用户名: 密码: 验证码:
基于磷酸铵镁结晶法的氨氮回收技术过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氮污染已经成为我国地表水的主要污染源,作为“十二·五”期间节能减排战略中新增的约束性指标,氨氮废水处理技术的理论研究与技术应用具有巨大的市场潜力和产业化应用前景。磷酸铵镁结晶法,通过向废水中投加镁盐和磷酸盐与废水中的氨氮反应生成磷酸铵镁沉淀,可快速高效去除回收废水中氨氮。目前,磷酸铵镁结晶法已经成为氨氮废水处理与氨氮资源回收的热点研究技术之一。
     但是,磷酸铵镁结晶法氨氮回收技术过程中的参数调控、化学污泥利用,结晶反应装备等问题是制约该技术推广应用的主要影响因素。本论文以“基于磷酸铵镁结晶法的氨氮回收技术过程研究”为题,针对目前技术过程中的技术瓶颈——参数调控、化学污泥、结晶反应装备,采用精准沉淀反应调控、PHREEQC建模优化、响应面智能化评估、磷酸铵镁热解脱氨、化学药剂循环沉氨、U型流向路线设计、一体化连续流控制等技术路线,开展磷酸铵镁结晶法反应参数优化研究、热力学建模评估技术研究、磷酸铵镁碱促热解循环沉氨技术研究、一体化新型结晶器研制等系列研究,为实施磷酸铵镁结晶法回收氨氮技术过程提供依据。主要研究成果如下:
     (1)优化了磷酸铵镁结晶法氨氮回收技术过程工艺参数
     对磷酸铵镁结晶法回收氨氮的参数调控情况,磷酸铵镁结晶动力学反应,化学污泥表征进行重点研究,结果表明:最佳的反应pH值范围为9.0-10.5;最佳的Mg2+:NH4+:PO43-范围为1.1-1.2:1:1; MgCl2·6H2O和Na2HPO4·12H2O沉淀剂组合沉氨效果最好;干扰离子Ca2+、CO32-、K+,离子强度,以及温度会影响磷酸铵镁结晶回收氨氮效果;磷酸铵镁结晶的动力学反应过程符合一级反应动力学;X射线衍射分析和傅里叶变换红外光谱分析表明磷酸铵镁是沉淀产物的主要成分,扫描电子显微镜及能谱分析表明沉淀产物为不规则形态表面粗糙晶体。
     (2)建立了磷酸铵镁结晶法的热力学评估预测模型
     开发单因素仿真模拟与多因素评估的磷酸铵镁结晶模型,对于参数调控优化的理论研究与工程应用具有预测评估作用,结果表明:磷酸铵镁饱和溶解指数值与pH值呈现多项式关系,分别与镁氮比(Mg/N)、初始氮浓度(CN)、磷氮比(P/N)呈现对数关系,随Mg/N、CN、P/N的增加而增加,分别随钙氮比(Ca/N)、碳酸根氮比(C032-/N)增加而降低,随离子强度增加而降低,随温度变化而变化;响应面优化法(RSM)分析认为pH、Mg/N、CN、Ca/N、(Mg/N)×(CO32-/N)、(pH)2、(Mg/N)2、以及(CN)2是磷酸铵镁结晶的相对显著影响因子;实验证明热力学建模有效预测磷酸铵镁结晶法回收氨氮效率变化趋势。
     (3)解析了化学沉氨碱促热解循环沉氨技术
     利用磷酸铵镁热解脱氨及化学药剂循环沉氨的技术路线,开展磷酸铵镁碱促热解循环沉氨技术研究,结果表明:当热解温度为110℃,热解时间为3小时,OH":NH4+为2:1时,磷酸铵镁碱促热解脱氨效率大于90%,脱出氨氮可采用硫酸进行资源化回收;热解产物循环沉氨最佳pH值为9.5;只添加磷酸铵镁热解产物循环作沉淀剂时,沉氨效率随循环次数增加而下降,每次循环添加磷酸铵镁热解产物基础上投加MgCl2·6H2O和Na2HPO4·12H2O作为补充,沉氨效率不随循环次数增加而下降;使用预制磷酸铵镁作为晶种材料的加晶种技术可提高热解产物循环沉氨效率。
     (4)研制出了一体化连续流机械搅拌式结晶器
     开展一体化新型磷酸铵镁结晶器的研制,设计一体化连续流机械搅拌式结晶器(CSCSR),并对其运行情况进行研究,结果表明:采用U型流向路线设计,基于磷酸铵镁结晶原理进行模块分区研制CSCSR,在初始pH值为11.0、Mg/N为1:1、HRT为1.5h、Ca/N为0:1时,氨氮去除率达到91.08%;RSM分析认为Mg/N、Ca/N为CSCSR运行的显著影响因子。
One of the major environmental concerns associated with surface water environment is related to the pollution of ammonium nitrogen. Now, ammonium nitrogen is used as an additional controlled indicator for energy saving and emission reduction strategy of "12Five Year Plan". As a result, the technology for ammonium nitrogen removal will show great market potential and industrial applications prospects. Ammonium nitrogen removal by adding magnesium salt and phosphate to form magnesium ammonium phosphate hexahydrate (MAP) crystallization is a useful method. Recently, MAP precipitation of ammonium has been studied widely.
     However, the problem, parameter controlled, magnesium ammonium phosphate disposal, and crystallized-settled reactor designed, that hamper the wide application of MAP precipitation. In the present research of "Ammonium Nitrogen Recovery from Wastewater by Magnesium Ammonium Phosphate Crystallization", the problem, parameter controlled, magnesium ammonium phosphate disposal, and crystallized-settled reactor designed, that was investigated by the method of extract precipitation reaction control, PHREEQC thermodynamic modeling, response surface methodology evaluation, magnesium ammonium phosphate pyrogenation, chemical precipitation pyrogenation recycle, U-shape flow course design, and continuous stirred crystallized-settled reactor control. The research of MAP precipitation parameter control technology, thermodynamic modeling assessment technology, chemical precipitation recycle technology, and continuous stirred crystallized-settled reactor function technology, were examined. The main results are as follows:
     (1) Ammonium nitrogen recovery from wastewater by MAP precipitation
     Taking into account the problem of parameter controlled, ammonium nitrogen recovery from wastewater by MAP precipitation was investigated and the following conclusions could be obtained. When MgCl2·6H2O and Na2HPO4·12H2O were employed, the optimum pH was9.0-10.5and the molar ratio of Mg2+:NH4+:PO43-was controlled at1.1-1.2:1:1in order to recovery ammonium effectively and avoid higher concentration of PO43-in the effluent. MgCl2·6H2O plus Na2HPO4·12H2O was the most efficient for ammonium removal. The interfering ions of Ca+, CO32-, and K+could obviously affect ammonium nitrogen recovery efficiency. The ionic strength, and temperature could also affect ammonium nitrogen recovery efficiency. The kinetics experiment showed that the rate of reaction was closer to the first order kinetic model. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that MAP was the main composition of the precipitates. Scanning electron microscopy with energy dispersive X-ray analysis indicated that the unshaped crystal was coarse and its size was irregular, the surface composition of the precipitates contains a great deal of O, P, Mg.
     (2) Thermodynamic modeling assessment for ammonium nitrogen recovery by MAP precipitation
     Thermodynamic modeling was developed for predicting ammonium nitrogen recovery from wastewater by MAP precipitation. Response surface methodology (RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions. The following conclusions were drawn. The saturation index (SI) of MAP followed a polynomial function of pH. The SI of MAP increased and followed a logarithmic function of the concentration of magnesium, ammonium, and phosphate, respectively. The SI of MAP decreased with an increase in the concentration of calcium, carbonate, respectively. The SI of MAP decreased with an increase in ionic strength. Temperature could obviously affect the SI of MAP. The RSM analysis indicated that the factors pH, Mg/N, CN, Ca/N,(Mg/N) x (CO32-/N),(pH)2,(Mg/N), and (Cn)2were significant. Thermodynamic modeling was validated by comparing it with the case study.
     (3) Ammonium nitrogen removal by chemical precipitation recycle technology
     Taking into account the problem of magnesium ammonium phosphate disposal, chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from wastewater was examined. The pyrolysate resulting from magnesium ammonium phosphate pyrogenation in sodium hydroxide solution was recycled for ammonium nitrogen removal from wastewater, and the following conclusions were drawn. The MAP pyrolysate could be produced at the optimal condition of a hydroxyl to ammonium molar ratio of2:1, a heating temperature of110℃, and a heating time of3h. The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl2-6H2O plus Na2HPO4·12H2O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.
     (4) New continuous crystallization reactor designed for ammonium nitrogen recovery as MAP precipitation
     Taking into account the problem of crystallized-settled reactor, a new continuous crystallization reactor was designed for ammonium nitrogen recovery as MAP precipitation. The reactor practical operation was studied, and the following conclusions were drawn. A continuous stirred crystallized-settled reactor (CSCSR), adopted U-shaped flow course design, consists of column coagulation implement, filler baffle-wall, taper stabilization implement, and settlement tank. The ammonium nitrogen recovery efficiency was91.08%at the condition of pH11.0, Mg/N1:1, HRT1.5h, and Ca/N0:1. The RSM analysis indicated that the factors Mg/N, and Ca/N were significant.
引文
[1]Holloway J M, Dahlgren R A, Hansen B, Casey W H. Contribution of bedrock nitrogen to high nitrate concentrations in stream water [J]. Nature,1998,395:785-788.
    [2]王珺,高高,裴元生,杨志峰.白洋淀府河中氮的来源与迁移转化研究[J].环境科学,2010,31(12):2905-2910.
    [3]孙金水,Wai Q W,王伟,雷立,毛小苓.深圳湾海域氮磷营养盐变化及富营养化特征[J].北京大学学报(自然科学版),2010,46(6):960-964.
    [4]Miranda-Filho K C, Pinho G L L, Wasielesky W J, Bianchini A. Long-term ammonia toxicity to the pink-shrimp Farfantepenaeus paulensis [J]. Comparative Biochemistry and Physiology Part C, 2009,150:377-382.
    [5]蔡继晗,沈奇宇,郑向勇,李凯,吕永林,陈强.氨氮污染对水产养殖的危害及处理技术研究进展[J].浙江海洋学院学报(自然科学版),2010,29(2):167-172.
    [6]杨玉珍,王婷,马文鹏.水环境中氨氮危害和分析方法及常用处理工艺[J].山西建筑,2010,36(20):356-357.
    [7]陈婷婷,唐崇俭,郑平.制药废水厌氧氨氧化脱氮性能与毒性机理的研究[J].中国环境科学,2010,30(4):504-509.
    [8]黎永坚,胡晓东,熊紫娟,李润祺.高浓度氨氮对SBR工艺处理制药废水的影响[J].中国给水排水,2009,25(13):92-94.
    [9]Ge L, Ren H Q, Ding L L, Wang F F, Zhang X. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park [J]. Bioresource Technology,2010, 101:5852-5861.
    [10]林琳,李玉平,曹宏斌,李庆余,李海波.焦化废水厌氧氨氧化生物脱氮的研究[J].中国环境科学,2010,30(9):1201-1206.
    [11]李媛媛,潘霞霞,邓留杰,任源,卢彬,韦朝海A/O,/H/O2工艺处理焦化废水硝化过程的实现及其抑制[J].环境工程学报,2010,4(6):1231-1237.
    [12]Renou S, Givaudan J G, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment:Review and pooprtunity [J]. Journal of Hazardous Materials,2008,150:468-493.
    [13]商平,刘海利,刘彦博.苦卤-鸟粪石沉淀法预处理垃圾渗滤液[J].环境化学,2010,29(6):1111-1115.
    [14]乔文燕,李军,金永祥,张刚,任健.复合式A/O工艺处理晚期垃圾渗滤液的脱氮特性[J].中国给水排水,2010,26(19):28-31.
    [15]陈根良,施耀,魏建毅.有机磷农药废水处理工程[J].中国给水排水,2009,25(16):69-72.
    [16]Rodriguez D C, Pino N, Penela G. Monitoring the removal of nitrogen by applying a nitrification-denitrification process in a Sequencing Batch Reactor (SBR) [J]. Bioresource Technology,2011,102:2316-2321.
    [17]Shi Y J, Wang X H, Yu H B, Xie H J, Teng S X, Sun X F, Tian B H, Wang S G Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide [J]. Bioresource Technology,2011,102:2536-2541.
    [18]Camargo Valero M A, Read L F, Mara D D, Newton R J, Curtis T P, Davenport R J. Nitrification-denitrification in waste stabilisation ponds:A mechanism for permanent nitrogen removal in maturation ponds [J]. Water Science and Technology,2010,61(5):1137-1146.
    [19]Wang F F, Ding Y H, Ge L, Ren H Q, Ding L L. Effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor [J]. Journal of Environmental Sciences, 2010,22(11):1683-1688.
    [20]Virdis B, Read S T, Rabaey K, Rozendal R A, Yuan Z, Keller J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode [J]. Bioresource Technology, 2011,102:334-341.
    [21]Moussavi G, Khavanin A, Sharifi A. Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process [J]. Bioresource Technology,2011,102:2517-2522.
    [22]张瑞雪,向来,季铁军.DO浓度对SUFR系统同步硝化反硝化的影响[J].中国给水排水,2007,23(7):70-73.
    [23]王建龙,王淑莹,袁志国,高永青,高春娣.复合生物反应器的同步硝化反硝化研究[J].中国给水排水,2007,23(9):32-36.
    [24]Gao D, Peng Y, Li B, Liang H. Shortcut nitrification-denitrification by real-time control strategies [J]. Bioresource Technology,2009,100:2298-2300.
    [25]Zhang S, Peng Y, Wang S, Zheng S, Guo J. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate [J]. Journal of Environmental Sciences,2007,19:647-651.
    [26]Zhang Y, Zhou J, Zhang J, Yuan S. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification [J]. Journal of Environmental Sciences,2009,21:568-574.
    [27]王佳伟,郑江,李亚明,文洋,范铮铮,周军.短程硝化反硝化对污泥沉降性能的影响及其控制措施[J].中国给水排水,2010,26(13):22-24.
    [28]Liu S, Yang F, Xue Y, Gong Z, Chen H, Wang T, Su Z. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor [J]. Bioresource Technology,2008,99:8273-8279.
    [29]李祥,郑宇慧,黄勇,袁怡.保存温度及时间对厌氧氨氧化污泥活性的影响[J].中国环境科学,2011,31(1):56-61.
    [30]Quan X, Wang F, Zhao Q, Zhao T, Xiang J. Air stripping of ammonia in water-sparged aerocyclone reactor [J]. Journal of Hazardous Materials,2009,170:983-988.
    [31]Bolado-Rodriguez S, Garcia-Sinovas D, Alvarez-Benedi J. Application of pig slurry to soils Effect of air stripping treatment on nitrogen and TOC leaching [J]. Journal of Environmental Management,2010,91:2594-2598.
    [32]Zhang L, Jahng D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types [J]. Journal of Hazardous Materials,2010,182:536-543.
    [33]雷春生,马军,关小红,王桂玉.有机复合脱氮剂/吹脱法与直接吹脱法的除氨对比[J].中国给水排水,2009,25(23):82-84.
    [34]宋卫锋,骆定法,王孝武,陈嘉嘉,黄子安,黎伟海.折点氯化法处理高NH3-N含钴废水试验与工程实践[J].环境工程,2006,24(5):12-13.
    [35]张文成,安立超.焦化废水脱氮处理技术进展[J].环境污染治理技术与设备,2004,5(3):23-27.
    [36]Di Palma L, Ferrantelli P, Merli C, Petrucci E. Treatment of industrial landfill leachate by means of evaporation and reverse osmosis [J]. Waste Management,2002,22:951-955.
    [37]Jorgensen T C, Weatherley L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants [J]. Water Research,2003,37:1723-1728.
    [38]Li M, Feng C, Zhang Z, Zhao R, Lei X, Chen R, Sugiura N. Application of an electrochemical-ion exchange reactor for ammonia removal [J]. Electrochimica Acta,2009,55: 159-164.
    [39]张新颖,吴志超,王志伟,周琪,杨殿海.天然斜发沸石粉对溶液中NH4+的吸附机理研究[J].中国环境科学,2010,30(5):609-614.
    [40]张瑛洁,陈雷,马军,张亮,姚军,吴培瑛.微波强化NaCl改性沸石的除氨氮效果研究[J].中国给水排水,2009,25(1):72-74.
    [41]Doyle J D, Parsons S A. Struvite formation, control and recovery [J]. Water Research,2002, 36(16):3925-3940.
    [42]Le Corre K S, Valsami-Jones E, Hobbs P, Parsons S A. Phosphorus recovery from wastewater by struvite crystallization:a review [J]. Critical Reviews in Environmental Science and Technology, 2009,39:433-477.
    [43]张涛,任洪强,丁丽丽,许柯,李秋成.磷酸铵镁沉淀技术处理氨氮废水研究进展[A].中国环境科学学会学术年会论文集,2010:2908-2911.
    [44]Zhang T, Ren H, Ding L. Advanced treatment of ammonium removal from coking wastewater by chemical precipitation [A]. Progress in Environmental Science and Technology Vol.1,2007: 861-865.
    [45]Zhang T, Ding L, Ren H. Research on the treatment for high concentration of simulated ammonium wastewater by chemical precipitation [A]. Proceedings of International Workshop on Environmental Health & Pollution Control in 2008:296-301.
    [46]杨楠.磷酸铵镁结晶法去除和回收煤气化废水中的氨氮[D].哈尔滨工业大学硕士学位论文,2009.6.
    [47]汤琪.磷酸铵镁脱氮除磷技术及其应用研究[D].重庆大学博士学位论文,2008.4.
    [48]Rahman M M, Liu Y H, Kwag J H, Ra C S. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil [J]. Journal of Hazardous Materials,2011,186:2026-2030.
    [49]Etter B, Tilley E, Khadka R, Udert K M. Low-cost stuvite production using source-separated urine in Nepal [J]. Water Research,2011,45:852-862.
    [50]Uysal A, Yilmazel Y D, Demirer G N. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester [J]. Journal of Hazardous Materials, 2010,181:248-254.
    [51]Bassett H, Bedwell W L. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds [J]. Journal of Chemical Society,1933,854-871.
    [52]Abbona F, Boistelle R. Growth morphology and crystal habit of struvite crystals (MgNH4PO4.6 H2O) [J]. Journal of Crystal Growth,1979,46:339-354.
    [53]Borgerding J. Phosphate deposits in digestion systems [J]. Journal of the Water Pollution Control Federation,1972,44:813-819.
    [54]Ohlinger K N, Young T M, Schroeder E D. Predicting struvite formation in digestion [J]. Water Research,1998,32(12):3607-3614.
    [55]Bube K. Uber Magnesium ammonium phosphate [J]. Zeitschrift fur Analytische Chemie,1910, 49:525-593.
    [56]Taylor A W, Frazier A W, Gurney E L. Solubility products of magnesium ammonium and magnesium potassium phosphates [J]. Transactions of the Faraday Society,1963,59:1580-1584.
    [57]Burns J R, Finlayson B. Solubility product of magnesium ammonium phosphate hexahydrate at various temperatures [J]. The Journal of Urology,1982,128:426-428.
    [58]Loewenthal R E, Kornmuller U R C, Van Heerden E P. Modelling struvite precipitation in anaerobic treatment systems [J]. Water Science and Technology,1994,30(12):107-116.
    [59]Buchanan J R, Mote C R, Robinson R B. Thermodynamics of struvite formation [J]. Transactions of the American Society of Agricultural Engineers,1994,37:617-621.
    [60]Aage H K, Andersen B L, Blom A, Jensen I. The solubility of struvite [J]. Journal of Radio Analytical and Nuclear Chemistry,1997,223:213-215.
    [61]朱慎林,朴香兰,赵毅红.环境化工技术及应用[M].北京:化学工业出版社,2003,66-67.
    [62]Bouropoulos N C, Koutsoukos P G. Spontaneous precipitation of struvite from aqueous solutions [J]. Journal of Crystal Growth,2000,213:381-388.
    [63]Jones A G. Crystallization process system [M]. Oxford, Great Britain:Butterworth/Heinemann, 2002.
    [64]Nelson N O, Mikkelsen R E, Hesterberg D L. Struvite precipitation in anaerobic swine lagoon liquid:effect of pH and Mg:P ratio and determination of rate constant [J]. Bioresource Technology, 2003,89:229-236.
    [65]Booker N A, Priestley A J, Fraser I H. Struvite formation in wastewater treatment plants: opportunities for nutrient recovery [J]. Environmental Technology,1999,20:777-782.
    [66]Altinbas M, Yangin C, Ozturk I. Struvite precipitation from anaerobically treated municipal and landfill wastewaters [J]. Water Science and Technology,2002,46:271-278.
    [67]Ryu H D, Kim D, Lee S I. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater [J]. Journal of Hazardous Materials,2008,156:163-169.
    [68]Wilsenach J A, Schuurbiers C A H, van Loosdrecht M C M. Phosphate and potassium recovery from source separated urine through struvite precipitation [J]. Water Research,2007,41:458-466.
    [69]Zhang T, Ding L, Ren H, Xiong X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology [J]. Water Research,2009,43(20):5209-5215.
    [70]Rico C, Garcia H, Rico J L. Physical-anaerobic-chemical process for treatment of dairy cattle manure [J]. Bioresource Technology,2011,102:2143-2150.
    [71]Stratful I, Scrimshaw M D, Lester J N. Conditions influencing the precipitation of magnesium ammonium phosphate [J]. Water Research,2001,35(17):4191-4199.
    [72]Warmadewanthi, Liu J C. Recovery of phosphate and ammonium as struvite from semiconductor wastewater [J]. Separation and Purification Technology,2009,64:368-373.
    [73]Snoeyink V L, Jenkins D. Water chemistry [M]. New York:Wiley,1980.
    [74]Gunay A, Karadag D, Tosun I, Ozturk M. Use of magnesit as a magnesium source for ammonium removal from leachate [J]. Journal of Hazardous Materials,2008,156:619-623.
    [75]Celen I, Turker M. Recovery of ammonia from anaerobic digester effluents [J]. Environmental Technology,2001,22:1263-1272.
    [76]Li X Z, Zhao Q L, Hao X D. Ammonium removal from landfill leachate by chemical precipitation [J]. Waste Management,1999,19:409-415.
    [77]Li X Z, Zhao Q L. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment [J]. Chemosphere,2001,44:37-43.
    [78]Li X Z, Zhao Q L. Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer [J]. Ecological Engineering,2003,20:171-181.
    [79]Di Iaconi C, Pagano M, Ramadori R, Lopez A. Nitrogen recovery from a stabilized municipal landfill leachate [J]. Bioresource Technology,2010,101:1732-1736.
    [80]Zhang T, Li Q, Ding L, Ren H, Xu K, Wu Y, Sheng D. Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation [J]. Journal of Environmental Sciences,2011,23(6) in press.
    [81]张鹏,周琪.MAP法中镁沉淀药剂的对比[J].工业水处理,2007,27(11):23-25.
    [82]Song Y, Yuan P, Zheng B, Peng J, Yuan F, Gao Y. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater [J]. Chemosphere,2007,69:319-324.
    [83]Hao X D, Wang C C, Lan L, van Loosdrecht M C M. Struvite formation, analytical methods and effects of pH and Ca2+ [J]. Water Science and Technology,2008,58(8):1687-1692.
    [84]Huang H M, Xu C, Zhang W. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology [J]. Bioresource Technology,2011,102:2523-2528.
    [85]Musvoto E V, Wentzel M C, Ekama G A. Integrated chemical- physical processes modeling-Ⅱ. simulating aeration treatment of anaerobic digester supernatants [J]. Water Research,2000,34(6): 1868-1880.
    [86]Banks E, Chianelli R, Korenstein R. Crystal chemistry of struvite analogs of the type MgMPO4.6H2O (M+= potassium(1+), rubidium(1+), cesium (1+), thallium(1+), ammonium(1+) [J]. Inorganic Chemistry,1975,14(7):1634-1639.
    [87]Li X F, Dolores B, Chen J. Performance of struvite precipitation during pretreatment of raw landfill leachate and its biological validation [J]. Environmental Chemistry Letters,2011,9(1): 71-75.
    [88]Mijangos F, Kamel M, Lesmes G, Muraviev D N. Synthesis of struvite by ion exchange isothermal supersaturation technique [J]. Reactive and Functional Polymers,2004,60:151-161.
    [89]Merkel B J, Planer-Friedrich B(德)著,朱义年,王焰新译.地下水地球化学模拟的原理及应用[M].武汉:中国地质大学出版社,2005.
    [90]Ali M I, Schneider P A. An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description [J]. Chemical Engineering Science,2008,63:3514-3525.
    [91]Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in source-separated urine [J]. Water Research,2007,41:977-984.
    [92]Harada H, Shimizu Y, Miyagoshi Y, Matsui S, Matsuda T, Nagasaka T. Predicting struvite formation for phosphorus recovery from human urine using an equilibrium model [J]. Water Science and Technology,2006,54(8):247-255.
    [93]Hanhoun M, Montastruc L, Azzaro-Pantel C, Biscans B, Freche M, Pibouleau L. Temperature impact assessment on stuvite solubility product:a thermodynamic modeling approach [J]. Chemical Engineering Journal,2011,167(1):50-58.
    [94]Gadekar S, Pullammanappallil P. Validation and applications of a chemical equilibrium model for struvite precipitation [J]. Environmental Modeling and Assessment,2010,15:201-209.
    [95]Miles A, Ellis T G. Struvite precipitation potential for nutrient recovery from anaerobically treated wastes [J]. Water Science Technology,2001,43(11):256-266.
    [96]Celen I, Buchanan J R, Burns R T, Robinson R B, Raman D R. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure [J]. Water Research,2007,41:1689-1696.
    [97]季宏飞,许杨,李燕萍.采用响应面法优化红曲霉固态发酵产红曲色素培养条件的研究[J].食品科技,2008,8:9-13,27.
    [98]黎贵卿.几种竹叶和滇桂艾纳香化学成分提取工艺及抗氧化活性的研究[D].广西大学硕士学位论文,2008.5.
    [99]Ye Z, Chen S, Wang S, Lin L, Yan Y, Zhang Z, Chen J. Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology [J]. Journal of Hazardous Materials,2010,176:1083-1088.
    [100]Zhang C, Chen Y. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal [J]. Environmental Science and Technology,2009,43:6164-6170.
    [101]Tong J, Chen Y. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment [J]. Water Research,2009,43:2969-2976.
    [102]Abdelrazig B E I, Sharp J H. Phase changes on heating ammonium magnesium phosphate hydrates [J]. Thermochimica Acta,1988,129:197-215.
    [103]Sugiyama S, Yokoyama M, Ishizuka H, Sotowa K, Tomida T, Shigemoto N. Removal of aqueous ammonium with magnesium phosphates obtained from the ammonium-elimination of magnesium ammonium phosphate [J]. Journal of Colloid and Interface Science,2005,292:133-138.
    [104]Qiao S, Kanda R, Nishiyama T, Fujii T, Bhatti Z, Furukawa K. Partial nitrification treatment for high ammonium wastewater from magnesium ammonium phosphate process of methane fermentation digester liquor [J]. Journal of Bioscience and Bioengineering,2010,109(2): 124-129.
    [105]Zhang S J, Yao C H, Feng X X, Yang M. Repeated use of MgNH4PO4·6H2O residues for ammonium removal by acid dipping [J]. Desalination,2004,170:27-32.
    [106]Kenichi E, Kaoru I, Kyoji T. Ammonia Removal from Wastewaters [P]. Japan Kokai 77 04 649, Appl,75/80,538,1975.
    [107]Hubert B, Josef L. Process for recovery of ammonia from process and waste waters [P]. Eur. Pat, Appl, EP490,396,1996.
    [108]He S, Zhang Y, Yang M, Du W, Harada H. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate [J]. Chemosphere,2007,66: 2233-2238.
    [109]Turker M, Celen I. Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate [J]. Bioresource Technology,2007,98:1529-1534.
    [110]Huang H M, Xiao X M, Yan B. Recycle use of magnesium ammonium phosphate to remove ammonium nitrogen from rare-earth wastewater [J]. Water Science and Technology,2009,59(6): 1093-1099.
    [111]林木兰,游俊仁,汪惠阳.鸟粪石法回收废水中磷的反应器研究现状[J].化学工程与装备,2010,8:151-155.
    [112]Saidou H, Korchef A, Ben Moussa S, Ben Amor M. Struvite precipitation by the dissolved CO2 degasification technique:Impact of the airflow rate and pH [J]. Chemosphere,2009,74:338-343.
    [113]Korchef A, Saidou H, Ben Amor M. Phosphate revovery through struvite precipitation by CO2 removal:Effect of magnesium, phosphate and ammonium concentrations [J]. Journal of Hazardous Materials,2011,186:602-613.
    [114]解磊,赵庆良.高浓度氨氮废水化学沉淀装置的最佳运行条件[J].哈尔滨理工大学学报,2008,13(1):96-99.
    [115]Liu Z, Zhao Q, Lee D, Yang N. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor [J]. Bioresource Technology,2008,99:6488-6493.
    [116]周荣敏,雷延峰,闫越,王昌南.MAP法沉淀回收装置的运行条件优化研究[J].环境工程学报,2010,4(5):1047-1051.
    [117]Carballa M, Moerman W, De Windt W, Grootaerd H, Verstraete W. Strategies to optimize phosphate removal from industrial anaerobic effluents by magnesium ammonium phosphate (MAP) production [J]. Journal of chemical technology and biotechmology,2009,84(1):63-68.
    [118]Battistoni P, De Angelis A, Prisciandaro M, Boccadoro R, Bolzonella D. P removal from anaerobic supernatants by struvite crystallization:long term validation and process modeling [J]. Water Research,2002,36:1927-1938.
    [119]Elisabeth V, Keith B. Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams [J]. Water Research,2001,35(1):151-159.
    [120]Britton A, Koch F A, Mavinic D S, Adnan A, Oldham W K, Udala B. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant [J]. Journal of Environmental Engineering and Science,2005,4(4): 265-277.
    [121]国家环境保护总局编.水和废水监测分析方法,第四版[M].北京:中国环境科学出版社,2002.
    [122]Akkaya E, Demir A, Karadag D, Varank G, Bilgili M S, Ozkaya B. Post-treatment of anaerobically treated medium-age landfill leachate [J]. Environmental Progress and Sustainable Energy,2010,29(1):78-84.
    [123]Tengrui L, Al-Harbawi A F, Qiang H, Jun Z. Comparison between biological treatment and chemical precipitation for nitrogen removal from old landfill leachate [J]. American Journal of Environmental Science,2007,3(4):183-187.
    [124]刘大鹏,王继徽,刘晓澜,黄稳水,邹亮,何丹莉,蒋谦.MAP法处理焦化废水中氨氮的pH值影响[J].工业水处理,2004,1:44-47.
    [125]Zhang T, Ding L, Ren H. Pretreatment of ammonium removal from landfill leachate by chemical precipitation [J]. Journal of Hazardous Materials,2009,166:911-915.
    [126]刘大鹏.化学沉淀法处理高浓度氨氮废水动力学研究及工艺条件优化[D].湖南大学硕士学位论文,2004.4.
    [127]Smith J M. Chemical Engineering Kinetics [M]. McGraw Hill:Kogakusha Ltd.,1970.
    [128]Ohlinger K N, Young T M, Schroeder E D. Postdigestion struvite precipitation using a fluidized bed reactor [J]. Journal of Environmental Engineering,2000,126:361-368.
    [129]International Centre for Diffraction Data. Ammonium magnesium phosphate hydrate (Standard #15-0762). A computer database,1996.
    [130]Parkhurst D L, Appelo C A J. User's Guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, US Department of the Interior, US Geological Survey, Denver, Colorado,1999.
    [131]Zhang T, Ding L, Ren H, Guo Z, Tan J. Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater [J]. Journal of Hazardous Materials,2010,176:444-450.
    [132]Song Y, Hahn H H, Hoffmann E. Effects of solution conditions on the precipitation of phosphate for recovery a thermodynamic evaluation [J]. Chemosphere,2002,48:1029-1034.
    [133]Marcus Y. Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K [J]. Journal of the Chemical Society, Faraday Transactions,1991,87:2995-2999.
    [134]Stumm W, Morgan J J. Aquatic Chemistry, third ed [M]. New York:John Wiley and Sons, Inc., 1996,356.
    [135]Joko I. Phosphorus removal from wastewater by the crystallization method [J]. Water Science Technology,1984,17:121-132.
    [136]Wang J, Song Y, Yuan P, Peng J, Fan M. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery [J]. Chemosphere,2006,65:1182-1187.
    [137]Donnert D. Investigations on phosphorus removal from waste water [R]. Progress Report KFK 4459, Kernforschungszentrum Karlsruhe,1988.
    [138]Zhang M, Tay J H, Qian Y, Gu X S. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N Removal [J]. Water Research,1998,32(2):519-527.
    [139]Vazquez I, Rodriguez J, Maranon E, Castrillon L, Fernandez Y. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation [J]. Journal of Hazardous Materials,2006,137:1773-1780.
    [140]Pearson R G. Hard and soft acids and bases [J]. Journal of the American Chemical Society,1963, 85(22):3533-3539.
    [141]Janus H M, van der Roest H F. Don't reject the idea of treating reject water [J]. Water Science and Technology,1997,35(10):27-34.
    [142]Stefov V, Soptrajanov B, Spirovski F, Kuzmanovski I, Lutz H D, Engelen B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate [J]. Journal of Molecular Structure,2004,689:1-10.
    [143]Mathew M, Kingsbury P, Takagi S, Brown W E. A new struvite-type compound, magnesium sodium phosphate heptahydrate [J]. Acta Crystallographica, 1982, B38:40-44.
    [144]Whitaker A, Jeffery J W. The crystal structure of struvite, MgNH4PO4.6H2O [J]. Acta Crystallographica 1970, B26:1429-1440.
    [145]Mathew M, Schroeder L W. Crystal structure of a struvite analogue, MgKPO4.6H2O [J]. Acta Crystallographica,1979, B35:11-13.
    [146]Schulze-Rettmer R, Von Fircks R, Simbach B. MAP precipitation pilot plant investigation in Germany. In:Proc.2nd International Conference on Phosphorous Recovery for Recycling from Sewage and animal wastes [A]. Noordwijkerhout, The Netharlands, March 12-14,2001.
    [147]Kim D, Ryu H, Kim M, Kim J, Lee S. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate [J]. Journal of Hazardous Materials,2007,146: 81-85.
    [148]Le Corre K S, Valsami-Jones E, Hobbs P, Jefferson B, Parsons S A. Struvite crystallization and recovery using a stainless steel structure as a seed material [J]. Water Research,2007,41: 2449-2456.
    [149]Wang J, Burken J G, Zhang X Q. Effect of seeding materials and mixing strength on struvite precipitation [J]. Water Environment Research,2006,78(2):125-132.
    [150]Adnan A, Dastur M, Mavinic D S, Koch F A. Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale [J]. Journal of Environmental Engineering and Science,2004,3(3):195-202.
    [151]Shimamura K, Ishikawa H, Tanaka T, Hirasawa I. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery [J]. Water Environment Research, 2007,79(4):406-413.
    [152]Yoshino M, Yao M, Tsuno H, Somiya I. Removal and recovery of phosphate and ammonium as struvite from supernatant in anaerobic digestion [J]. Water Science and Technology,2003,48(1): 171-178.
    [153]Stratful I, Scrimshaw M D, Lester J N. Removal of struvite to prevent problems associated with its accumulation in wastewater treatment works [J]. Water Environment Research,2004,76(5): 437-443.
    [154]解磊,赵庆良,林虹.化学沉淀除氨氮装置影响因素研究[J].哈尔滨商业大学学报(自然科学版),2007,23(4):400-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700