用户名: 密码: 验证码:
基于计算智能的水产养殖水质预测预警方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养殖水质恶化是诱导水产品疾病爆发甚至大批量死亡的首要因素,而养殖水质受多种因素影响,参数间作用机理复杂,导致水质精准预测预警一直是水产养殖业亟需解决的棘手难题。本文以水产养殖中河蟹养殖水质关键参数溶解氧和pH值为研究对象,采用信号处理技术、群集智能计算和机器学习技术,研究了基于计算智能的水产养殖水质预测预警方法,具体如下:
     (1)水产养殖水质因子及其影响分析。针对水产养殖水体水质参数多、互相作用机理复杂、水质参数间的作用关系及参数自身的变化规律难以分析等问题,提出了基于系统动力学和能量守恒的水质参数互相作用关系方法,建立了溶解氧、pH值、水温等水质参数系统动力学模型,阐明了水产养殖水质关键参数互相作用的关系。研究表明,该方法是适用于水产养殖水质参数定性的多因素分析方法。
     (2)水产养殖水质数据预处理方法研究。针对监测的水质数据中存在数据缺失和噪声影响预测预警方法性能的问题,提出了简单实用的养殖水质数据修复、降噪与特征提取方法。通过线性插值法,相似数据的水平和垂直处理均值法对数据进行修复;采用改进小波分析方法对水质数据进行降噪和特征提取处理。在相同条件下,与其他方法相比,改进小波分析的降噪方法,其评价指标SNR提高了18.93%,BIAS和RMS分别下降了96.15%和33.76%。结果表明,该方法能够满足养殖水质数据净化的要求,为养殖水质信号降噪和特征提取提供一条新手段。
     (3)基于改进蚁群算法优化最小二乘支持向量回归机(ACO-LSSVR)的水产养殖溶解氧非线性预测方法研究。针对传统预测方法不适于小样本、高维数、参数优化受人为主观因素影响大等问题,提出了基于ACO-LSSVR的水产养殖溶解氧非线性预测方法。该方法通过基于“探测”思想的局部精细搜索和信息素动态更新思想,改进了蚁群优化算法,实现了LSSVR模型最佳参数自动获取,构建了ACO融合LSSVR的溶解氧非线性预测模型。与BPNN相比,该方法的RMSE.运行时间t分别降低了67.9%和2.3464s。结果表明,该方法不仅克服了传统方法的缺陷,而且能够基本满足水产养殖溶解氧预测的需要。
     (4)基于改进粒子群算法优化最小二乘支持向量回归机(IPSO-LSSVR)的水产养殖溶解氧非线性预测方法研究。针对传统预测方法收敛速度慢、预测精度低的问题,提出了IPSO-LSSVR的水产养殖溶解氧非线性预测模型。该方法通过惯性权重自适应动态更新策略,改进了粒子群算法(IPSO),实现了LSSVR模型组合参数优化过程中的精细搜索,构建了IPSO融合LSSVR的溶解氧非线性预测模型。与传统的LSSVR相比,该方法的RMSE、MAE分别下降了29.36%和67.46%,结果表明,该方法收敛速度快,预测效果好,实现了水产养殖溶解氧高精度预测。
     (5)基于小波分析、柯西粒子群算法优化最小二乘支持向量回归机(WA-CPSO-LSSVR)的水产养殖溶解氧非线性预测方法研究。针对传统方法受噪音干扰大、预测精度低、易陷入局部极值的缺陷,提出了基于WA-CPSO-LSSVR的水产养殖溶解氧非线性预测方法。通过多分辨率的小波分析,实现了养殖水质数据降噪和多尺度特征分量提取;柯西变异和权重自适应更新算子相结合,改进了粒子群优化算法,实现了LSSVR模型全局最佳组合参数的自适应获取,构建了多尺度分析的水产养殖溶解氧非线性组合预测模型。实验结果表明,该方法不仅有效解决了传统方法的问题,而且能够多尺度分析水质特征,预测效果更好,更适合高密度水产养殖溶解氧的非线性预测,为水质科学化调控提供决策依据。
     (6)基于主成分分析法、文化鱼群算法优化最小二乘支持向量回归机(PCA-MCAFA-LSSVR的水产养殖pH值非线性预测方法研究。为减少pH值对水产品新陈代谢及生理功能的胁迫影响,提出了基于PCA-MCAFA-LSSVR的养殖水质pH值非线性预测方法。通过主成分分析法实现养殖水质数据降维和pH值关键影响因子的筛选,优化模型结构;采用文化鱼群算法对最小二乘支持向量回归机参数组合优化,避免搜索过程的盲目性,构建了pH非线性预测模型。该方法将养殖水质指标由10个压缩到4个主成分,其绝对误差小于8%的样本达到93.05%。研究表明,该方法不仅消除了水质信息冗余、降低了计算复杂度,且具有较高的预测精度,为水产养殖pH值精准预测提供一条新途径。
     (7)基于粗糙集融合支持向量L(RS-SVM)的水产养殖水质预警方法研究。为解决因水质预警耦合因素多,预警模式复杂以及信息不完整所引起的水质预警精度低的问题,提出了基于RS-SVM的水质预警模型。通过粗糙集对水质数据进行属性约简,精简了基于支持向量机的分类器网络结构,缩减了SVM的训练时间,提高了计算效率。该方法将养殖水质预警指标由14个约简到5个核心预警指标,在不同精度级别上,预警精度均在91%以上。结果表明,该方法不仅消除了冗余属性干扰、优化了模型结构,提高了计算效率,还取得了较好的水质预警效果,能够满足水产养殖水质预警的实际需要。
     (8)水产养殖水质预测预警系统的设计与实现。为验证上述方法的有效性,设计实现了水产养殖水质预测预警系统。该系统的硬件部分主要包括水质传感器、水质数据采集器、无线传输设备、现场监控中心、远程监控中心等5部分;软件系统主要包括数据获取、水质预测预警管理、数据检索、信息发布与水质调控管理、系统维护等5个功能模块。通过在该系统上的多次实验表明,所提出的基于计算智能的水产养殖水质预测预警方法是可靠有效的。
Water quality deterioration is the primary factor that induces the outbreak of aquatic disease and even large quantities of death. The quality of cultured water is affected by many factors, and mechanisms of action between the parameters are complex, all of this lead to the fact that accurate prediction and forecasting and early warning of water quality has been a tough problem that needs to be solved. In this paper, based on computational intelligence, we take the key parameters of crabs in the cultured water, dissolved oxygen and PH to study the aquaculture water quality prediction and warning method by using signal processing technology, swarm intelligence computation and machine learning technology. The detailed explanations are as follows:
     (1) The analysis of factors and its influence of Aquaculture water quality. In view of problems of too many parameters of aquacultured water quality, complex interaction mechanisms, and also the difficulty in analyzing the relationship between water quality parameters and changing rules of the parameter itself, the water quality parameters interacts upon system dynamics and energy conservation. Moreover, a systematic dynamics model for dissolved oxygen, PH value, temperature and other water quality parameters is also established, the interactive relationship among the key parameters of crabs in cultured water is clarified. The study shows that, this method is the suitable and multi-factored method for determining the nature of the aquatic parameters of aquaculture.
     (2) The study of water quality data pre-processing method of aquaculture. In view of the data deficiency of the water quality monitored and the performance of method which forecasts and alerts the noise effect, this paper provides a simple and useful mean to repair the cultured water quality data, coming up with the noise reduction method and the feature extraction method. By using linear interpolation and averaging method of horizontal and vertical processing of similar data, which will be repaired. This paper also applies the modified wavelet analysis method to denoise the water quality data and extract the features of water quality data. Compared with other methods under the same condition, the evaluation index SNR of this modified wavelet analysis method has improved18.93%, and BIAS and RMS decreased96.15%and33.76%respectively. The result shows that this method is possibly to meet the requirement of cleansing the data of cultured water quality, and provide a new path for denoise and feature extraction of culture water quality signal.
     (3) Dissolved oxygen content nonlinear prediction model based on the least squares support vector regression (LSSVR) model with optimal parameters selected by ant colony optimization (ACO) algorithm. In view of the traditional prediction method, which is not suitable for small scale of sampling, high dimension and parameter optimization by artificial subjective factors influence puts forward the prediction model of dissolved oxygen in aquaculture nonlinear basing on ACO-LSSVR algorithm. The method updates the strategy through the local fine "detection" search and dynamic pheromone updating ideas, improved ant colony optimization algorithm (ACO), we construct the nonlinear prediction model of dissolved oxygen based on ACO fusion LSSVR. Compared with BPNN, the RMSE. running time t decreased67.9%and2.3464s respectively. The results show that the model prediction accuracy has been obviously improved, and also has good robustness and generalization ability, which meets the actual needs of the intensive aquaculture water quality management.
     (4) Dissolved oxygen content nonlinear prediction model based on the least squares support vector regression (LSSVR) model with optimal parameters selected by improved particle swarm optimization (1PSO) algorithm. In view of the traditional prediction method of slow convergence, low accuracy of prediction problems has been put forward the prediction model of dissolved oxygen in aquaculture nonlinear IPSO-LSSVR. The method updates the strategy through the adaptive inertia weight dynamically, improved particle swarm optimization algorithm (IPSO), the fine search LSSVR model parameter optimization process, we construct the prediction model of dissolved oxygen in nonlinear IPSO fusion LSSVR. Compared with the traditional LSSVR, the relative RMSE and MAE are29.36%and67.46%, the results show that, the method has fast convergence speed, good prediction effect, and high precision prediction of dissolved oxygen in aquaculture.
     (5) Dissolved oxygen content nonlinear forecasting method in aquaculture is based on wavelet analysis (WA) and least squares support vector regression (LSSVR) with an optimal improved Cauchy particle swarm optimization (CPSO) algorithm. In order to solve large noise disturbance, the low prediction accuracy and inefficiency to trap in local extreme of the traditional forecasting methods in water quality, we proposes a hybrid dissolved oxygen content forecasting method based on WA-CPSO-LSSVR algorithm. In the modeling process, the original dissolved oxygen sequences were de-noised and decomposed into several different resolution frequency signal subsets by using the wavelet analysis method. Cauchy mutation and the adaptive weight update operator combination, improved particle swarm optimization algorithm, the combined LSSVR model with adaptive parameter optimal acquisition, construction of the multi-scale analysis of crab aquaculture dissolved oxygen nonlinear combination forecasting model. The experimental results show that, the method can effectively solve problems of the conventional method, multi-scale analysis of the characteristics of water quality, betters the prediction effect, suits for high density aquaculture dissolved oxygen prediction and offers the decision based on quality scientific regulation.
     (6) Forecasting for pH value of aquaculture water quality based on principal component analysis (PCA) and least squares support vector machine (LSSVR) optimized by modified cultural artificial fish-swarm algorithm (MCAFA). In order to reduce the pH value of the crabs metabolism and physiological function of stress, we puts forward the prediction model of water quality based on PCA-MCAFA-LSSVR, which the hyper-parameters is optimized by MCAFA algorithm. The dimension of aquiculture ecologic environmental data has been reduced by PCA method, a core prediction set based on4factors obtained by using PCA to deduct the redundant and disturbed properties from the initial set based on10factors. Using the double evolutionary mechanism of cultural algorithm for reference, the model takes LSSVR as an artificial fish, using the belief space to guide the shoal evolution step size and global search and the Cauchy mutation to improve the diversity of the artificial fish swarm, which obtains the optimal hyper-parameters nonlinear water quality prediction model automatically. Experimental results show that the PCA-MCAFA-LSSVR prediction model has better prediction effect than the other methods, for example, the absolute error of the93.05%test samples are less than8%. It is obvious that PCA-MCAFA-LSSVR prediction model can eliminate superfluous data, low computational complexity and high forecast accuracy, and open up new approaches for aquaculture pH accurate forecasting.
     (7) Water quality early-warning model of aquaculture based on support vector machine optimized by rough set algorithm. A new early warning model of water quality, combining rough set (RS) and support vector machine (SVM), is presented to improve the prediction precision affected by mass coupling factors, complex mode and information loss. Firstly, a core warning set based on5factors is obtained by using RS to deduct the redundancy and disturb properties from the initial set based on14factors. Consequently, the early warning model of water quality based on RS-SVM is built up by the core warning set. The experimental results show that our method improves the precision to more than91%in any warning level by using the water quality data. Compared with the other methods, the new model not only has effectiveness of calculation and prediction, but also provides warning results with practicality. This model demonstrates a new thought of early warning on intensive aquaculture water quality.
     (8) Design and implementation of the prototype system of water quality forecasting warning system for river crab aquaculture. The objective of the prototype system is to test the abovementioned methods. The hardware system of the prototype includes5parts, i.e., water quality sensors, wireless transmitting equipment, the on-site monitoring center and the remote monitoring center. The software system includes5modules, i.e., data acquisition, data preprocessing, water quality forecasting early warning management, data retrieval, Information release, water quality control management and system maintenance. Great deals of experiments indicate that the researched method works effectively and efficiently in aquaculture forecasting early warning based on computational intelligence.
引文
[1]中华人民共和国2013年国民经济和社会发展统计公报http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html,.2014-02-24
    [2]Juan Carbajal-Hernandez J, Sanchez-Fernandez L P, Villa-Vargas L A, et al. Water quality assessment in shrimp culture using an analytical hierarchical process. ECOLOGICAL INDICATORS,2013,29:148-158
    [3]管越强,俞志明,宋秀贤.主要环境因子对虾类免疫反应及疾病发生的影响.海洋环境科学,2008,27(5):554-560
    [4]刘双印,徐龙琴,李道亮,等.基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型.农业工程学报,2012(23):167-175
    [5]Thoe W, Wong S H C, Choi K W, et al. Daily prediction of marine beach water quality in Hong Kong. Journal of Hydro-environment Research,2012,6(3):164-180
    [6]Usher B H. Upscaling laboratory results for water quality prediction at underground collieries in South Africa's Highveld Coalfields. Minerals Engineering,2009,22(1):43-56
    [7]Abaurrea J, Asm J, Cebrian A C, et al. Trend analysis of water quality series based on regression models with correlated errors. Journal of Hydrology,2011,400(3-4):341-352
    [8]Mer Faruk D. A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence,2010,23(4):586-594
    [9]Grbic R, Kurtagic D, Sliskovic D. Stream water temperature prediction based on Gaussian process regression. Expert Systems with Applications,2013,40(18):7407-7414
    [10]Hatzikos E V, Tsoumakas G, Tzanis G, et al. An empirical study on sea water quality prediction. Knowledge-Based Systems,2008,21(6):471-478
    [11]Mattikalli N M. Time Series Analysis of Historical Surface Water Quality Data of the River Glen Catchment, U.K. Journal of Environmental Management,1996,46(2):149-172
    [12]Arabelos D, Asteriadis G, Contadakis M, et al. The use of an outlier detecting method in time series of continuous daily measurements of underground water level and temperature in earthquake prediction investigation. Tectonophysics,2001,338(3-4):315-323
    [13]Evrendilek F, Karakaya N. Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series. Physica A:Statistical Mechanics and its Applications,2014,404(0):8-15
    [14]Cardona C M, Martin C, Salterain A, et al. CALHIDRA 3.0-New software application for river water quality prediction based on RWQM1. Environmental Modelling & Software, 2011,26(7):973-979
    [15]Najah A, El-Shafie A, Karim O A, et al. Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrology and Earth System Sciences,2011,15(8):2693-2708
    [16]Paredes-Arquiola J, Andreu-Alvarez J, Martin-Monerris M, et al. Water Quantity and Quality Models Applied to the Jucar River Basin, Spain. Water Resources Management, 2010,24(11):2759-2779
    [17]Geza M, McCray J E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management,2008,88(3):393-406
    [18]Vandenberghe V, Bauwens W, Vanrolleghem P A. Evaluation of uncertainty propagation into river water quality predictions to guide future monitoring campaigns. Environmental Modelling & Software,2007,22(5):725-732
    [19]Eisele M. Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere, 2001,26(7-8):547-551
    [20]Chan S N, Thoe W, Lee J H W. Real-time forecasting of Hong Kong beach water quality by 3D deterministic model. Water Research,2013,47(4):1631-1647
    [21]Legovi T. Prediction of seawater quality around Island Rab (Adriatic Sea). Ecological Modelling, 2003,160(1-2):131-143
    [22]Komatsu E, Fukushima T, Harasawa H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling,2007,209(2-4):351-366
    [23]Huttula T, Peltonen A, Frisk T, et al. Accuracy of water quality predictions with loading scenarios of forest industry waste waters. Water Science and Technology,1999,40(11-12):147-154
    [24]Karmakar, S., Mujumdar, P.P.. A two-phase grey fuzzy optimization approach for water quality management of a river system. Advances in Water Resources,2007,30(5):1218-1235
    [25]Partalas I, Tsoumakas G, Hatzikos E V, et al. Greedy regression ensemble selection:Theory and an application to water quality prediction. Information Sciences,2008,178(20):3867-3879
    [26]Simon H. Neural Networks and Learning Machines (3rd Edition).Canada:Prentice Hall,2011
    [27]Diamantopoulou M J, Papamichail D M, Antonopoulos V Z. The use of a Neural Network technique for the prediction of water quality parameters. Operational Research,2005,5(1):115-125
    [28]Aguilera P A, Frenich A G, Torres J A, et al. Application of the kohonen neural network in coastal water management:methodological development for the assessment and prediction of water quality. Water Research,2001,35(17):4053-4062
    [29]Chau K. A Split-Step PSO Algorithm in Prediction of Water Quality Pollution. SCIENCE L N I C. Springer Berlin Heidelberg,2005:3498,1034-1039
    [30]解海静,胡艳霞,王亚芝,等.密云水源地水环境承载力系统动力学模拟与预测.中国农学通报,2012,28(11):247-252
    [31]Zhu Y, Chen N. Dynamic forecast of regional groundwater level based on grey Markov chain model. Chinese J. Geot. Eng,2011,33(s 1):71-75
    [32]薛鹏松,冯民权,邢肖鹏.基于马尔科夫链改进灰色神经网络的水质预测模型.武汉大学学报: 工学版,2012,45(3):319-24
    [33]岳遥,李天宏.基于模糊集理论的马尔可夫模型在水质定量预测中的应用.应用基础与工程科学学报,2011,19(2):231-242
    [34]武国正.支持向量机在湖泊富营养化评价及水质预测中的应用研究:[博士论文]内蒙古农业大学,2008
    [35]Yang X, Jin W.GIS-based spatial regression and prediction of water quality in river networks:A case study in Iowa. Journal of Environmental Management,2010,91 (10):1943-1951
    [36]王立,刘载文,吴成瑞.基于多元时序分析的水华预测及因素分析方法.化工学报,2013,64(12):4649-4655
    [37]朱丽楠,官涤,王永军,等.典型湖库富营养化的模糊综合评价研究.长江流域资源与环境,2012,21(9):1131-1136
    [38]陈明千,李艳,李克锋,等.水库降低水位运行对库区水质影响的预测研究.四川大学学报(工程科学版),2012,44(1):32-36
    [39]Zou S, Yu Y. A dynamic factor model for multivariate water quality time series with trends. Journal of Hydrology,1996,178(1-4):381-400
    [40]Wu J, Lu J, Wang J. Application of chaos and fractal models to water quality time series prediction. Environmental Modelling & Software,2009,24(5):632-636
    [41]Luan Q, Zhu C. Surface Water Quality Evaluation Using BP and RBF Neural Network. Journal of Software,2011,6(12):2528-2534
    [42]Diamantopoulou M J, Papamichail D M, Antonopoulos V Z. The use of a Neural Network technique for the prediction of water quality parameters. Operational Research,2005,5(1):115-125
    [43]殷高方,张玉钧,胡丽,等.BP神经网络在水华短期预测中的应用.北京理工大学学报,2012,32(6):655-660
    [44]于乐(王乐),汪家权.改进的QGA-BP模型在复杂水质预测中的应用.模式识别与人工智能,2012,25(4):705-708
    [45]Han H, Chen Q, Qiao J. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks,2011,24(7):717-725
    [46]Xu L, Liu S. Study of short-term water quality prediction model based on wavelet neural network. Mathematical and Computer Modelling,2013,58(3-4):807-813
    [47]Tan G, Yan J, Gao C, et al. Prediction of water quality time series data based on least squares support vector machine. Procedia Engineering,2012,31:1194-1199
    [48]郭亚男,吴泽宁,高建菊.基于主成分分析的支持向量机需水预测模型及其应用.中国农村水利水电,2012,(7):76-78
    [49]龚怀瑾,毛力,杨弘.基于变尺度混沌QPSO-LSSVM的水质溶氧预测建模.计算机与应用化学,2013,30(3):315-318
    [50]刘载文,李梦寻,王小艺,等.基于LSSVM和RBFNN的水华中短期预测方法.计算机与应用化学,2012,29(10):1189-1194
    [51]徐龙琴,刘双印.基于PSO-WSVR的短期水质预测模型研究.郑州大学学报(工学版),2013,34(3):112-116
    [52]徐龙琴,刘双印.基于APSO-WLSSVR的水质预测模型.山东大学学报(工学版),2012,42(5):80-86
    [53]Hassan A E, Bekhit H M, Chapman J B. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environmental Modelling & Software,2009,24(6):749-763
    [54]Wang K, Wang X, Shen L. Parameter estimation of water quality model using particle swarm optimization technique.2009,1209-1214
    [55]王长友,于洋,孙运坤,等.基于ELCOM-CAEDYM模型的太湖蓝藻水华早期预测探讨.中国环境科学,2013,33(3):491-502
    [56]Komatsu E, Fukushima T, Harasawa H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling,2007,209(2-4):351-366
    [57]Huttula T, Peltonen A, Frisk T, et al. Accuracy of water quality predictions with loading scenarios of forest industry waste waters. Water Science and Technology,1999,40(11-12):147-154
    [58]马真.凡纳滨对虾集约化养殖水质管理决策支持系统的构建:[博士论文]中国海洋大学,2013
    [59]陈迹.池塘水质管理智能决策支持系统研究:[硕士论文]中国农业大学,2011
    [60]闫明霞.珍珠蚌池塘养殖溶解氧预测系统研究:[硕士论文]中国农业大学,2011
    [61]于承先.集约化牙鲆养殖水质预警系统研究:[硕士论文]中国农业大学,2008
    [63]杨娱婷.河蟹养殖溶解氧实时预测系统的研究:[硕士论文]中国农业大学,2012
    [64]王瑞梅.池塘水质管理智能决策支持系统研究:[博士论文]中国农业大学,2003
    [65]王瑞梅,何有缘,傅泽田.淡水养殖池塘水质预警模型.吉林农业大学学报,2011(01):84-88
    [66]缪新颖,葛廷友,高辉,等.基于神经网络和遗传算法的池塘溶解氧预测模型.大连海洋大学学报,2011,26(3):264-267
    [67]高艳萍,于红,崔新忠.基于优化BP网络的工厂化水产养殖水质预测模型的实现.大连水产学院学报,2008,23(3):221-224
    [68]杨帆,李国学,张宝莉,等.螺旋藻增氧系统处理养殖污水与预测模型研究.环境工程学报,2012,6(9):3001-3006
    [69]高艳萍,周敏,姜凤娇.基于BP网络养殖水体氨氮预测模型及实现.农机化研究,2008,(7):48-50
    [70]Maier H. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling & Software,2004,19(5):485-494
    [71]Farzin S, Ifaei P, Farzin N, et al. An Investigation on Changes and Prediction of Urmia Lake water Surface Evaporation by Chaos Theory. International Journal of Environmental Research, 2012,6(3):815-824
    [72]韩敏.混沌时间序列预测理论与方法.北京:中国水利水电出版社,2007
    [73]Liu S, Tai H, Ding Q, et al. A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Mathematical and Computer Modelling, 2013,58(3-4):458-465
    [74]Liu S, Xu L, Li D, et al. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization. Computers and Electronics in Agriculture,2013,95(0):82-91
    [75]Liu S, Xu L, Li D. Prediction of Aquaculture Water Quality Based on Combining Principal Component Analysis and Least Square Support Vector Regression. Sensor Letters, 2013,11(6):1305-1309
    [76]Liu S, Xu L, Jiang Y, et al. A hybrid WA-CPSO-LSSVR model for dissolved oxygen content prediction in crab culture. Engineering Applications of Artificial Intelligence,2014,29(0):114-124
    [77]刘双印,徐龙琴,李振波,等.基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型.农业机械学报,2014,45(5):239-246
    [78]刘双印,徐龙琴,李道亮,等.基于时间相似数据的支持向量机水质溶解氧在线预测.农业工程学报,2014(03):155-162
    [79]罗华军,刘德富,黄应平.基于遗传算法-支持向量机的水库叶绿素a浓度短期预测非线性时序模型.水利学报,2009,40(1):46-51
    [80]Singh K P, Basant N, Gupta S. Support vector machines in water quality management. Analytica Chimica Acta,2011,703(2):152-162
    [81]Preis A, Ostfeld A. A coupled model tree-genetic algorithm scheme for flow and water quality predictions in watersheds. Journal of Hydrology,2008,349(3-4):364-375
    [82]Xuan W, Xuan W, Jiake L, et al. A hybrid approach of support vector machine with particle swarm optimization for water quality prediction. IEEE,20101158-1163
    [83]Najah A A, El~Shafie A, Karim O A, et al. Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Computing and Applications, 2012,21(5):833-841
    [84]Wang X, Zou Z, Zou H. Water quality evaluation of Haihe River with fuzzy similarity measure methods. Journal of Environmental Sciences,2013,25(10):2041-2046
    [85]Mahapatra S S, Nanda S K, Panigrahy B K. A Cascaded Fuzzy Inference System for Indian river water quality prediction. Advances in Engineering Software,2011,42(10):787-796
    [86]Liu L, Zhou J, An X, et al. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Systems with Applications, 2010,37(3):2517-2521
    [87]Park J, Jung N, Kwak K, et al. Water quality prediction in a reservoir:Linguistic model approach for interval prediction. International Journal of Control, Automation and Systems, 2010,8(4):868-874
    [88]Lv H, Zeng ZH H. Prediction of urban water supply quality based on multi-sensor technology. 20092214-2217
    [89]Hernandez J J C, Fernandez L P S, Pogrebnyak O. Assessment and prediction of water quality in shrimp culture using signal processing techniques. Aquaculture International, 2011,19(6):1083-1104
    [90]Hatzikos E, H T Nen J, Bassiliades N, et al. Applying adaptive prediction to sea-water quality measurements. Expert Systems with Applications,2009,36(2):6773-6779
    [91]Kurunc A, Yurekli K, Cevik O. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yesilrmak River, Turkey. Environmental Modelling & Software, 2005,20(9):1195-1200
    [92]Ramin M, Labencki T, Boyd D, et al. A Bayesian synthesis of predictions from different models for setting water quality criteria. Ecological Modelling,2012,242:127-145
    [93]Reckhow K H. Water quality prediction and probability network models. Canadian Journal of Fisheries and Aquatic Sciences,1999,56(7):1150-1158
    [94]滕丽华,程利江,王海丽,等.象山港海水养殖区贝叶斯网络水质评价及预测.水土保持通报,2012,32(1):189-191
    [95]Marce R, Moreno-Ostos E, Garcia-Barcina J M, et al. Tailoring dam structures to water quality predictions in new reservoir projects:Assisting decision-making using numerical modeling. Journal of Environmental Management,2010,91(6):1255-1267
    [96]侯景伟,孔云峰,孙九林.蚁群算法在需水预测模型参数优化中的应用.计算机应用,2012,32(10):2952-2955
    [97]Peterson E E, Urquhart N S. Predicting Water Quality Impaired Stream Segments using Landscape-Scale Data and a Regional Geostatistical Model:A Case Study in Maryland. Environmental Monitoring and Assessment,2006,121(1-3):615-638
    [98]Stidson R T, Gray C A, McPhail C D. Development and use of modelling techniques for real-time bathing water quality predictions. Water and Environment Journal,2012,26(1):7-18
    [99]陈永忠,陈顺怀.计算智能技术综述.航海科技动态,2000,(6):1-3
    [100]余英林,谢胜利,蔡汉添.信号处理新方法导论.北京:清华大学出版社,2004
    [101]ZHANG L, XU W., JIANG Y. Weighted estimates for commutators of singular integral operators with non-smooth kernels.高校应用数学学报:英文版,2010(3):318-324
    [102]胡青,杜林,杨丽君,等.Kernel PCA与BP神经网络相结合的变压器故障诊断.计算机应用研究,2010,27(2):580-581
    [103]Euband R L. Spline smoothing and nonparametric regression. New York:Marcel Dekker, 1999
    [104]William L, Osvaldo G., Jose Roberto C. Dirac's formalism combined with complex Fourier operational matrices to solve initial and boundary value problems. Communications in Nonlinear Science and Numerical Simulation,2014,19(8):2614-2623
    [105]Shi J, Xiang W, Liu X, et al. A sampling theorem for the fractional Fourier transform without band-limiting constraints. Signal Processing,2014,98(0):158-165
    [106]Onchis D M, Yan R, Rajmic P. Time-frequency methods for condition based maintenance and modal analysis. Signal Processing,2014,96(a):iv-v
    [107]Gillich G, Praisach Z. Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis. Signal Processing,2014,96, Part A(0):29-44
    [108]杨宇,曾鸣,程军圣.一种新的时频分析方法——局部特征尺度分解.湖南大学学报(自然科学版),2012,39(6):35-39
    [109]李建平.小波分析与信号处理-理论应用及软件实现.重庆:重庆大学出版社,1997
    [110]潘泉,张磊,孟晋丽,等.小波滤波方法及应用.北京:清华大学出版社,2006
    [111]Mallat S. A wavelet tour of signal processing. California:Academic Press,1999
    [112]Parmar K S, Bhardwaj R. Wavelet and statistical analysis of river water quality parameters. Applied Mathematics and Computation,2013,219(20):10172-10182
    [113]Gavrovska A, Bogdanovi V, Reljin I, et al. Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner-Ville distribution and Haar wavelet lifting. Computer Methods and Programs in Biomedicine,2014,113(2):515-528
    [114]Wickersham A J, Li X, Ma L. Comparison of Fourier, principal component and wavelet analyses for high speed flame measurements. Computer Physics Communications,2014,185(4):1237-1245
    [115]王登,苗夺谦,王睿智.一种新的基于小波包分解的EEG特征抽取与识别方法研究.电子学报,2013,41(1):193-198
    [116]李彦明,杜文辽,叶鹏飞,等.振动信号小波leaders多重分形特征提取及性能分析.机械工程学报,2013,49(6):60-65
    [117]Perelli A, De Marchi L, Marzani A, et al. Frequency warped cross-wavelet multiresolution analysis of guided waves for impact localization. Signal Processing,2014,96, Part A(0):51-62
    [118]Melkonian D, Korner A, Meares R, et al. Increasing sensitivity in the measurement of heart rate variability:The method of non-stationary RR time-frequency analysis. Computer Methods and Programs in Biomedicine,2012,108(1):53-67
    [119]Jie-xing Z, Jing W, Peng-fei W, et al. Wavelet Analysis of Water Quality Changes in Dianchi Lake during the past 7a. Procedia Earth and Planetary Science,2012,5(0):280-288
    [120]Yu X, Zhang Y, Yin G, et al. Discrimination of three dimensional fluorescence spectra based on wavelet analysis and independent component analysis. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,124(0):52-58
    [121]Ebrahimi F, Setarehdan S, Ayala-Moyeda J, et al. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals. Computer Methods and Programs in Biomedicine, 2013,112(1):47-57
    [122]李道亮.农业物联网导论.北京:科学出版社,2012
    [123]Luo B, Zhao Y, Chen K, et al. Partial least squares regression model to predict water quality in urban water distribution systems. Transactions of Tianjin University,2009,15(2):140-144
    [124]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社,1990
    [125]刘思峰.灰色系统理论及其应用.北京:科学出版社,2010
    [126]Zheng Y, Zheng X, Gao Z, et al. Prediction of Seawater Quality in Rigs-to-Reefs Area Based on Grey Systems Theory. Procedia Environmental Sciences,2013,18(0):236-242
    [127]Li Z, Jiang Y, Yue J, et al. An Improved Gray Model For Aquaculture Water Quality Prediction. Intelligent Automation & Soft Computing,2012,18(5):557-567
    [128]Simon H. Neural Networks and Learning Machines (3rd Edition). Canada:Prentice Hall,2011.
    [129]里普利.模式识别与神经网络.北京:人民邮电出版社,2009
    [130]Simon H神经网络原理.北京:机械工业出版社,2004
    [131]Ying L, Jiti Z, Xiangrui W, et al. Water Quality Evaluation of Nearshore Area Using Artificial Neural Network Model.2009,1-4
    [132]Wang X, Xiaoyi W, Jun D, et al. The lake water bloom intelligent prediction method and water quality remote monitoring system. IEEE,2010:7,3443-3446
    [133]Cho S, Lim B, Jung J, et al. Factors affecting algal blooms in a man-made lake and prediction using an artificial neural network. Measurement,2014,53(0):224-233
    [134]Adamowski J, Chan H F. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology,2011,407(1-4):28-40
    [135]Williams G P. Chaos Theory Tamed, Washington:Joseph Henry Press,1997
    [136]Vapnik V. The Nature of Statistical Learning Theory.New York:Springer-Verlag.1995
    [137]Vapnik, V. Statistical learning theory. New York:John Wiley & Sons,1998
    [138]王定成.支持向量机建模预测与控制.北京:气象出版社,2009
    [139]李国正,王猛,曾华军.支持向量机导论.北京:电子工业出版社,2004
    [140]曾阳艳.基于支持向量机的人脸识别方法研究:[硕士论文]湖南大学,2010
    [141]邓乃扬,田英杰.支持向量机—理论、算法与拓展.北京:科学出版社,2009
    [142]杨晓伟.支持向量机的算法设计与分析.北京:科学出版社,2013
    [143]Bates J M, Granger C W J. The Combination of Forecasts,Operational research Quarterly,1969,20(4):451-468
    [144]汪同三,张涛.组合预测:理论、方法及应用.北京:社会科学文献出版社,2008
    [145]陈华友.组合预测方法有效性理论及其应用.北京:科学出版社,2008
    [146]Goldberg D E.Genetic Algorithms in Search, Optimization and Machine Learning. New York: Addison-Wesley,1989
    [147]Mitsuo C,Runwei C.Genetic Algorithms and Engineering Design. New York:John Wiley & Sons Inc,1997
    [148]Dorigo M, Bonabeau E,Theraulaz G. Ant algorithms and stigmergy. Future Generation Computer Systems,2000,16(8):851-871
    [149]马良,朱刚,宁爱兵.蚁群优化算法.北京:科学出版社,2008
    [150]张俊,程春田,申建建,等.基于蚁群算法的支持向量机中长期水文预报模型.水力发电学报,2010,29(6):34-40
    [151]龙文,梁昔明,龙祖强,等.基于改进蚁群算法优化参数的LSSVM短期负荷预测.中南大学学报(自然科学版),2011,42(11):3408-3414.
    [152]张培林,钱林方,曹建军,等.基于蚁群算法的支持向量机参数优化.南京理工大学学报(自然科学版),2009,33(4):464-468
    [153]Niu D, Wang Y, Wu D. Power load forecasting using support vector machine and ant colony optimization. Expert Systems with Applications,2010,37(3):2531-2539
    [154]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks. Piscataway,1995:1942-1948
    [155]纪震,寥惠连,吴青华.粒子群算法及应用.北京:科学出版社,2009
    [156]Kennedy J, Eberhart R. A new optimizer using particle swarm theory proceeding. Sixth International Symposium on Micro Machine and Human Science,1995:39-43
    [157]Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA,2001
    [158]Wu Q, Rob L. Cauchy mutation based on objective variable of Gaussian particle swarm optimization for parameters selection of SVM. Expert Systems with Applications,2011, 38(6):6405-6411
    [159]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2006,10(3):281-295
    [160]Babaoglu I, Findik O, Ulker E. A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Systems with Applications,2010,37(4):3177-3183
    [161]Ali M M, Kaelo P. Improved particle swarm algorithms for global optimization. Applied Mathematics and Computation,2008,196(2):578-593
    [162]Coelho J P, Oliveira P B, Cunha J B. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Computers and Electronics in Agriculture, 2005,49(3):330-344
    [163]Jiang Y, Liu C, Huang C, Wu X. Improved particle swarm algorithm for hydrological parameter optimization. Applied Mathematics and Computation,2010,217(7):3207-3215
    [164]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,(11):32-38
    [165]刘双印.基于改进AFSA算法的BP神经网络的研究.计算机工程与设计,2009,30(20):4719-4721
    [166]Robert R G. An introduction to cultural algorithms. Proceedings of the 3th Annual Conference on Evolution Programming. Singapore:World Scientific Publishing,1994:131-136
    [167]Chung C J. Knowledge-based approaches to self-adaptation in cultural algorithms:[博士论 文].Detroit:Wanyne State University.1997:20-50
    [168]黄海燕,顾幸生.基于文化算法的神经网络及其在建模中的应用.控制与决策,2008,23(04):477-480
    [169]吴莹,黄显林,高晓智,等.一种文化鱼群算法及其在电机参数辨识中的应用.电机与控制学报,2012,16(05):102-108
    [170]郭一楠,刘丹丹,程健,等.自适应混合变异文化算法.电子学报,2011,39(8):1913-1918.
    [171]Storey M V, van der Gaag B, Burns B P. Advances in on-line drinking water quality monitoring and early warning systems. Water Research,2011,45(2):741-747
    [172]Van Veen B.A.D., Vatvani D., Zijl F. Tsunami flood modelling for Aceh & west Sumatra and its application for an early warning system. Continental Shelf Research,2014,79:46-53
    [173]Stedmon C A, Seredynska-Sobecka B E, Boe-Hansen R, et al. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events. Water Research,2011,45(18):6030-6038
    [174]Maradona A, Marshall G, Mehrvar M, et al. Utilization of multiple organisms in a proposed early-warning biomonitoring system for real-time detection of contaminants:preliminary results and modeling. Journal of Hazardous Materials,2012,219-220(0):95-102
    [175]董志颖,汤洁,杜崇.地理信息系统在水质预警中的应用.水土保持通报:2002,22(1):60-62
    [176]张伟红.地下水污染预警研究:[博士学位论文].吉林:吉林大学,2007
    [177]洪梅,赵勇胜,张博.地下水水质预警信息系统研究.吉林大学学报(地球科学版),2002,32(4):364-368
    [178]文俊.区域水资源可持续利用预警系统研究:[博士学位论文].河海大学,2006
    [179]窦明,李重荣,王陶.汉江水质预警系统研究.人民长江,2002,33(11):38-39
    [180]董志颖,王娟,李兵.水质预警理论初探.水土保持研究,2002,9(3):224-226
    [181]赵建文.凡纳滨对虾养殖水质预警研究.计算机仿真,2013,30(1):373-376
    [182]Yang H. Biological Early Warning System for Prawn Aquiculture. Procedia Environmental Sciences,2011,10, Part A(0):660-665
    [183]计红,韩龙喜,刘军英,等.水质预警研究发展探讨.水资源保护,201127(5):39-42
    [184]Reeder B C. Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA). Ecological Engineering,2011,37(11):1772-1778
    [185]Nittami T, Oi H, Matsumoto K, et al. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. New Biotechnology,2011,29(SI):2-8
    [186]黄岁樑,臧常娟,杜胜蓝,等.pH、溶解氧、叶绿素a之间相关性研究Ⅰ:养殖水体.环境工程学报,2011,5(6):1201-1208
    [187]戴恒鑫,李应森,马旭洲,等.河蟹生态养殖池塘溶解氧分布变化的研究.上海海洋大学学报,2013,22(1):66-73
    [188]王小平,贾晓平,林钦,等.红海湾水域溶解氧、pH值、盐度和营养盐分布特征及相互关系研究.海洋通报,1999,18(5):35-40
    [189]费业泰.误差理论与数学方法(第6版).北京:机械工业出版社,2010
    [190]郭应时,王畅,张亚岐.噪声方差对卡尔曼滤波结果影响分析.计算机工程与设计,2014,35(2):641-645
    [191]陈杰,马韬,陈文颉,等.脉冲噪声滤波的无监督鲁棒递归最小二乘方法.中国科学:信息科学,2012,42(7):882-892
    [192]李延忠,杨印生.应用模糊数学方法.长春:吉林大学出版社,2001
    [193]杨福生.小波变换的工程分析与应用.北京:科学出版社,2000
    [194]Daubechies I. Ten lectures on wavelet. Philadephia, Pennsylvania:Society for Industrial and Appl. Math,1992
    [195]Xu Y, Weaver J B, Healy D M, et al. Wavelet transform domain filters:a spatially selective noise filtration technique. IEEE Trans, on Image Processing,1994,3(6):747-758
    [196]Donoho D L. Denoising by soft-thresholding.IEEE Transaction on Information Theory,1995, 41(3):613-627
    [197]苑津莎,张冬雪,李中.基于改进阈值法的小波去噪算法研究.华北电力大学学报,2010,37(4):92-97
    [198]邢帅,徐青,靳国旺,等.二元收缩方程与复数小波用于SAR影像去噪.系统仿真学报,2008,20(1):40-45
    [199]Dellana S, West D. Predictive modeling for wastewater applications:Linear and nonlinear approaches. Environmental Modelling and Software,2009,24:96-106
    [200]Suykens, J A K, Gestel T V, Brabanter J D, et al. Least Squares Support Vector Machines, World Scientific, Singapore,2002
    [201]Juang C F.A hybrid of genetic algorithm and particle swarm optimization for recurrent network design.IEEE Trans Syst, Man,Cyber B,Cybern,2004,34(2):997-1006
    [202]Ahmed A A E,L T Germano,Z C Antonio. A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans Power Syst,2005,20(2):859-866
    [203]Ling S H,HHC Iu;KY Chan,et al. Hybrid particle swarm optimization with wavelet mutation and its industrial applications.IEEE Trans Syst,Man,Cybern B,Cybern,2008,38(3):743-763
    [204]Wu H, Geng J, Jin R, et al. An Improved Comprehensive Learning Particle Swarm Optimization and Its Application to the Semiautomatic Design of Antennas. IEEE Trans on Antenns and Propagation,2009,57(10):3018-3028
    [205]刘朝华,李小花,章兢.精英免疫克隆选择的协同进化粒子群算法.电子学报,2013,41(11):2167-2173
    [206]Kennedy J,Mendes R.Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst,Man,Cybern C,Appl Rev,2006,36(4):515-519
    [207]Modares H, Alfi A, Naghibi Sistani M. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Engineering Applications of Artificial Intelligence, 2010,23(7):1105-11111
    [208]Hong W, Dong Y, Zhang W Y, et al. Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. International Journal of Electrical Power & Energy Systems, 2013,44(1):604-614
    [209]Dekkers, A, Aarts, E.H.L.,1990. Global optimization and simulated annealing. Math Programm, 50:367-93
    [210]周秀平,王文圣,曾怀金.偏最小二乘与人工神经网络耦合模型在酸雨pH值预测中的应用.水利水电科技进展,2006,26(4):50-52
    [211]印家健,姜微,戴松林,等.降水pH值的支持向量回归预测模型构建.环境化学,2006,25(2):211-214
    [212]吴洲,潘丰.污水处理中PH智能预测控制研究.计算机测量与控制,2009,17(5):887-889
    [213]唐朝晖,刘金平,陈青,等.基于预测模型的浮选过程pH值控制.控制理论与应用,2013,30(7):885-890
    [214]杜春艳,梁婕,黄璐,等.基于BP神经网络的韶山地表径流pH预测研究.安徽农业科学,2013,41(19):8342-8343
    [215]Hamoen J R, Vollebregt H M, van der Sman R G M. Prediction of the time evolution of pH in meat. FOOD CHEMISTRY,2013,141(3):2363-2372
    [216]Iqbal A, Sun D, Allen P. Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. Journal of Fond Engneering,2013,117(1):42-51
    [217]Aydilek I B, Arslan A. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Information Sciences, 2013,233:25-35
    [218]李慧,祁力钧,张建华,等.基于PCA-SVM的棉花出苗期杂草类型识别.农业机械学报,2012,43(9):184-189
    [219]Jolliffe I T. Principal component analysis,2nd ed. New York:Springer,2002
    [220]李继选,王军.水环境数学模型研究进展.水资源保护,2006,22(1):9-14
    [221]Koyuncugil A S, Ozgulbas N. Financial early warning system model and data mining application for risk detection. Expert Systems with Applications,2012,39(6):6238-6253
    [222]王禾军,邓飞其.基于模糊最小二乘支持向量回归机的区域粮食安全性预警分析.农业工程 学报,2011,27(5):190-194
    [223]Lopez V F, Medina S L, de Paz J F. Taranis:Neural networks and intelligent agents in the early warning against floods. Expert Systems with Applications,2012,39(11):10031-10037
    [224]Yao Z H, Fei M R, Qu B D, et al. Evolving neural networks for forecasting and early warning red tide and blue-green alga disaster[J].Dynamics of Continuous Discrete and Impulsive Systemsseries A-Mathematical Analysis,2006(13):241-247
    [225]陈弘扬,任华堂,徐世英,等.淮南市水厂取水口水质指标预警研究.北京大学学报(自然科学版),2012,48(3):469-474
    [226]凌同华,廖艳程,张胜.岩体爆破震动损伤评估的多元判别分析模型.中南大学学报(自然科学版),2010,41(1):322-327
    [227]杨迎心,冯志勇,饶国政,等.基于模糊综合评价构建物流运输预警模型.计算机应用,2011,31(10):2844-2848
    [228]张立军,刘菊红,刘丹.上市公司财务危机预警的Logistic回归分析.南昌大学学报(理科版),2007,31(3):242-245
    [229]王伟,沈振中,李桃凡.遗传算法与自适应粒子群算法耦合的大坝安全预警评价模型.岩土工程学报,2009,31(8):1242-1247
    [230]Ahn J J, Oh K J, Kim T Y, et al. Usefulness of support vector machine to develop an early warning system for financial crisi Expert Systems with Applications,2011,38(4):2966-2973
    [231]Wan C, Mita A. Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines[J]. Smart Structures and Systems,2010,6(4):405-421
    [232]Walczak B and Massart D L. Rough sets theory. Chemometrics and Intelligent Laboratory Systems,1999,47(1):1-19
    [233]Zhang X, Zhou J, Guo J, et al. Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine. Expert Systems with Applications, 2012,39(3):2621-2628
    [234]Li T. Applying wavelets transform, rough set theory and support vector machine for copper clad laminate defects classification. Expert Systems with Applications,2009,36(3, Part 2):5822-5829.
    [235]Pawlak Z A. Rough Set. International Journal of Computer and Information Sciences, 1982,11:341-356
    [236]Pawlak Z A. Rough set approach to knowledge-based decision support. European Journal of Operational Research,1997,99(1):48-57
    [237]陶志,许宝栋,赵春元.基于区分函数与强等价集理论的属性约简算法.中山大学学报(自然科学版),2004,43(2):13-16
    [238]张清华,王国胤,肖雨.粗糙集的近似集.软件学报,2012,23(7):1745-1759
    [239]王国胤Rough集理论与知识获取.西安:西安交通大学出版社,2001
    [240]国家环境保护总局,国家质量监督检验检疫总局.GB3838-2002.地表水环境质量标准.北京:中国环境科学出版社,2002-4-28
    [241]国家环境保护局.GB11607-1989.渔业水质标准.北京:中国标准出版社,1989-08-12
    [242]中华人民共和国农业部.NY 5052-2001.无公害食品海水养殖用水水质标准.北京:中国标准出版社,2001-09-03
    [243]刘双印,徐龙琴,沈玉利.基于.NET的对虾病害防治专家系统的设计与实现.计算机工程与设计,2008,29(13):3444-3447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700