSP-Based Active Disturbance Rejection ControlDesign for al-KW-H-Bridge DC-DC Power Converter[C].IEEE Transactions OnIndustrial Electronics,2005,52(5):1271-1277
    [46]SHAOHUA Hu.On High Performance Servo Control Algorithms For Hard DiskDrive[D].CLEVELAND STATE UNIVERSITY,USA,2001
    [47]Gang Tian, Zhiqiang Gao. Benchmark Tests of Active Disturbance RejectionControl on an Industrial Motion Control Platform[C].Proceedings of the2009American Control Conference,St.Louis,USA,2009:5552-5361
    [48]Frank J.Goforth,Zhiqiang Gao.An active disturbance rejection control solution forhysteresis compensation[C].Proceedings of the2008American ControlConference,Washington,USA,2008:2202-2208.
    [49]Lili Dong,Prasanth Kandula,Zhiqiang Gao.On a Robust Control System Designfor an Electric Power Assist Steering System[C].Preceedings of the2010AmericanControl Conference,Baltimore,USA,2010:5356-5361.
    [50]Lili Dong,Yao Zhang.On Design of a Robust Load Frequcency Controller forInterconnected Power Systems[C].Proceedings of the2010American ControlConference,Baltimore,USA,2010:1731-1736
    [51]Qing Zheng, Zhiqiang Gao. Motion Control Design Optimization:Problem andsolutions[J].International Journal of Intelligent Control andSystem,2005,10(4):269-276
    [52]张云超,刘昆.三框架惯性稳定平台动力学分析[J].硅谷,2011(10):145-147.
    [53]周长义.三轴飞行仿真转台控制系统设计与控制算法研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [54]鲍文亮,黄显林,陆鸿谦.多框架光电平台动力学建模及耦合分析[J].哈尔滨工程大学学报,2009(30):893-897.
    [55]杨业飞,申文涛.惯性稳定平台中陀螺技术的发展现状和应用研究[J].飞航导弹,2011(2):72-79.
    [56]陈益,薄羽名,邹卫军.视轴稳定系统的非接触式陀螺修正技术[J].计算机工程,2010(36):222-224.
    [57]谭显欲.军用光纤陀螺的发展、关键技术及应用前景[J].现代防御技术,1998,26(4):55-61
    [58]盛钟延,季航峰,周柯江.光纤陀螺的最新进展[J].红外与激光工程,1999,28(3):59-63
    [59]张延顺,孙枫,张家海.自适应横向滤波器在干涉式光纤陀螺中的应用[J].哈尔滨工程大学学报,2000,22(1):59-61
    [60]Aboelmagd Noureldin,Dave Irvine-Halliday,Herb Tabler.New Technique forReducing the Angle Random Walk at the Output of Fiber Optic Gyroscopes duringAlignment Processes of Inertial Navigation Systems[J].Opticalengineering,2001,40(10):2097-2106.
    [61]易康,李廷志,吴文启.FLP滤波算法在光纤陀螺信号预处理中的应用[J].中国惯性技术学报,2005,13(5):58-62
    [62]卞鸿巍,李安,汪人定.用灰色理论和神经网络理论建立陀螺漂移模型初探[J].中国惯性技术学报.1997,5(4):37-40.
    [63]Yusuf Ilker AKCAYIR,Yakup OZKAZANC,Gyroscope Drift EstimationAnalysis in Land Navigation Systems[C].Proceedings of2003IEEE Conference onControl Application,2003,2:1488-1491.
    [64]曾庆双.陀螺仪稳定吊舱控制系统设计与实现[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [65]臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报,2005,17(8):1845-1847.
    [66]Rong Zhu,Yanhua Zhang,Qilian Bao.A Novel Intelligent Strategy for ImporvingMeasurementPrecision of FOG[J].IEEE Transaction on Instrumentation andMeasurement,2000,49(6):1183-1188.
    [67]Michael S,Bielas.Stochastic and Dynamic Modeling of Fiber Gyros[C].SPIEFiber Optic and Laser Sensors,1994,2292:240-253.
    [68]陈熙源,万德钧,程启明.陀螺随机漂移的神经网络预报方法研究[J].东南大学学报,1998,28(5):79-83.
    [69]Jiang Hong,Yang Wei-Qin,Yang You-Tang.State Space Modeling of RandonDrift Rate in High-precision Gyro[J].IEEE Transactions on Aerospace and ElectronicSystems,1996,32(3):1138-1143.
    [70]毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究[J].仪表技术与传感器,2004,4:54-57.
    [71]Marcelo C Algrain,Douglas E E.Novel Kalman Filtering Method for theSuppression of Gyroscope Noise Effects in Pointing and Tracking Systems[J].Opticalengineering,1995,34(10):3016-3030.
    [72]Marcelo C Algrain.Kalman Filtering Approach ofr Reducing Gyroscope NoiseEffects in Stabilized Platforms[C].SPIE Conference on Acquisition,Tacking andPointing VI,1992,1697:399-413.
    [73]周跃庆,高宁,刘鲁源.抗野值自适应K阿拉曼滤波及其在陀螺信号处理中的应用[J].天津大学学报,2004,37(9):815-817.
    [74]高玉凯,邓正隆。小波变换与卡尔曼滤波结合的RLG降噪方法[J].光电工程,2005,32(5):31-34.
    [75]王广龙,祖静,张文栋.微机械陀螺仪[J].电子测量与仪器学报,1999(13):30-34.
    [76]吴衍论,黄显林.干涉式光纤陀螺中的Rayleigh散射研究[J].光学技术,2007(33):566-568.
    [77]万旭东.提高光纤背向散射法测量精度的方法研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2006.
    [78]姬伟,李奇,赵德安.光纤陀螺信号数字滤波算法研究[J].压电与声光,2009(31):178-184.
    [79]易康,李廷志,吴文启.FLP滤波算法在光纤陀螺信号预处理中的应用[J].中国惯性技术学报,2005(13):58-62.
    [80]尹余琴.力矩电动机在工程实际应用中的特性分析[D]:[硕士学位论文],南京:南京理工大学,2007.
    [81]周旺平,徐欣圻.大型天文光学望远镜超低速跟踪控制[J].光电工程,2007,34(11):1-4.
    [82]黄一,吕俊芳.机载光电跟瞄平台伺服系统中电流环的设计与仿真[J].航空计测技术,2003(23):15-21.
    [83]张黎黎,黄一,吕俊芳.机载光电跟瞄平台伺服系统中电流环的设计与仿真[J].理论与实践,2003,23(6):15-21.
    [84]鲍文亮,黄显林,尹航.光电平台惯性稳定系统的自适应动态摩擦补偿[J].电光与控制,2012(19):50-54
    [85]杨元恺,郎需英.精密转台中摩擦力矩的动态补偿[J].自动化学报,1983,9(4):248-252.
    [86]于志伟,曾鸣,乔大鹏.采用复合控制的直流力矩电机摩擦补偿[J].电机与控制学报,2008,12(5):539-544.
    [87]克晶,苏宝库,曾鸣.一种直流力矩电机系统的滞滑摩擦补偿方法[J].哈尔滨工业大学学报,2005,37(6):736-739.
    [88]魏学云,丛爽,邓科.机载光电稳定平台速度系统载体扰动的隔离控制[C].《Proceedings of14thChinese Conference on System Simulation Technology&Application(CCSSTA’2012)》-2012.
    [89]孔祥臻,王勇,蒋守勇.基于Stribeck模型的摩擦颤振补偿[J].机械工程学报,2010(46):68-7
    [90]朱华征,范大鹏,张文博等.质量不平衡力矩对导引头伺服机构性能影响分析[J].红外与激光工程,2009,38(5):767-772.
    [91]骞永博,吴斌.弹丸质量质心测量方法研究[J].弹箭与制导学报,2006(26):126-128
    [92]郝晶莹,李军.质量质心转动惯量测试系统的应用与改进[J].2009(6):54-57
    [93]吴斌,张波,许苏海.导弹质量特性测量装置设计[J].上海航天,2001(3):42-44
    [94]毕永利,刘洵,葛文奇.机载光电平台隔振装置特性研究[J].机床与液压,2004(5)76-78
    [95]杨业飞,申文涛.惯性稳定平台中陀螺技术的发展现状和应用研究[J].飞航导弹,2011(2):72-79
    [96]韩京清.自抗扰控制技术[M].北京:国防工业出版社,2009.
    [97]邱晓波,窦丽华,单东升,等.光电跟踪系统自抗扰伺服控制器的设计[J].光学精密工程,2010,18(1):220-226.
    [98]杨丹迪,王晓玢,胡发兴,王凯.光电稳定平台的抗扰问题研究[C].烟台:第30届中国控制年会,2011.7
    [99]马幼捷,赵健,周雪松.并联混合型有源电力滤波器的线性自抗扰控制及稳定性分析[J].电网技术,2012(36):211-216
    [100]吴琼雁,王强,彭起.音圈电机驱动的快速控制反射镜高带宽控制[J].光电工程,2004(31):15-18.
    [101]韩旭东,徐新行,王兵.快速反射镜系统用光栅测微仪[J].光电工程,2011(38):115-119
    [102]刘强,尔联洁.飞行仿真转台基于干扰观测器的鲁棒跟踪控制[J].北京航空航天大学学报,2003,29(2):181-184.
    [103] Chen Xiankai, Komada S, Fukuda T. Design of a nonlinear disturbanceobserver[C]. IEEE Transactions on Industry Electronics,2000,47(2):429-437.
    [104]方一鸣,王乐,王益群等.基于等效负载扰动观测器的直流电机转速鲁棒控制[J].电机与控制学报,2002,6(4):297-300.
    [105] Wang Hong-bin, Yao Hong-lei.Simulation of Adaptive Sliding Mode Controlfor Inverted Pendulum Based on Disturbance Observer[J].系统仿真学报,2010,22(6):1476-1480.
    [106]李书训,姚郁,马杰.基于观测器的伺服系统低速摩擦补偿分析[J].电机与控制学报,2000,4(1):27-30.
    [107] K. Yamada, S. Komada, M Ish ida, et al. Analysis of servo system realized bydisturbance observer [C]. IEEE Advanced Motion Control,1996. AMC '96-MIE.Proceedings,19964th International Workshop on, Vol.1:338-343.
    [108]孟凡军,徐国柱,郭晓月.基于状态观测器的扰动补偿在转台控制中的应用[J].中国惯性技术学报,2009,17(4):488-492.
    [109]贾松涛,朱煜,杨开明等.精密工作台扰动观测器的设计[J].微细加工技术,2007,4:39-42.
    [110] Yamada.K, Komada.S, Ishida.M, et al. Analysis and classical control design ofservo system using high order disturbance observer[C].Industrial Electronics, Controland Instrumentation,1997. IECON97.23rd International Conference on, Vo.1:4-9.
    [111]李嘉全,丁策,孔德杰,等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011,19(5):998-1004.
    [112]方强,马杰,毕运波.基于扰动观测器的电动负载模拟器控制系统设计[J].浙江大学学报,2009(43):1958-1964.
    [113]高亮.基于干扰观测器的转台控制系统设计[D]:[硕士学位论文],哈尔滨:哈尔滨工业大学,2007.
    [114]黄焕袍,万晖,韩京清.安排过渡过程是提高闭环系统[J].控制理论与应用,2001(18):89-94.
    [115]赵秀元,张新立,耿乐.扩张状态观测器的抑制扰动性分析[J]辽宁师范大学学报(自然科学版),2011(34)262-265.
    [116]阮久宏,杨福广,李贻斌.车辆加速度自抗扰控制[J].控制理论与应用,2011,28(9):1189-1194.
    [117]李述清,张胜修,刘毅男.根据系统时间尺度整定自抗扰控制器参数[J].控制理论与应用,2012(29):126-129.
    [118]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995(10):85-88.
    [119]齐乃明,秦昌茂,宋志国.高超声速飞行器改进自抗扰串级解耦控制器设计.哈尔滨工业大学学报,2011(43)34-38
    [120] Gao Zhiqiang. Scaling and bandwidth-parameterization based controllertuning[C]//Proceedings of the American ControlConference.Evanston,IL:IEEE,2003:4989-4996
    [121] Gao Zhiqiang. A paradigm shift in feedback control system design. InProceedings of the American Control Conference,2009:2451-2457.
    [122] Gao Zhiqiang, Huang Yi, Han Jingqing. An Alternative Paradigm for ControlSystem Design. Proceedings of the40th IEEE Conference on Decision and Control,2001.12(4-7),5:578-4585.
    [123]朱承元,杨涤,荆武兴.跟踪微分器参数与输入输出信号幅值频率关系[J].电机与控制学报,2005(9):379-383
    [124]黄浦.自抗扰控制技术在航空相机镜筒控制系统中的应用研究[D]:[博士学位论文],长春:长春光学精密机械与物理研究所,2011.
    [125]黄浦,修吉宏,李军.航空相机镜筒位置控制的扰动估计与补偿[J].光学精密工程,2012(20)803-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700