用户名: 密码: 验证码:
生长成熟与干制对枣果品质特性及其果胶多糖的形成规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先系统评价六个品种枣果的品质特性和果胶多糖特性,然后以品质特性佳、既适鲜食又适干制的‘金丝小枣’为材料,研究其在生长成熟过程中品质特性和果胶多糖特性变化,同时结合关键内源酶的变化,阐释其品质特性形成规律和果胶多糖降解机制;针对枣果被大量干制的现状,本文还比较研究不同干制方式对枣果品质特性及对果胶多糖降解的影响。经分析归纳,主要结论如下:
     (1)枣果营养成分丰富,其主要可溶性糖为蔗糖、葡萄糖、果糖,蔗糖含量最高,是蔗糖积累性果实;枣果有机酸组成为苹果酸、柠檬酸和琥珀酸,除‘灰枣’外,其余枣果为苹果酸积累型果实:枣果中富含游离氨基酸,脯氨酸和天冬氨酸是枣果中最主要的游离氨基酸,其中脯氨酸含量占游离氨基酸总量的68%以上;枣果主要酚类物质是儿茶素、香豆酸、表儿茶素和芦丁;‘金丝小枣’与‘木枣’的抗氧化特性显著高于其余品种枣果(p<0.05);枣果富含3’,5'-环腺苷酸(Cyclic adenosine monophosphate, cAMP)和3’,5’-环鸟苷酸(Cyclic guanosine monophosphate, cGMP),六种枣果中3’,5’-环腺苷酸含量最高的为‘哈密大枣’,3’,5’-环鸟苷酸含量最高的为‘金丝小枣’;鲜枣中挥发性芳香物质以小分子直链醛类和酸类为主,呈现枣香的物质为苯甲酸乙酯。
     (2)枣果细胞壁物质(Cell wall material, CWM)、水溶性果胶(Water solute pectin, WSP)、螯合性果胶(Chelate-solute pectin, CSP)和碱溶性果胶(Sodium carbonate solute pectin, SSP)含量及其中性单糖受品种来源影响;枣果中水溶性果胶含量高于螯合性果胶和碱溶性果胶含量;WSP和SSP主要性单糖为阿拉伯糖、鼠李糖、半乳糖和葡萄糖,而CSP的主要中性单糖为阿拉伯糖、葡萄糖和岩藻糖;果胶的分子量分布受枣果品种来源和果胶类型两方面影响,其中‘金丝小枣,与‘木枣’WSP的分子量分布明显宽于其余四种枣果,‘金丝小枣’和‘灰枣’中CSP分子量分布比其余四个品种枣果的分子量分布更加集中,且主要集中在高分子量端;‘金丝小枣’、‘灰枣’和‘哈密大枣’SSP组分比‘梨枣’、‘木枣’和‘相枣’的SSP组分分子量分布更宽;枣果过氧化物酶(Peroxidase, POD)、果胶甲酯酶(Pectin methylesterase, PME)口多聚半乳糖醛酸酶(Polygalacturonase, PG)受品种来源影响,且PG活性越高,枣果WSP低分子量端的分布越宽。
     (3)‘金丝小枣’成熟过程中,果型膨大,可滴定酸和总可溶性固形物升高,pH、水分、叶绿素含量降低,果实变黄变红;枣果中叶绿素a含量始终高于叶绿素b,是幼果呈现绿色的主要物质,叶绿素的降解主要发生在生长发育前期;葡萄糖、果糖被逐步积累,而山梨醇含量降低,蔗糖则在生长发育初期未被检出,其积累主要发生在枣果成熟后期,且其含量最高,‘金丝小枣’为蔗糖积累性果实,蔗糖磷酸合成酶(Sucrose phosphate synthase, SPS)和蔗糖合成酶(Sucrose phophate synthase, SS)是蔗糖积累的关键酶;脯氨酸和天冬氨酸被大量合成,是成熟枣果最主要的游离氨基酸;总酚(Total phenolics, TPs)、总黄酮(Total flavonoids, TFs)、维生素C(Ascorbic acid,Vc)、α-生育酚、β-胡萝卜素、儿茶素、咖啡酸、丁香酸和芦丁含量降低,枣果抗氧化特性呈现下降趋势;儿茶素和表儿茶素是枣果在成熟过程中代谢最为活跃的两种酚类物质;cAMP和cGMP含量增加,而三萜酸含量在枣果的S3-S4期最高;枣果的挥发性成分主要在成熟后期合成。
     (4)‘金丝小枣’生长成熟过程中,硬度、CWM和SSP的含量下降,WSP含量上升,CSP含量则先上升后下降;果胶多糖发生了一系列变化导致枣果质构的软变;其中,WSP其鼠李半乳糖醛酸聚糖-I(Rhamngalacturonan-I,RG-I)主链骨架由于鼠李糖的损失而逐渐被降解;CSP和SSP其RG-I主链骨架几乎不发生降解;WSP、CSP和CSP的RG-1支链降解发生在成熟后期;果胶支链的降解主要是由于其支链中阿拉伯糖和半乳糖含量的降低;WSP和SSP在其RG-1支链被降解时,阿拉伯糖比半乳糖被释放更多;WSP中高分子量端组分逐渐降解为低分子量组分;CSP和SSP中高分子量端组分经历先快速合成后降解两个过程;PME活性逐渐降低,PG活性上升,尤其在成熟后期尤为显著,参与多聚半乳糖醛酸链的降解。
     (5)除冷冻干燥(Freeze drying, FD)外,枣果干制处理均导致山梨醇和蔗糖含量的显著下降p<0.05),其中微波干制(Microwave drying, MD)口太阳晾晒(Sun drying, SD)处理其蔗糖保留率比热风干制(Air drying, AD)处理高,但其果糖与葡萄糖含量低于AD处理;干制处理引起枣果褐变,产生HMF,其中MD处理褐变最严重,产生的HMF显著高于其余干制处理组(p<0.05),干燥温度越高,枣果褐变越严重;FD处理能很好的保留枣果中的cAMP和cGMP,而其余干制处理均导致cAMP和cGMP含量的显著下降p<0.05);除FD处理外,AD50处理其cAMP和cGMP保留率同时达到最高,高温或者低温均导致cAMP和cGMP含量更为严重的下降;干制引起枣果的抗氧化性成分的变化,并导致枣果抗氧化特性的下降;枣果抗氧化能力的下降与Vc含量显著相关p<0.05)FRAP和清除ABTS自由能力的下降与TPs含量显著相关(p<0.05);FD与MD处理导致表儿茶素和儿茶素含量显著增加(p<0.05)。
     (6)干制处理导致枣果CWM、WSP和SSP含量显著下降p<0.05),而其CSP含量显著增加p<0.05);高温或低温处理均导致CWM、WSP和SSP含量更严重的降低;干制导致枣果果胶分子量显现不同趋势的变化;WSP组分:高温或低温处理均导致高分子量端组分的减少,AD50处理其分子量分布最为集中:SSP组分:干制导致高分子量端果胶组分的增加,低分子量端则发生降解,且高温或者低温都导致低分子量端果胶组分更为严重的降解。
The physico-chemical properties change of jujube fruits from various cultivars, different growth stages or dehydrated by diverse drying methods were evaluated. At the same time, the effects of ripening process and dehydration methods on the pectic polysaccharide properties and its related enzyme activities of jujube fruits were assessed. The main results were shown as follows:
     (1) Jujube fruits were rich in nutrients and sucrose was the dominant sugar in the six different cultivars jujube fruits, followed by fructose and glucose, while malic acid and succinic aid were the principal organic acids in jujube fruits. Jujube fruits contained plenty of free amino acids and the primary free amino acids of the six various cultivars jujube fruits were proline and aspartic acid, in the mean while, proline accounted for more the68%of total free amino acids. The main phenolic compounds in the six cultivars jujube fruits were (+)-catechin, vanillic acid, coumaric acid,(-)-epicatechin, and rutin, while small amounts of caffeic acid and syringic aicd were also detected. Among the six various cultivars jujube fruits, the antioxidant capacities of 'jinsixiaozao' and 'muzao' were higher than those of the rest. All of six different jujube fruits had a high level of cAMP and cGMP, and 'hamidazao' contained the highest level of cAMP among these jujube fruits, while 'jinsixiaozao'occupied the maximum level of cGMP among the above jujube fruits. The main volatiles of fresh maturated jujube fruits were consisted of micro-molecule aldehydes and organic acid with straight chains.
     (2) The contents of CWM, WSP, CSP, and SSP and the neutral monosaccharides of pectic polysaccharides (WSP, CSP, and SSP) were affected by the source of jujube fruits. The main neutral monosaccharides of WSP and SSP were the same, including arabinose, rhamnose, galactose, and glucose, which differed from those of CSP, which was consisted of arabinose, glucose, and fucose. The molecular weight distribution of pectins was not only influenced by the source of jujube fruit but also by the type of pectins. The activities of PG, PME or POD were dependant on the cultivars of jujube fruits and the higher PG activities the cultivars jujube fruits occupied, the wider molecular weight distribution of WSP in the low molecular weight segment showed.
     (3) During the ripening process of jujube fruits cv 'jinsixiaozao', a series of physico-chemical changes had happened, including its appearance, pH value, moisture, colorness, chlorophyll, nutrients, bioactive compounds, antioxidant capacities and its related compounds, volatiles, enzyme activities. Sucrose, TSS, totol free amino acids, proline, aspartic acid, cAMP and cGMP were accumulated during the growth stages of jujube fruits. SPS and SS were the critical enzymes when accumulating sucrose during the ripening of jujube fruits. However, the green of jujube fruits disappeared due to the degradation of chlorophylls, at the same time, the antioxidant capacities, total phenolics, total flavonoids, L-ascorbic acid, a-tocopherol,β-carotene contents of jujube fruits decreased during the various growth stages. The volatiles of jujube fruits were synthesized at the later periods of ripening.
     (4) Softening phenomenon in jujube fruits cv 'jinsixiaozao'was observed during the process of ripening due to the degradation of cell wall pectic polysaccharide and its related degradation enzymes. The contents of CWM, WSP, SSP in jujube fruits showed a decrease tendency during the softening process, while the CSP content exhibited an increase trend in the earlier softening periods of jujube and showed a decrease tendency in the following softening periods. The backbone of RG-I in WSP was depolymerized gradually during the softening process while the backbones of RG-1in CSP or SSP were not depolymerized. In the mean while, all of the branches of RG-I in WSP, CSP or SSP were depolymerized at the later softening stages duo to the loss of arabinose and galactose. What's more, higher ratio of arabinose was released during the growth stages of jujube fruits. The activity of PME jujube fruits decreased as the fruits became softened, while the PG activity increased, especially in the later softening periods, which played an important role in the depolymerization of pectin polysaccharides.
     (5) With the exception of FD, dehydration of jujube fruits led to a significant decrease of sorbitol and sucrose content (p<0.05). The retention rate of sucrose treated by MD or SD was higher than treated by AD, while the contents of glucose or fructose treated by MD or SD was lower than treated by AD. Drying of jujube fruits also generated browning of jujube pulp, introducing a different level of HMF content and MD caused the most significant increase of HMF content among the various drying treatments of jujube fruits. The higher of drying temperature was applied, the more serious browning index of jujube fruits generated. A fine retention rate of cAMP and cGMP was achieved by FD of jujube fruits, while a significant decrease of cAMP and cGMP occurred when employed AD, MD or SD. A higher retention rate of cAMP and cGMP was obtained at the same time by AD50treatment when compared to AD60, AD70, SD, and MD treatments. Too high or too low drying temperatures could result in a bad retention of cAMP and cGMP. Dehydration of jujube fruits by different drying methods posed different effects on the various antioxidant compounds but all dehydration of jujube fruits result in a significant decrease of antioxidant capacities in jujube fruits (p<0.05). The antioxidant capacities of jujube fruits, including the ability of scavenging DPPH free radical, ABTS free radical and FRAP showed a significant correlation with L-ascorbic acid (p<0.05) and the capacity of scavenging ABTS free radical or FRAP also exhibited a significant correlation with total phenolics (p<0.05). FD or MD treatment of jujube fruits could lead to a significant increase of (+)-catechin or (-)-epicatechin.
     (6) Dehydration of jujube fruits by various drying methods could led to a significant of CWM, WSP, SSP contents (p<0.05), while introduced a significant increase of CSP content. Too high or too low drying temperature could cause a more decrease of CWM, WSP, and SSP contents. Dehydration of jujube fruits also influenced the structure of pectic polysaccharides. Too high drying temperature or too low temperature could led to a more serious depolymerization of high molecular weight segment in WSP and AD50treatment of jujube fruit introduced a more centralized molecular weight distribution of WSP. However, Dehydration of jujube fruits could led to a increase of high molecular weight segment in SSP while introduced a decrease of low molecular weight segment in SSP. In the mean while, too high or low drying temperature could introduce a more serious depolymerizaion of low molecular weight segment in SSP.
引文
Abu-Goukh, A. A., & Bashir, H. A. (2003). Changes in pectic enzymes and cellulase activity during guava fruit ripening. Food Chemistry,83(2),213-218.
    Allan-Wojtas, P., Sanford, K. A., McRae, K. B., & Carbyn, S. (2003). An integrated microstructural and sensory approach to describe apple texture. Journal of the American Society for Horticultural Science,128(3),381-390.
    Amira, E. A., Behija, S. E., Beligh, M., Lamia, L., Manel, I., Mohamed, H., & Lotfi, A. (2012). Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. Journal of Agricultural and Food Chemistry,60(44),10896-10902.
    Amrhein, N. (1974). Evidence against the occurrence of adenosine-3':5'-cyclic monophosphate in higher plants. Planta,1180),241-258.
    AOAC. (1990). Official methods of analysis (15th ed.). Washington, DC, USA:Association of official analytical chemists.
    Assmann, S. M. (1995). Cyclic AMP as a second messenger in higher plants:status and future prospects. Plant Physiology,108(3),885-889.
    Assuncao., R, B., & Mercadante., A. M. (2003). Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.):variety and geographic effects. Food Chemistry,81(4),495-502.
    Baron-Epel, O., Gharyal, P. K., & Schindler, M. (1988). Pectins as mediators of wall porosity in soybean cells. Planta,175(3),389-395.
    Bayindirh, A. (2010). Enzymes in fruit and vegetable processing; chemistry and engineering applications., vol.34:Book News, Inc.
    Beffa, R., Martin, H. V., & Pilet, P. E. (1990). In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiology,94(2),485-491.
    Ben-Shalom, N., Plat, D., Levi, A., & Pinto, R. (1992). Influence of pH treatment on pectic substances and firmness of blanched carrots. Food Chemistry,44(4),251-254.
    Blumenkrantz, N., & Asboe-Hansen, G. (1973). A new method for quantitative determination of two uronic acids. Analytical Biochemistry,54(2),484-489.
    Bouali, I., Trabelsi, H., Abdallah, I. B., Albouchi, A., Martine, L., Gregoire, S., Bouzaien, G., Gandour, M., Boukhchina, S., & Berdeaux, O. (2013). Changes in fatty acid, tocopherol and xanthophyll contents during the development of tunisian-grown pecan nuts. Journal of the American Oil Chemists'Society,90(12),1869-1876.
    Bourne, M. C. (1979). Fruit texture—an overview of trends and problems. Journal of Texture Studies,10(1),83-94.
    Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology,33(2), 103-119.
    Brummell, D. A., Cin. D. V., Crisosto. C. H., & Labavitch. J. M. (2004a). Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 55(405),2029-2039.
    Brummell, D. A., Cin, D. V., Lurie, S., Crisosto. C. H., & Labavitch, J. M. (2004b). Cell wall metabolism during the development of chilling injury in cold-stored peach fruit:association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany, 55(405),2041-2052.
    Buren, J. V. (1979). The chemistry of texture in fruits and vegetables. Journal of Texture Studies, 10(1),1-23.
    Chang, S. C., Hsu, B. Y., & Chen, B. H. (2010). Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. International Journal of Biological Macromolecules,47(4),445-453.
    Chen, J., Li, Z., Maiwulanjiang, M., Zhang, W. L., Zhan, J. Y. X., Lam, C. T. W., Zhu, K. Y., Yao. P., Criado, M. N., Motilva, M. J., Goru,M., & Romero, M. P. (2007). Comparative study of the effect of the maturation process of the olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chemistry,100(2),748-755.
    Cheng, G., Bai, Y., Zhao, Y., Tao, J., Liu, Y., Tu, G., Ma, L., Liao, N., & Xu, X. (2000). Flavonoids from Ziziphus jujuba Mill var. spinosa. Tetrahedron,56(45),8915-8920.
    Choi, R. C. Y., Lau, D. T. W., Dong, T. T. X., & Tsim, K. W. K. (2013). Chemical and biological assessment of Ziziphus jujuba fruits from China:different geographical sources and developmental stages. Journal of Agricultural and Food Chemistry,61(30),7315-7324.
    Choi, S., Ahn, J., Kim, H., Im, N., Kozukue, N., Levin, C. E., & Friedman, M. (2012). Changes in free amino acid, protein, and flavonoid content in jujube (Ziziphus jujube) fruit during eight stages of growth and antioxidative and cancer cell inhibitory effects by extracts. Journal of Agricultural and Food Chemistry,60(41),10245-10255.
    Choi, S., Ahn, J., Kozukue, N., Levin, C. E., & Friedman, M. (2011). Distribution of free amino acids, flavonoids, total phenolics, and antioxidativeactivities of jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in korea. Journal of Agricultural and Food Chemistry. 59(12),6594-6604.
    Coenen, G. J., Bakx, E. J., Verhoef. R. P., Schols, H. A., & Voragen, A. G. J. (2007). Identification of the connecting linkage between homo-or xylogalacturonan and rhamnogalacturonan type I. Carbohydrate Polymers,70(2),224-235.
    Cyong, J., & Takahashi, M. (1982). Identification of guanosine 3':5'-monophosphate in the fruit of Zizyphus jujuba. Phytochemistry.21(8),1871-1874.
    Dali, N., Michaud, D., & Yelle, S. (1992). Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiology,99(2),434-438.
    Davidson M. W.2006. Plant cell wall. Available from:http://micro.magnet.fsu.edu/cells/plants/ cell wall.htm. Accessed Feb 9,2009.
    Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal,4(2),215-223.
    Duan, X., Cheng, G., Yang, E., Yi, C., Ruenroengklin, N., Lu, W., Luo, Y., & Jiang, Y. (2008). Modification of pectin polysaccharides during ripening of postharvest banana fruit. Food Chemistry,111(1),144-149.
    Guerrier, G. (1997). Prolineaccumulation in leaves of NaCl-sensitive and NaCl-tolerant tomatoes. Biologia Plantarum,40(4),623-628.
    Fang, S. Z., Wang, Z. F., & Hu, X. S. (2009a). Hot air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller):thin-layer mathematical modelling. International Journal of Food Science and Technology,44(9),1818-1824.
    Fang, S. Z., Wang, Z. F., Hu, X. S., Chen, F., Zhao, G. H., Liao, X. J., Wu, J. H., & Zhang, Y. (2011). Energy requirement and quality aspects of Chinese jujube (Zizyphus jujuba miller) in hot air drying followed by microwave drying. Journal of Food Process Engineering,34(2), 491-510.
    Fang, S. Z., Wang, Z. F., Hu, X. S., & Datta, A. K. (2009b). Hot-air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller):physicochemical properties of dried products. International Journal of Food Science and Technology,44(1),1415-1421.
    Fang, S. Z., Wang, Z. F., Hu, X. S., Li, H., Long, W. R., & Wang, R. (2010a). Shrinkage and quality characteristics of whole fruit of Chinese jujube (Zizyphus jujuba Miller) in microwave drying. International Journal of Food Science and Technology,45(12),2463-2469.
    FAO. Jujube; http://www.fao.org/docrep/007/ae017e/ae017e12.htm,1993.
    Fishman, M. L., Chau, H. K., Cooke, P. H., & Hotchkiss Jr., A. T. (2008). Global structure of microwave-assisted flash-extracted sugar beet pectin. Journal of Agricultural and Food Chemistry,56(4),1471-1478.
    Fleming, N., Mellow, L., & Bhullar. D. (1992). Regulation of the cAMP signal transduction pathway by protein kinase C in rat submandibular cells. European Journal of Physiology, 427(1),82-89.
    Fujiwara, Y., Hayashida, A., Tsurushima, K., Nagai, R., Yoshitomi, M., Daiguji, N., Sakashita, N., Takeya, M., Tsukamoto, S., & lkeda, T. (2011). Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages. Journal of Agricultural and Food Chemistry,59(9), 4544-4552.
    Gao, Q., Wu, P., Liu, J., Wu, C., Parry, J. W., & Wang, M. (2011). Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba Mill.) cultivars grown in loess plateau of China. Scientia Horticulturae,130(1),67-72.
    Gao, Q., Wu, C., Yu, J., Wang, M., Ma, Y., & Li, C. (2012). Textural characteristic, antioxidant activity, sugar, organic acid, and phenolic profiles of 10 promising jujube (Ziziphus jujuba Mill.) selections. Journal of Food Science, C1218-C1225.
    Garau, M. C., Simal, S., Rossello, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry.104(3).1014-1024.
    Giannattasio. M., Mandato, E., & Macchia, V. (1974). Content of 3',5'cyclic AMP and cyclic AMP phosphodiesterase in dormant and activated tissues of Jerusalem artichoke tubers. Biochemical and Biophysical Research Communications.57(2),365-371.
    Gorinstein. S., Mart N-Belloso. O., Park, Y., Haruenkit, R., Lojek, A., Milan, C. A., Libman.I.. & Trakhtenberg. S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry,74(3),309-315.
    Gorinstein, S., Zachwieja, Z.. Katrich. E., Pawelzik, E., Haruenkit, R., Trakhtenberg. S., & Martinbelloso, O. (2004). Comparison of the contents of the main antioxidant compounds and the antioxidant activity of white grapefruit and his new hybrid. LWT-Food Science and Technology,73(3),337-343.
    Goyal. R., Sharma, P., & Singh, M. (2011). Possible attenuation of nitric oxide expression in anti-inflammatory effect of Ziziphus jujuba in rat. Journal of Natural Medicines,65(3), 514-518.
    Gruz, J., Ayza, F. A., Torun, H., & Strnad, M. (2011). Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry,136(1),41-45.
    Guil-Guerrero, J. L., Delgado, A. D., Gonzalez, M., & Isasa, M. (2004). Fatty acids and carotenes in some ber (Ziziphus jujuba Mill) varieties. Plant Foods for Human Nutrition,59(1),23-27.
    Gull, J., Sultana, B., Anwar, F., Nasse, R., & Ashraf, M. (2012). Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules,17(12),3165-3180.
    Guo, S., Duan, J., Tang, Y., Qian, Y., Zhao, J., Qian, D., Su, S., & Shang, E. (2011). Simultaneous qualitative and quantitative analysis of triterpenic acids, saponins and flavonoids in the leaves of two Ziziphus species by HPLC-PDA-MS/ELSD. Journal of Pharmaceutical and Biomedical Analysis,56(2),264-270.
    Guo, S., Duan, J., Tang, Y., Su, S., Shang, E.,Ni, S., & Qian, D. (2009). High-performance liquid chromatography-two wavelength detection of triterpenoid acids from the fruits of Ziziphus jujuba containing various cultivars in different regions and classification using chemometric analysis. Journal of Pharmaceutical and Biomedical Analysis,49(5),1296-1302.
    Guo, S., Duan. J., Tang, Y., Yang, N., Qian, D., Su, S., & Shang, E. (2010). Characterization of triterpenic acids in fruits of Ziziphus species by HPLC-ELSD-MS. Journal of Agricultural and Food Chemistry,58(10),6285-6289.
    Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation,21(2),79-102.
    Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment,21(6),535-553.
    Hawker, J. S. (1969). Changes in the activities of enzymes concerned with sugar metabolism during the development of grape berries. Phytochemistry,8(1),9-17.
    Hegde, S. &. M. N. (1998). Changes in apparent molecular mass of pectin and hemicellulose extracts during peach softening. Journal of the American Society for Horticultural Science, 123(3),445-456.
    Houben, K., Kermani, Z. J., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2013). Thermal and high-pressure stability of pectin-converting enzymes in broccoli and carrot puree: towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology, DOI 10.1007/s11947-013-1166-.
    Huang, X., Kojima-Yuasa, A., Norikura, T., Kennedy, D. O., Hasuma, T., & Matsui-Yuasa, Ⅰ. (2007). Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. The American Journal of Chinese Medicine,35(3),517-532.
    Hubbard, N. L., Pharr, D. M., & Huber, S. C. (1990). Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiology,94(1),201-208.
    Hukkanen, Anne T., Polonen, Satu S., Karenlampi, Sirpa O., Kokko & Harri I. (2006). Antioxidant capacity and phenolic content of sweet rowanberries. Journal of Agricultural and Food Chemistry,54(1),112-119.
    Hung, C., Hsu, B., Chang, S., & Chen, B. (2012). Antiproliferation of melanoma cells by polysaccharide isolated from Zizyphus jujuba. Nutrition,28(1),98-105.
    Johnson, L. P., Macleod, J. K., Parker, C. W., & Letham, D. S. (1981). The quantitation of adenosine 3':5'-cyclic monophosphate in cultured tobacco tissue by mass spectrometry. Febs Letters,124(2),119-121.
    Jones, L., Milne, J. L., Ashford, D., & McQueen-Mason, S. J. (2003). Cell wail arabinan is essential for guard cell function. Proceedings of the National Academy of Sciences,100(20), 11783-11788.
    Keller, F., & Ludlow, M. (1993). Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). Journal of Experimental Botany,44(8),1351-1359.
    Ketsa, S.,&Daengkanit, T. (1999). Firmness and activities of polygalacturonase, pectinesterase, β-galactosidase and cellulase in ripening durian harvested at different stages of maturity. Scientia Horticulturae,80(3-4),181-188.
    Kim, Y., & Son, D. (2011). Antioxidant effects of solvent extracts from the dried jujube (Zizyphus jujube) sarcocarp, seed, and leaf via sonication. Food Science and Biotechnology,20(1), 167-173.
    King, S., Lunn, J., & Furbank, R. (1997). Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiology,114(1),153-160.
    Koch, J. L., & Nevins, D. J. (1989). Tomato fruit cell wall I. Use of purified tomato polygalacturonase and pectin methylesterase to identify developmental changes in pectins. Plant Physiology,91(3).816-822.
    Koley.T. K., Kaur. C., Nagal. S., Walia, S., Jaggi, S., & Sarika. Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauriliana Lamk.). Arabian Journal of Chemistry,10-1016.
    Kozukue, N., & Friedman, M. (2003). Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during growth and maturation. Journal of the Science of Food and Agriculture,83(3), 195-200.
    Kratchanova, M.. Pavlova, E.. & Panchev.I. (2004). The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers,56(2), 181-185.
    Kundu, A. B., Barik, B. R., Mondal, D. N., Dey, A. K., & Banerji, A. (1989). Zizybernalic acid, a penta cyclic triterpenoid of Ziziphus jujuba. Phytochemistry,28(11),3155-3158.
    Lee, S., Lin, B., & Liu, K. C. (1996).Three triterpene esters from Zizyphus jujuba. Phytochemistry, 43(4),847-851.
    Lee, S. M., Min. B. S., Lee, C., Kim, K., & Kho, Y. H. (2003). Cytotoxic triterpenoids from the fruits of Zizyphus jujuba. Planta Medica,69(11),1051-1054.
    Li, J., Ai, L., Yang, Q., Liu, Y., & Shan, L. (2013). Isolation and structural characterization of a polysaccharide from fruits of Zizyphus jujuba cv. Junzao. International Journal of Biological Macromolecules,55,83-87.
    Li, J., Ding, S., & Ding, X. (2007a). Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. Journal of Food Engineering,80(1), 176-183.
    Li, J. W., Ding, S. D., & Ding, X. L. (2005). Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochemistry,40(11),3607-3613.
    Li, J. W., Fan, L. P., Ding, S. D., & Ding, X. L. (2007b). Nutritional composition of five cultivars of chinese jujube. Food Chemistry,103(2),454-460.
    Li, J. W., Fan, L. P., & Ding, S. D. (2011a). Lsolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv Jinsixiaozao. Carbohydrate Polymers, 83(2),477-482.
    Li, J. W., Liu, Y. F., Fan, L. P., Ai, L. Z., & Shan, L. A. (2011b). Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohydrate Polymers,84(1),390-394.
    Lin, Y., Hsieh, M., Chen, C., Cheng, H., & Peng, W. (2003). Anxiolytic effect of ting-chih-wan in mouse behavior models of anxiety. The American Journal of Chinese Medicine,31(1),47-59.
    Liu, F., Fu, S., Bi, X., Chen, F., Liao, X., Hu, X., & Wu, J. (2013). Physico-chemical and antioxidant properties of four mango (Mangijera indica L.) cultivars in China. Food Chemistry, 138(1),396-405.
    Liu, J. J., Chen, B., & Yao, S. Z. (2007). Simultaneous analysis and identification of main bioactive constituents in extract of Zizyphus jujuba var. sapinosa (Zizyphi spinosi semen) by high-performance liquid chromatography-photodiode array detection-electrospray mass spectrometry. Talanta,71(2),668-675.
    Lu, H., Lou, H., Zheng, H., Hu, Y., & Li, Y. (2012). Nondestructive evaluation of quality changes and the optimum time for harvesting during jujube(Zizyphus jujuba Mill. cv. Changhong) fruits development. Food and Bioprocess Technology,5(6),2586-2595.
    Manganaris, G. A., Vasilakakis, M., Diamantidis, G.,&Mignani, I. (2006). Cell wall physicochemical aspects of peach fruit related to internal breakdown symptoms. Postharvest Biology and Technology,39(1),69-74.
    Manrique, G. D., & Lajolo, F. M. (2004). Cell-wall polysaccharide modifications during postharvest ripening of papaya fruit (Carica papaya). Postharvest Biology and Technology, 33(1),11-26.
    Matysik, J. O. R., Bhalu, B., Mohanty, P., & Others (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science,82(5),525-532.
    Moriguchi, T., Abe, K., Sanada, T., & Yamaki, S. (1992). Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid Invertase in sucrose accumulation in fruit of Asian pear. Journal of the American Society for Horticultural Science,117(2),274.
    Moscatello, S., Famiani, F., Proietti, S., Farinelli, D., & Battistelli, A. (2011). Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia deliciosa, cv Hayward). Scientia Horticulturae,128(3),197-205.
    Oruna-Concha, M. J., Gonzalez-Castro, M. J., Lopez-Hernandez, J., & Simal-Lozano, J. (1998). Monitoring of the vitamin C content of frozen green beans and padron peppers by HPLC. Journal of the Science of Food and Agriculture,76(3),477-480.
    Pawlowska, A. M., Camangi, F., Bader, A.,&Braca, A. (2009). Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chemistry,112(4),858-862.
    Peng, W., Hsieh, M., Lee, Y., Lin, Y., & Liao, J. (2000). Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. Journal of Ethnopharmacology,72(3),435-441.
    Perez, S., Rodriguez-Carvajal, M., & Doco, T. (2003). A complex plant cell wall polysaccharide: rhamnogalacturonan Ⅱ. A structure in quest of a function. Biochimie, 85(1-2),109-121.
    Plat, D., Ben-Shalom, N., & Levi, A. (1991). Changes in pectic substances in carrots during dehydration with and without blanching. Food Chemistry,39(1),1-12.
    Ponce, N. M. A., Ziegler, V. H., Stortz, C. A., & Sozzi, G. O. (2010). Compositional changes in cell wall polysaccharides from Japanese plum (Prunussalicina Lindl.) during growth and on-tree ripening. Journal of Agricultural and Food Chemistry,58(4),2562-2570.
    Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena-an overview. Critical Reviews in Food Science and Nutrition,47(1),1-19.
    Pressey, R. (1988). Reevaluation of the changes in polygalacturonases in tomatoes during ripening. Planta.174(1),39-43.
    Qiuping, Z., & Wenshui. X. (2007). Effect of 1-methylcyclopropene and/or chitosan coating treatments on storage life and quality maintenance of Indian jujube fruit. LWT-Food Science and Technology.40(2),404-411.
    Redgwell, R. J.,Fischer. M., Kendal, E., & MacRae, E. A. (1997). Galactose loss and fruit ripening:high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planla.203(2).174-181.
    Renard, C. M. G. C., & Ginies, C. (2009). Comparison of the cell wall composition for flesh and skin from five different plums. Food Chemistry, 114(3),1042-1049.
    Ridley, B. L., O'Neill. M. A., & Mohnen, D. (2001). Pectins:structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,57(6),929-967.
    Rose, J. K. C., Hadfield. K. A., Labavitch, J. M., & Bennett, A. B. (1998). Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiology,117(2),345-361.
    Said, A., Fawzy, C.. Ali Abu Tabl, E., & Tzakou, O. (2010). Volatile constituents of Zizyphus jujuba aerial parts and Zizyphus spina-christii fruits from Egypt. Journal of Essential Oil Bearing Plants.13(2),170-174.
    San, B., & Yildirim, A. N. (2010). Phenolic, alpha-tocopherol, beta-carotene and fatty acid composition of four promising jujube (Ziziphus jujuba Miller) selections. Journal of Food Composition and Analysis,23(1),706-710.
    Shiomi, S., Kubo, Y., Wamocho, L. S., Koaze, H., Nakamura, R., & Inaba, A. (1996). Postharvest ripening and ethylene biosynthesis in purple passion fruit. Postharvest Biology and Technology, 8(3),199-207.
    Sila, D. N., Doungla, E., Smout, C., Van Loey, A., & Hendrickx. M. (2006). Pectin fraction interconversions:insight into understanding texture evolution of thermally processed carrots. Journal of Agricultural and Food Chemistry,54(22),8471-8479.
    Sila, D. N., Smout, C. Elliot, F., Loey, A. V., & Hendrickx, M. (2006). Non-enzymatic depolymerization of carrot pectin:toward a better understanding of carrot texture during thermal processing. Journal of Food Science,71(1), E1-E9.
    Souleyre, E. J. F., Greenwood, D. R., Friel, E. N., Karunairetnam, S., & Newcomb, R. D. (2005). An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS Journal,272(12),3132-3144.
    Sun, H., Mao, W., Chen, Y., Guo, S., Li, H., Qi, X., Chen, Y., & Xu, J. (2009). Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,78(1),117-124.
    Sun, L., Liu, M., Zhu, S., Zhou, J., & Wang, M. (2007). Effect of nitric oxide on alcoholic fermentation and qualities of Chinese winter jujube during storage. Agricultural Sciences in China,6(1),849-856.
    Sun, X., Yang, Q., Guo, W., Dai, L., & Chen, W. (2013). Modification of cell wall polysaccharide during ripening of Chinese bayberry fruit. Scientia Horliculturae.160(27).155-162.
    Sun. Z., Li. Y., Zhou, J., & Zhu, S. (2011). Effects of exogenous nitric oxide on contents of soluble sugars and related enzyme activities in'Feicheng" peach fruit. Journal of the Science of Food and Agriculture,91(10),1795-1800.
    Szczesniak. A. S. (2002). Texture is a sensory property. Food Quality and Preference,13(4). 215-225.
    Teng. S. S., & Chen, B. H. (1999). Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chemistry,65(3),367-373.
    Terefe, N. S., Gamage, M., Vilkhu. K., Simons, L., Mawson, R., & Versteeg, C. (2009). The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chemistry,117(1),20-27.
    Thibault, J. C., Renard, C. M., Axelos, M. A., Roger, P., & Crepeau, M. (1993). Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydrate Research. 238(15),271-286.
    Vahedi, F., Najafi, M., & Bozari, K. (2008). Evaluation of inhibitory effect and apoptosis induction of Zyzyphus Jujube on tumor cell lines, an in vitro preliminary study. Cytotechnology,56(2), 105-111.
    Van Buggenhout, S., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables:part Ⅲ-texture engineering. Comprehensive Reviews in Food Science and Food Safety,8(2),105-117.
    Vasquez-Caicedo. A. L., Heller, A., Neidhart, S., & Carle, R. (2006). Chromoplastmorphology and β-carotene accumulation during postharvest ripening of mango cv.'Tommy Atkins'. Journal of Agricultural and Food Chemistry,54(16),5769-5776.
    Wang, B. N., Cao, W., Gao, H., Fan, M. T., & Zheng, J. B. (2010). Simultaneous determination of six phenolic compounds in jujube by LC-ECD. Chromatographia,71(7-8),703-707.
    Wang, B. N., Liu, H. F., Zheng, J. B.. Fan, M. T., & Cao, W. (2011). Distribution of phenolic acids in different tissues of jujube and their antioxidant activity. Journal of Agricultural and Food Chemistry,59(4),1288-1292.
    Wang, C. Cheng, D., Cao, J., & Jiang, W. (2013). Antioxidant capacity and chemical constituents of Chinese jujube (Ziziphus jujuba Mill.) at different ripening stages. Food Science and Biotechnology,22(3),639-644.
    Wang, H., Chen, F., Yang, H., Chen, Y., Zhang, L., & An, H. (2012). Effects of ripening stage and cultivar on physicochemical properties and pectin nanostructures of jujubes. Carbohydrate Polymers,89(4).1180-1188.
    Wang, H., Hu, X.. Chen, F., Wu. J., Zhang, Z., Liao, X., & Wang, Z. (2006). Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. European Food Research and Technology,223(2),282-289.
    Wakabayashi, K., Chun, J., & Huber, D. J. (2000). Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectin methylesterase. Physiologia Plantarum.108(4), 345-352.
    Wang, Z. F., Fang, S. Z., & Hu, X. S. (2009). Effective diffusivities and energy consumption of whole offruit Chinese jujube (Zizyphus jujuba Miller) in microwave drying. Drying Technology. 27(10),1097-1104.
    Wakabayashi, K., Hoson, T., & Huber, D. J. (2003). Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening:a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. Journal of Plant Physiology,160(6).667-673.
    Wong, K. C., Chee, S. G., & Tan. C. H. (1996). Volatile constituents of the fruit of Zizyphus jujuba Mill.var.inermis (Bge.) Rehd. Journal of Essential Oil Research,8(3).323-326.
    Wu, C., Gao, Q., Guo, X., Yu, J., & Wang, M. (2012). Effect of ripening stage on physicochernical properties and antioxidant profiles of a promising table fruit'pear-jujube' (Zizyphus jujuba Mill.). Scientia Horticulturae,148(4),177-184.
    Wu, H., Wang, D., Shi, J.. Xue, S., & Gao, M. (2010). Effect of the complex of Zinc(11) and Cerium(IV) with chitosan on the preservation quality and degradation of organophosphorus pesticides in Chinese jujube(Zizyphus jujuba Mill. cv. Dongzao). Journal of Agricultural and Food Chemistry,58(9),5757-5762.
    Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z., & Hu, X. (2007). Chemical compositional characterization of some apple cultivars. Food Chemistry,103(1),88-93.
    Wu, S., Li, F., Jia, S., Ren, H., Gong, G., Wang, Y., Lv, Z., & Liu, Y. (20 i4). Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydrate Polymers,103,414-417.
    Xue, Z., Feng, W., Cao, J., Cao, D., & Jiang, W. (2009). Antioxidant activity and total phenolic contents in peel and pulp of Chinese jujube (Ziziphus jujuba Mill) fruits. Journal of Food Biochemistry,33(5),613-629.
    Yoshioka, H., Aoba, K., & Kashimura. Y. (1992). Molecular weight and degree of methoxylation incell wall polyuronide during softening inpear and apple fruit. Journal of the American Society for Horticultural Science,117(4),600-606.
    Yu, L., Jiang, B. P., Luo, D., Shen, X. C., Guo, S., Duan, J. A., & Tang, Y. P. (2012). Bioactive components in the fruits of Ziziphus jujuba Mill, against the inflammatory irritant action of Euphorbia plants. Phytomedicine,19(3-4),239-244.
    Zhan, D., Janssen, P., & Mort, A. J. (1998). Scarcity or complete lack of single rhamnose residues interspersed within the homogalacturonan regions of citrus pectin. Carbohydrate Research, 308(3-4),373-380.
    Zhang, F., Dong, P., Feng, L., Chen, F., Wu, J., Liao, X., & Hu, X. (2012). Textural changes of yellow peach in pouches processed by high hydrostatic pressure and thermal processing during storage. Food and Bioprocess Technology, 5(8),3170-3180.
    Zhang, H., Jiang, L., Ye, S., Ye, Y. B., & Ren, F. Z. (2010a). Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food and Chemical Toxicology,48(6),1461-1465.
    Zhang, Y., Song, Y., Hu, X., Liao, X., Ni, Y., & Li, Q. (2012). Effects of sugars in batter formula and baking conditions on 5-hydroxymethylfurfural and furfural formation in sponge cake models. Food Research International,49(1),439-445.
    Zhao, Z., Dai, H., Wu, X., Chang, H., Gao, X., & Liu, M. T. P. (2007). Characterization of a pectic polysaccharide from the fruit of Ziziphus jujuba. Chemistry of Natural Compounds,43(4), 374-376.
    Zhao, Z., Liu, M., & Tu, P. (2008). Characterization of water soluble polysaccharides from organs of Chinese Jujube (Ziziphus jujuba Mill. cv. Dongzao). European Food Research and Technology,226(5),985-989.
    Zhao, Z. H., Li, J., Wu, X. M., Dai, H., Gao, X. M., Liu, M. J., & Tu, P. F. (2006). Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill.cv. jinsixiaozao Hort. Food Research International,39(8),917-923.
    Zhu, S., Sun, L., & Zhou, J. (2009). Effects of nitric oxide fumigation on phenolic metabolism of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao) in relation to fruit quality. LWT-Food Science and Technology,42(5),1009-1014.
    Zozio, S., Servent, A., Cazal, G., Mbeguie-A-Mbeguie, D., Ravion, S., Pallet, D., & Abel, H. (2014). Changes in antioxidant activity during the ripening of jujube (Ziziphus mawitiana Lamk). Food Chemistry,150,448-456.
    Zykwinska, A., Thibault, J. F., & Ralet, M. C. (2007). Organization of pecticarabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. Journal of Experimental Botany,58(1),1795-1802.
    毕金峰,于静静,丁媛媛,&赖必辉.(2011).固相微萃取GC-MS法测定不同干制方式下枣产品的芳香成分.现代食品科技,27(3),354-360.
    曹霞敏.(2013).超高压对草莓汁主要品质及包装材料的影响.[博士学位论文].北京:中国农业大学,2013.
    曹一博,李长江,孙帆,&张凌云(2014).抗裂与易裂枣内源激素含量和细胞壁代谢相关酶活性比较.园艺学报,41(1),139-148.
    常江,王陆一,乌兰,&高静(2002).红枣注射液对小鼠免疫功能的影响.包头医学院学报18(2),87-88.
    陈锦屏,穆启运,&田呈瑞(1999).不同升温方式对烘干枣品质影响的研究.农业工程学报15(3),237-240.
    陈敏,余江平,&黄敏(2007).环核苷酸的生理作用及临床应用.中国药房,18(11),872-874.
    狄建兵,王愈,张培宜,张帅,&郝利平(2012).不同干制方法对红枣品质的影响.农产品加工(学刊)(1),70-72.
    顾熟琴,盛文军,&卢大新(2004).热风干制和微波干制对油枣TFs含量影响的研究.食品科学,25(11),154-157.
    郭裕新,单公华.&杨茂林(2002).我国枣树的区化栽培.中国果树(4),44-46.
    郭兴峰.(2013).柚皮果胶超高压和闪式提取及降解机制研究.[博士学位论文].北京:中国农业大学,2003.
    回瑞华,侯冬岩,&李铁纯(2004).酸枣果肉中挥发性化学成分的提取及分析.分析化学32(3),325-328.
    回瑞华,侯冬岩,&李铁纯(2005).酸枣果肉中挥发性化学成分分析.理化检验(化学分册),41(6),425-427.
    侯冬岩,回瑞华,杨梅,李铁纯,&郭华(2003).酸枣仁中挥发性化学成分分析.分析实验室,22(3),84-86.
    贾春晓,熊卫东,毛多斌,张文叶,&孙晓丽(2005).拐枣果梗中有机酸成分的GC-MS分析.中国食品学报,5(1),72-74.
    李焕荣,徐晓伟,&许淼(2008).干制方式对红枣部分营养成分和香气成分的影响.食品科学,29(10),330-333.
    李进伟,李苹苹,范柳萍,&丁霄霖(2009).枣蛋白聚糖的纯化及其免疫功能研究.食品与发酵工业,35(3),12-14.
    李文絮,&刘会峦(2005).乐陵枣挥发油化学成份的气相色谱-质谱分析.青岛大学学报,18(1),67-70.
    刘孟军(1999).枣属植物分类学研究进展——文献综述.园艺学报,26(5),302-308.
    刘孟军,&王永蕙(1991).枣和酸枣等14种园艺植物cAMP含量的研究.河北农业大学学报,14(4),20-23.
    刘孟军,&王永蕙(1993).枣枝叶及酸枣幼苗中cAMP的研究.园艺学报,20(3),305-306.
    刘润平(2009).红枣的营养价值及其保健作用.中国食物与营养,37(12),50-52.
    刘永忠,何国富,黎强,&吉继雍(2005).国庆1号温州蜜柑转化酶和糖分积累特性研究.华中农业大学学报,24(2),213-216.
    鲁周民,刘坤,闫忠心,&李新岗(2010).枣果实营养成分及保健作用研究进展.园艺学报,37(12),2017-2024.
    鲁周民,闫忠心,刘坤,&李新岗(2010).不同温度对干制红枣香气成分的影响.深圳大学学报(理工版),27(4),490-496.
    卢东昱,崔新图,黄镜荣,&赵福利(2006).叶绿素吸收光谱的观测.大学物理,25(1),50-53.
    卢愿(2012).枣香气成分提取与含量研究.[硕士学位论文].保定:河北农业大学.
    穆启运,&陈锦屏.(2002)3种红枣的挥发性化学成分的乙醇提取及测定.西北植物学报,22(3),641-645.
    穆启运,&陈锦屏(2001).红枣挥发性物质在烘干过程中的变化研究.农业工程学报,17(4),99-101.
    穆启运,陈锦屏,&张保善(1999).红枣挥发性芳香物的气相色谱-质谱分析.农业工程学报,15(3),251-255.
    任卓英,朱海军,倪朝敏,杨柳,&缪明明(2009).干红枣ASE提取物的GC/MS分析及其在卷烟中的应用.光谱实验室.26(3),491-494.
    彭艳芳(2008).枣主要活性成分分析及枣蜡提取工艺研究.[博士学位论文].保定:河北农业大学.
    任亚梅(2009).猕猴桃果实叶绿素代谢及生理特性研究.[博士学位论文].杨凌:西北农林科技大学.
    石丽霞,&张振家(2005).复方大枣口服液对小鼠免疫机能的影响.第四军医大学吉林军医学院学报,26(1),41-42.
    王翠艳,侯冬岩,回瑞华,刘晓媛,&朱永强(2006).酸枣仁中脂肪酸的气相色谱-质谱分析.时珍国医国药,17(1),62-63.
    王基云(2010).宁夏沙枣花黄酮成分及其抗氧化活性的研究.[博士学位论文].银川:宁夏医科大学.
    王颉,张子德,张占忠.&王文慧(1998).枣挥发油的提取及其化学成分的气相色谱-质谱分析.食品科学,1998(2),38-40.
    王永蕙主编.枣树栽培[M].北京:农业出版社,1990,1-2
    王永章,&张大鹏(2001).‘红富士’苹果果实蔗糖代谢与酸性转化酶和蔗糖合酶关系的研究.园艺学报,28(03),259-261.
    闫忠心,鲁周民,刘坤,焦文月,&赵佳奇(2011).干制条件对红枣香气品质的影响.农业工程学报,15(1),389-392.
    徐呈祥,马艳萍,&徐锡增(2011).15个枣树品种耐盐性研究.广东农业科学(16),31-32.
    徐呈祥,&徐锡增(2005).硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响.南京林业大学学报:自然科学版,29(1),25-28.
    许牡丹,张瑞花,高红芳,&刘红梅(2011).枣片的预处理及干制方式研究.食品工业科技(03),244-246.
    袁亚宏,高振鹏,&史亚歌(2002).我国红枣的产业化开发.西北农林科技大学学报:自然科学版,30(S1),95-98.
    张宝善,陈锦屏,&李慧芸(2006).热风干制对红枣非酶褐变的影响.食品科学,27(10),139-142.
    张宝善,陈锦屏,&李强(2004).干制方式对红枣Vc、还原糖和总酸变化的影响.西北农林科技大学学报(自然科学版)(11),117-121.
    张甫生(2011).高静压保持黄桃罐头质地的相关机制研究.[博士学位论文].北京:中国农业大学
    张峻松,贾春晓,毛多斌,&张文叶(2003).生物技术制备天然枣香料的香味化合物分析.精细化工,20(2),82-84.
    张岩,吕品,王红,张敬轩,李挥,&刘敬泽(2009).高效液相色谱法同时测定浓缩枣汁中环磷酸腺苷和环磷酸鸟苷的含量.食品科学,30(18),321-322.
    张学杰,郭科,&苏艳玲(2010).果胶研究新进展.中国食品学报,10(01),167-174.
    张艳红,陈兆慧,王德萍,文娜,&杨洁(2008).红枣中氨基酸和矿质元素含量的测定.食品 科学,29(1),263-266.
    赵智慧,刘孟军,周俊义,刘平,杨雷,&田寿乐(2005).微波-稀酸法快速测定枣粗纤维含量试验.江苏林业科技,32(3),11-12
    赵智中,张上隆,徐昌杰,陈昆松,&刘拴桃(2001).蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,28(2),112-1]8
    朱晓兰,时亮,刘百战,高芸,张龙根,陈加林,&宫梅(2000).利用GC和GC/MS分析枣子酊挥发性化学成分.分析仪器(4),41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700