用户名: 密码: 验证码:
碳素钢温塑性成形过程组织动态演变及力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温轧生产碳素钢可减轻常规热轧生产带来的轧件表面氧化、合金元素烧损、热凸度不易控制等问题,并能够利用温塑性成形过程生成优良的组织。中高碳碳素钢温轧时的组织及其动态演变都与热轧过程不同,宏观表现为流变应力大幅度增加,变形行为出现差异,从而对轧制过程产生影响。碳素钢温轧工艺施行的关键问题是确定合适的轧制温度,并要求轧机具有相应的加工能力。为此,以45钢及65Mn钢为代表,对碳素钢温塑性变形过程的组织演变及力学行为进行研究,考虑变形抗力的变化,计算碳素钢板带温轧时的轧制力,分析碳素钢温连轧过程温度及轧制力的变化规律,为温轧工艺的制定及轧机配置提供理论基础。课题所研究的优质碳素结构钢是广泛使用的基础性的机械装备制造用钢,温轧加工充分利用了材料的成形过程生成性能优良的温轧球化组织,其产品质量的提高对整个机械产品质量的提升具有促进作用。
     在Gleeble-3500热模拟实验机上,模拟了45钢和65Mn钢的温塑性变形过程,制备出了不同变形工艺条件下的温变形组织,对实验钢温变形组织进行分析,探讨了渗碳体溶解球化和铁素体再结晶机理,阐明了初始组织及变形工艺条件对球化及再结晶的影响,并测试了温变形组织的力学性能,论证了温变形组织与工艺变量之间的关系,最后确立了温加工工艺控制原则。研究结果表明:与GB/T699-1999中的调质处理产品相比,温变形后材料屈服强度、抗拉强度与延伸率均有不同程度的提高,温变形组织的力学性能优于调质处理产品的性能。
     通过单向圆柱体温压缩实验,研究了实验钢温塑性变形的流变行为,结合应力应变曲线和微观组织观察分析了流变过程材料的微观机制,并对比分析了温变形过程和热变形过程的不同,计算出了曲线特征值、Z参数及变形激活能等参量,得出了变形工艺对变形过程的影响,建立了温加工方程及材料的变形抗力数学模型,模型精度符合使用要求。五道次温变形模拟实验及静态再结晶激活能计算表明,温塑性变形道次间隙软化效应不明显。
     在卡尔曼采利柯夫解的基础上,考虑温轧过程的流变应力分布和轧辊弹性变形,建立了适用于碳素钢温轧特点的轧制力模型,经过有限元分析对比表明,所建立的非定值变形抗力轧制力模型精度高于传统模型,碳素钢温轧时的轧制压力分布趋势与热轧基本一致,温轧和热轧的变形抗力分布差异对轧制变形区影响不大。对温连轧过程轧制力及轧制温度进行计算,结果表明温连轧过程为升温轧制,开轧温度和变形量对轧制力有重要影响。经过对热轧及温轧工艺的计算,给出了温轧轧制力系数,以便于对温轧轧制力进行工程计算。
     对温轧生产优质碳素钢涉及的问题进行综合分析,分析结果表明温轧工艺生产优质碳素钢适用于较宽的材料范围,可用于生产板带材、棒线材等多个品种规格的产品,温轧生产碳素钢有利于施行在线连续退火,结合不同的热处理工艺可生产出满足多种机械加工需要的产品,温轧生产优质碳素钢是现实可行的。
Surface oxidation of rolled metal, burnout of alloying elements and difficulty tocontrol bring by hot rolling could be mitigated by using warm rolling to producecarbon steel. Warm rolling is also used to generate superior organization. Theorganization and its dynamic evolution during warm rolling are both different from hotrolling. Flow stress is increased and deformation behavior could be different, and thatis expressed in macro which would affect rolling process. Microstructure evolutionand mechanical properties of carbon steel during warm plastic deformation wasresearched represented by45-steel and65Mn-steel. Diversification of deformationresistance was considered and the rolling force of carbon steel during warm rollingwas calculated. Variation of temperature and rolling force of carbon steel during warmrolling was analyzed and provide the theory basis for the making of warm rollingprocesses and the configuration of mill. The high quality carbon steel that used in theresearch is widely used in basic machinery and equipment manufacturing. Warmrolling make the full use of warn rolling spheroidization organization produced duringmachining. The improvement of product quality promoted the quality of entiremechanical products.
     Warm rolling process of45-steel and65Mn-steel was simulated on Gleeble-3500which is also used for preparation of warm rolling organization with differentproduction process. The warm rolling organization of steel for experiment wasanalyzed. Mechanism of ferrite recrystallization and dissolving spheroidization ofcementite was investigated. Influence of initial organization and process conditions onspheroidization and recrystallization. Mechanical property of warm rolling was testedand relationship between warm rolling organization and process variables wasdemonstrated and then the control principle of warm rolling process was determined.The results show that: the yield strength, tensile strength and elongation of materialwere improved with different degrees comparing with quenched and temperedproducts in GB/T699-1999. So mechanical property of warm rolling organizationexceed that of quenched and tempered products. Products better than quenched and tempered steel could be produced directly without quenched and tempered using warmrolling.
     Rheological behavior of medium high carbon steel during warm rolling wasresearched by the unidirectional warm compression experiment and materialmicroscopic mechanism during rheological process was observed and analyzedcombining with stress-strain curve and microstructure. The difference of hot rollingand warm rolling was compared and analyzed. Curve characteristic value and Zparameter and deformation activation energy was calculated. Influence of deformationcrafts on deformation process was also obtained. Mathematical model whose accuracyis consistent with requirements for warm processing equation and deformationresistance was build.
     Model apply to warm rolling of medium high carbon steel in which rolling forceis calculated in subparagraph was build based on the Kalman-Cailicove solutionconsidering the flow stress distribution and elastic deformation of roll system duringwarm rolling. Warm rolling process of carbon steel was simulated byANSYS/LS-DYNA finite element software for explicit nonlinear dynamic analysis.Theoretical calculations was compared with FEM so that deviation of theoreticalrolling force calculation could be analyzed. The reason for deviation was explained bycomparing and analysis of distribution of rolling force.
     Questions that may be involved in high quality carbon steel using warm rollingwas comprehensively analyzed. The result show that high quality carbon steel isapplicable in wide range of material. The product could be used in producing strip, barand so on. The warm rolling carbon steel was conducive to implement of continuousannealing online. Multiple product that needed by machining could be producedcombining with different heat treatment. It is realistic and feasible to produce highquality carbon steel using warm rolling.
引文
[1]李鹏飞.“十二五”时期的中国工业——“中国工业发展论坛”综述[J].中国工业经济,2012,297(12):83-88.
    [2]顾海兵,孙挺.“十二五”时期国家经济安全水平预测分析[J].国家行政学院学报,2012,297(12):83-88.
    [3]殷瑞钰.新世纪炼钢科技进步回顾与“十二五”展望[J]//.炼钢,2012,28(5):1-7.
    [4]王国栋,刘振宇.新一代节约型高性能结构钢的研究现状与进展[J].中国材料进展,2011,30(12):12-17.
    [5]骆铁军.钢铁工业“十二五”发展规划对科技发展的新要求[C]//中国金属学会.第八届(2011)中国钢铁年会论文集(大会报告与分会场特邀报告).中国北京:2011.
    [6]翁宇庆.提高高强度钢使用寿命的科技进展[J].中国材料进展,2009,28(9-10):51-61.
    [7]牧正志.细化钢铁材料晶粒的原理与方法[J].热处理,2006,21(1):1-9.
    [8] Rusinga C J, Niendorfa T, Lackmanna J, et al. Microstructure-Deformation Relationshipsin Fine Grained High Manganese Twip Steel the Role of Local Texture[J]. InternationalJournal of Materials Research,2012,103(1):12-16.
    [9]翁宇庆.细晶建筑钢筋的技术原理[J].上海金属,2009,31(5):1-6.
    [10] Umemoto M. Nanocrystallization of Steels by Severe Plastic Deformation[C]. JapanInstitute of Metals (JIM),2003:1900-1911.
    [11] Kumar N, Mishra R S, Huskamp C S, et al. Microstructure and Mechanical Behavior ofFriction Stir Processed Ultrafine Grained Al-Mg-Sc Alloy[J]. Materials Science andEngineering A,2011,528(18):5883-5887.
    [12] Morimoto T, Yoshida F, Chikushi I, et al. Combined Macro-Micro Modeling for RollingForce and Microstructure Evolution to Produce Fine Grain Hot Strip in Tandem Hot StripRolling[J]. ISIJ International,2007,47(10):1475-1484.
    [13] Makarov V A, Zaichenko S G, Zaitsev A I, et al. Structure, Stresses and MagneticProperties of Iron-Based Amorphous Alloys with Phosphorus After Heat Treatment GivingRise to Surface Crystallization[J]. Journal of Magnetism and Magnetic Materials,1994,133(1-3):354-356.
    [14] Dokukin M E, Perov N S, Dokukin E B, et al. Changes in the Short-Range Order andMagnetic Properties of the Amorphous Magnetic Metal Alloy Fe78Cu1Nb4B3.5Si13.5Following Cryogenic Treatment[J]. Physica B: Condensed Matter,2005,368(1-4):267-272.
    [15] Yoshida Y, Tamehiro H, Chijiiwa R, et al. Production of High Strength Tmcp Steel, Platefor Offshore Structures[C]. Glasgow, Scotland: Publ by ASME,1993:207-214.
    [16] Imai S. General Properties of Tmcp Steels[C]. Kitakyushu, Japan: International Society ofOffshore and Polar Engineers,2002:392-396.
    [17] Patra S, Roy S, Kumar V, et al. Ferrite Grain Size Distributions in Ultra-Fine-GrainedHigh-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation[J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2011,42(9):2575-2590.
    [18] Qiu H, Kawaguchi Y, Shiga C. Fracture Behavior of Ultra-Fine Grained Steel Bar UnderDynamic Loading[J]. Journal of Materials Science,2004,39(11):3733-3737.
    [19]雍岐龙,董瀚,刘正东,等.先进机械制造用结构钢的发展[J].金属热处理,2010,v.35;No.389(01):2-8.
    [20] Qian Y, Yu W, Wu H, et al. Effect of Heat Treatment on the Microstructure and MechanicalProperties of1000Mpa Grade Structural Steel for Construction Machinery[J]. Beijing KejiDaxue Xuebao/Journal of University of Science and Technology Beijing,2010,32(5):599-604.
    [21]翁宇庆.在中国金属学会第八届第六次理事会会议上的讲话[J].中国冶金,2011,21(6):44-46.
    [22]杨学桐.当前机械工业经济运行及行业状况分析——在2012第25届中国机床工具行业发展论坛暨2013年运营形势研讨会上的发言[J].制造技术与机床,2013,(01):8-10.
    [23]毛卫民.金属材料结构与性能[M].北京:清华大学出版社,2008.
    [24]王宏斌,林腾昌,段飞虎,等.低碳高硫易切削钢的切削性能研究[J].钢铁,2011,43(11):82-85.
    [25]陈明,刘钢,张晓辉,等.新型低碳硫系易切削钢切削性能试验[J].机械工程学报,2007,43(09):161-166.
    [26] Tanaka M, Kato R, Fujita T, et al. Microstructures of Cutting Chips of Sus430and Sus304Steels, and Ncf750and6061-T6Alloys[J]. ISIJ International,2011,51(7):1142-1150.
    [27] Fan J, Xie R, Wang Y, et al. Fatigue Behavior of Plain C-Mn Steel Plates with Fine GrainedFerrite in Surface Layers[J]. Materials Science and Engineering A,2012,539(3):154-162.
    [28] Najafi-zadeh A, Ebrahimi R. Effect of Delay Time on Microstructural Evolution DuringWarm Rolling of Ti-Nb-If Steel[J]. Journal Of Materials Science&Technology,2004,20(1):86-88.
    [29] Calcagnotto M, Ponge D, Raabe D. Ultrafine Dual Phase Steel Fabricated by Large StrainWarm Defromation[J]. ISIJ International,2008,48(8):1096-1101.
    [30]张津徐,葛红林,程晓英,等.一种可在低温高应变速率下超塑成形的钛合金研究及其开发[J].稀有金属材料与工程,2000,29(2):105-108.
    [31]于静,辛选荣,贺成松,等.Y12易切削钢锭盘温挤压工艺[J].热加工工艺,2012,41(17):119-120.
    [32] Cubero-Sesin J M, Horita Z. Strengthening Via Microstructure Refinement in Bulk Al4Mass%Fe Alloy Using High-Pressure Torsion[J]. Materials Transactions,2012,53(1):46-55.
    [33] Chae H J, Kim B, Kim Y D, et al. Microstructure and Mechanical Properties of aMg-Zn4.3Y0.7Alloy Powder Reinforced by Quasi-Crystalline Particles[J]. MaterialsLetters,2012,77:63-66.
    [34] Birol Y, Guven E A, Capan L J. Extrusion of En Aw-2014Alloy in Semisolid State[J].Materials Science and Technology,2011,27(12):1851-1857.
    [35] Ohhashi S, Kato A, Demura M, et al. Textures and Mechanical Properties in Rare-EarthFree Quasicrystal Reinforced Mg-Zn-Zr Alloys Prepared by Extrusion[J]. Materials Scienceand Engineering A,2011,528(18):5871-5874.
    [36] Chatterjee A, Sharma G, Sarkar A, et al. A Study on Cryogenic Temperature Ecap on theMicrostructure and Mechanical Properties of Al-Mg Alloy[J]. Materials Science andEngineering A,2012,556(10):653-657.
    [37] Jin Y G, Baek H M, Im Y, et al. Continuous Ecap Process Design for Manufacturing aMicrostructure-Refined Bolt[J]. Materials Science and Engineering A,2011,530(1):462-468.
    [38] Bachmaier A, Pippan R. Microstructure and Properties of a Fe-Cu Composite Processed byHpt Powder Consolidation[C]. Nanjing, China: Trans Tech Publications Ltd,2011:229-234.
    [39] Durinck D, Jones P T, Guo M, et al. Eaf Stainless Steel Refining-Part Ii: MicrostructuralSlag Evolution and its Implications for Slag Foaming and Chromium Recovery[J]. SteelResearch International,2007,78(2):125-135.
    [40]高飞,刘振宇,王国栋.超低碳、氮Cr17铁素体不锈钢低温轧制工艺中织构演变[J].材料研究学报,2011,25(05):469-474.
    [41] Yao S J, Du L X, Liu X H, et al. Influencing Factors for Obtaining Ultrafine AusteniteGrains with Initial Microstructure of Warm-Rolled Ferrite/Pearlite[J]. Acta MetallurgicaSinica (English Letters),2008,21(6):391-398.
    [42]唐荻,江海涛,米振莉,等.国内冷轧汽车用钢的研发历史、现状及发展趋势[J].鞍钢技术,2010(1):1-6.
    [43]胡可城.一种新的异型弹簧钢成形工艺[J].上海金属,2001,23(4):30-32.
    [44]张宝红,张星,张治民.20Crmnti钢两相区变形力学行为及微观组织研究[J].材料科学与工艺,2006,14(02):141-146.
    [45]大森章夫.中温轧制法试制超细铁素体_渗碳体组织钢板的性能[J].世界钢铁,2004(2):20-26.
    [46] Gutierrez I, Urcola J J, Bilbao J M, et al. Bonding by Hot Extrusion of Incoloy825andDuplex2205to Low Alloy Steel[J]. Materials Science and Technology,1991,7(8):761-769.
    [47] Barnett M R, Jonas J J. Distinctive Aspects of the Physical Metallurgy of Warm Rolling[J].ISIJ International,1999,39(9):856-873.
    [48] McManus G J. Ferritic Rolling of Hot Rolled Sheet: Successful Use of New TechnologyCould Open Doors[J]. Iron and Steel Engineer,1995,72(8):52-53.
    [49] Lenard J G, Malinowski Z. Measurements of Friction During the Warm Rolling ofAluminum[J]. Journal of Materials Processing Technology,1993,39(3-4):357-371.
    [50] Lee S, De Cooman B C. Effect of Warm Rolling on the Rolling and RecrystallizationTextures of Non-Oriented3%Si Steel[J]. ISIJ International,2011,51(9):1545-1552.
    [51] Kaspar R, Gasterich H, Hagedorn K E. Improvement of Mechanical Properties of Pearliticand Pearlitic-Ferritic Steels by Deformation-Induced Changes of Microstructure[J]. SteelResearch,1991,62(9):405-411.
    [52] Nagarajan V, Palmiere E J, Sellars C M. New Approach for Modelling Strain InducedPrecipitation of Nb(C,N) in Hsla Steels During Multipass Hot Deformation in Austenite[J].Materials Science and Technology,2009,25(9):1168-1174.
    [53] Baxter G J, Furu T, Whiteman J A, et al. Influence of Transient Deformation Conditions onStrength, Microstructure and Recrystallisation During Thermomechanical Processing of anAluminium Alloy Al-1%Mg[J]. Materials Science Forum,1996,217-222(1):459-464.
    [54] Tomitz A, Kaspar R. Ferritic Rolling with Additional Annealing to Produce aDeep-Drawable Ultra-Thin-Gauge Hot Strip[J]. Steel Research,2000,71(12):497-503.
    [55] Bleck W, Papaefthymiou S, Frehn A. Microstructure and Tensile Properties in Dual Phaseand Trip Steels[J]. Steel Research,2004,75(11):704-710.
    [56]徐光,张丕军.金属低温变形理论与技术[M].北京:冶金工业出版社,2007.
    [57]姚红英,刘香茹.宝钢195钢低温轧制变形抗力数学模型的建立[J].材料开发与应用,2009,24(1):36-38.
    [58]戴克玉.低温轧制技术在棒线材生产中的应用[J].安徽冶金,2007,(3):14-17.
    [59] Sun W. Microstructure and Property Characteristics of Csp&Reg-Produced Advanced HighStrength Steels[C]. Quebec City, QC, Canada: Trans Tech Publications Ltd,2012:2830-2835.
    [60]董瑞峰,李德刚,刘彦春,等.CSP生产线开发C-Mn型热轧双相钢的生产实践[J].上海金属,2010,32(1):27-29.
    [61] Asadi M, De Cooman B C, Palkowski H. Influence of Martensite Volume Fraction andCooling Rate on the Properties of Thermomechanically Processed Dual Phase Steel[J].Materials Science and Engineering A,2012,538:42-52.
    [62] Kobayashi J, Song S, Sugimoto K. Microstructure and Retained Austenite Characteristics ofUltra High-Strength Trip-Aided Martensitic Steels[J]. ISIJ International,2012,52(6):1124-1129.
    [63]周继锋,荆天辅,高聿为,等.中碳钢马氏体组织温塑性变形力学行为[J].钢铁研究学报,2007,19(3):45-48.
    [64]高聿为.马氏体塑性变形制备纳米晶粒钢及其组织性能的研究[D].燕山大学博士学位论文,2007.
    [65]梁益龙.高性能金属结构材料组织控制技术的发展与应用[J].现代机械,2010,(1):1-4.
    [66]翁宇庆,杨才福,尚成嘉.低合金钢在中国的发展现状与趋势[J].钢铁,2011,46(9):1-10.
    [67] Gurao N P, Kumar P, Bhattacharya B, et al. Evolution of Crystallographic Texture andMicrostructure During Cold Rolling of Twinning-Induced Plasticity (Twip) Steel:Experiments and Simulations[J]. Metallurgical and Materials Transactions A: PhysicalMetallurgy and Materials Science,2012,43(13):5193-5201.
    [68] Dos Santos A A, Barbosa R. Model for Microstructure Prediction in Hot Strip RolledSteels[J]. Steel Research International,2010,81(1):55-63.
    [69] Yamanaka A, Takaki T. Simulation of Microstructure Evolution and Deformation Behaviorfor Dual-Phase Steel by Multi-Phase-Field Method and Elastoplastic Finite ElementMethod[J]. International Journal of Automation Technology,2013,7(1):16-23.
    [70]王占学,于淑娴,李贵,李生智,等.奥氏体不锈钢的温轧[J].轧钢,1989,(04):9-12.
    [71]赵磊,郑为为,杨王玥,等.Q235碳素钢多道次热变形中的组织演变及性能[J].北京科技大学学报,2004,26(5):507-511.
    [72] Thomas G A, Speer J G, Matlock D K. Quenched and Partitioned Microstructures ProducedVia Gleeble Simulations of Hot-Strip Mill Cooling Practices[C].101Philip Drive,Assinippi Park, Norwell, MA02061, United States: Springer Boston,2011:3652-3659.
    [73] Wayne C. Gleeble System and Application[M]. New York,USA: Gleeble System School,1998.
    [74] Inc D S. Flow Stress Correction in Uniaxial Compression Testing[Z]. NOTE A. NewYork,USA: Appnotes/Unistsc,1998.
    [75] Chupatanakul S, Hu Z, Nash P, et al. Bainite Transformation in Low Carbon SteelSimulated by Gleeble[J]. Journal of Materials Processing Technology,2004,56(11):131.
    [76] Brown S G R, James J D, Spittle J A.3D Numerical Model of the Temperature-TimeCharacteristics of Specimens Tested on a Gleeble Thermomechanical Simulator[J].Modelling and Simulation in Materials Science and Engineering,1997,5(6):539-548.
    [77] Horvath W, Hofer H, Werner E. Yield Strength of Nitrogen Alloyed Duplex Steels:Experiments and Micromechanical Predictions[J]. Computational Materials Science,1997,9(1-2):76-84.
    [78] Odanovic Z, Nedeljkovic L. Gefugevorhersage in Der Warmeeinflusszone MittelsZtu-Diagrammenmicrostructure Anticipation in Steel Heat Affected Zone by the CctDiagrams[J]. Praktische Metallographie/Practical Metallography,2002,39(7):347-358.
    [79] Balamurugan G M, Duraiselvam M, Anandakrishnan V. Comparison of High TemperatureWear Behaviour of Plasma Sprayed Wc-Co Coated and Hard Chromium Plated Aisi304Austenitic Stainless Steel[J]. Materials and Design,2012,35(3):640-646.
    [80] Kabo E, Enblom R, Ekberg A. A Simplified Index for Evaluating Subsurface InitiatedRolling Contact Fatigue From Field Measurements[J]. Wear,2011,271(1-2):120-124.
    [81] Sun H, Li G, Chen W. Influences of Hot Rolling Conditions on the Microstructure andMechanical Properties of Low-Alloy Steel[C]. Shenyang, Liaoning, China: Trans TechPublications,2012:214-218.
    [82]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989.
    [83] Silva P M D O, Abreu H F G D, Albuquerque V H C D, et al. Cold Deformation Effect onthe Microstructures and Mechanical Properties of Aisi301Ln and316L Stainless Steels[J].Materials and Design,2011,32(2):605-614.
    [84] Hassani F E, Tehrani M. Effects of Cold Deformation and Annealing on MechanicalProperties, Microstructure and Precipitation State of a Ti-Nb Ahss[C]. Columbus, OH,United states: Association for Iron and Steel Technology, AISTECH,2011:301-313.
    [85] Abbasi M, Saeed-Akbari A, Naderi M. The Effect of Strain Rate and DeformationTemperature on the Characteristics of Isothermally Hot Compressed Boron-Alloyed Steel[J].Materials Science and Engineering A,2012,538(3):356-363.
    [86] Morakabati M, Aboutalebi M, Kheirandish S, et al. High Temperature Deformation andProcessing Map of a Niti Intermetallic Alloy[J]. Intermetallics,2011,19(10):1399-1404.
    [87] Murty S V S N, Torizuka S. Process Design Concepts for the Production of UltrafineGrained Steels through Multi-Pass Warm Rolling: Bridging Science and Technology[J].Materials Science Forum,2011,683(5):225-231.
    [88] Hull D, Bacon D J. Introduction to Dislocations[M]. Fifth. USA: Elsevier Ltd.,2011.
    [89] Yamada K, Nakamichi H, Sato K, et al. Observation of Microstructure in Thick Steel withHigh Voltage Tem[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,2012,98(9):469-475.
    [90] Krawczyk J, Lukaszek-Soek A, Sleboda T, et al. Strain Induced Recrystallization in HotForged Inconel718Alloy[J]. Archives of Metallurgy and Materials,2012,57(2):593-603.
    [91] Chakravartty J K, Kapoor R, Sarkar A, et al. Dynamic Recrystallization in ZirconiumAlloys[C]. Chengdu, Sinchuan Province, China: American Society for Testing andMaterials,2011:121-147.
    [92] Yassar R S, AbuOmar O, Hansen E, et al. On Dislocation-Based Artificial Neural NetworkModeling of Flow Stress[J]. Materials and Design,2010,31(8):3683-3689.
    [93] Serajzadeh S, Taheri A K. Prediction of Flow Stress at Hot Working Condition[J].Mechanics Research Communications,2003,30(1):87-93.
    [94] Kamikawa N, Tsuji N. Effect of Deformation Temperature on Microstructure Evolution inArb Processed Ultralow Carbon If Steel[J]. Materials Transactions,2012,53(1):30-37.
    [95] Onuki Y, Okayasu K, Fukutomi H. Effect of Deformation Condition on Texture Formationin Fe-3Mass%Si Alloy During High-Temperature Uniaxial Compression Deformation[J].Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,2012,98(5):177-183.
    [96] Huskins E, Cao B, Li B, et al. Temperature-Dependent Mechanical Response of an UfgAluminum Alloy at High Rates[J]. Experimental Mechanics,2012,52(2):185-194.
    [97] Poletti C, Six J, Hochegger M, et al. Hot Deformation Behaviour of Low Alloy Steel[J].Steel Research International,2011,82(6):710-718.
    [98] Dehghani K, Chabok A. Dependence of Zener Parameter on the Nanograins Formed DuringFriction Stir Processing of Interstitial Free Steels[J]. Materials Science and Engineering A,2011,528(13-14):4325-4330.
    [99] Hwu Y, Lenard J G, Too J J M. Prediction of the Flow Stress of an Extra-Low Carbon Steelin the Two-Phase Region Using Continuous Cooling Curves[J]. Journal of EngineeringMaterials and Technology, Transactions of the ASME,1996,118(4):463-470.
    [100]樊丁,周璟,季根顺,等.409L铁素体不锈钢的热变形行为[J].兰州理工大学学报,2010,36(1):12-15.
    [101]张维娜,刘振宇,王国栋.高锰TRIP钢热变形行为研究[J].东北大学学报(自然科学版),2010,31(11):1582-1585.
    [102] Calcagnotto M, Ponge D, Raabe D. Microstructure Control During Fabrication of UltrafineGrained Dual-Phase Steel: Characterization and Effect of Intercritical AnnealingParameters[J]. ISIJ International,2012,52(5):874-883.
    [103] Mein A, Fourlaris G, Crowther D, et al. The Influence of Aluminium on the FerriteFormation and Microstructural Development in Hot Rolled Dual-Phase Steel[J]. MaterialsCharacterization,2012,64(2):69-78.
    [104] Ojha S N. Processing of Microalloyed Steels by Csp Process[J]. Materials andManufacturing Processes,2010,25(1-3):72-75.
    [105] Frechard S, Redjaimia A, Lach E, et al. Mechanical Behaviour of Nitrogen-AlloyedAustenitic Stainless Steel Hardened by Warm Rolling[J]. Materials Science andEngineering A,2006,415(1-2):219-224.
    [106] Peranio N, Roters F, Raabe D. Microstructure Evolution During Recrystallization inDual-Phase Steels[C]. Sheffield, United kingdom: Trans Tech Publications Ltd,2012:13-22.
    [107] Caruso M, Verboomen H, Godet S. Direct Spheroidization of High Carbon Steels: Effect ofThermomechanical Processing[C]. Avignon, France: Trans Tech Publications Ltd,2011:922-927.
    [108] Arruabarrena J, Uranga P, Lopez B, et al. Carbide Spheroidization Kinetics in a Low AlloyMedium Carbon Steel: Relevance of Deformation After Transformation[C]. Columbus, OH,United states: Association for Iron and Steel Technology, AISTECH,2011:698-705.
    [109] Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the LamellarMicrostructure in Ti-6Al-4V Alloy During Warm Deformation and Annealing[J]. ActaMaterialia,2011,59(10):4138-4150.
    [110] Guttmann M. Diffuse Phase Transformations in Hot Dip Galvanizing[J]. Materials ScienceForum,1994,155-5:527-548.
    [111] Selzer M, Nestler B, Danilov D. Influence of the Phase Diagram on the Diffuse InterfaceThickness and on the Microstructure Formation in a Phase-Field Model for Binary Alloy[J].Mathematics and Computers in Simulation,2010,80(7):1428-1437.
    [112] Rees D W A. Sheet Orientation and Forming Limits Under Diffuse Necking[J]. AppliedMathematical Modelling,1996,20(8):624-635.
    [113] Palmer T A, Elmer J W, Babu S S. Observations of Ferrite/Austenite Transformations in theHeat Affected Zone of2205Dupex Stainless Steel Spot Welds Using Time Resolved X-RayDiffraction[J]. Materials Science and Engineering A,2004,374(1-2):307-321.
    [114] Wang Y, Adachi Y, Nakajima K, et al. Topology and Differential Geometry-BasedThree-Dimensional Characterization of Pearlite Spheroidization[J]. ISIJ International,2012,52(4):697-703.
    [115] Zherebtsov S, Salishchev G, Lojkowski W. Strengthening of a Ti-6Al-4V Titanium Alloyby Means of Hydrostatic Extrusion and Other Methods[J]. Materials Science andEngineering A,2009,515(1-2):43-48.
    [116] Duan L, Liu Q, Jia S, et al. Microstructure Characteristics and Strength-Toughness of X100Pipeline Steel[J]. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research,2012,26(4):443-448.
    [117] Perez M. Gibbs-Thomson Effects in Phase Transformations[J]. Scripta Materialia,2005,52(8):709-712.
    [118] Tanaka K, Takamiya H, Iwata N, et al. Microstructure and Bond Strength of Steels UsingLow-Cr-Substituted Cementite Foil[J]. ISIJ International,2011,51(3):423-428.
    [119] Kaputkin D E. Correlation Between the Thermokinetic Parameters of DiffusionalDecomposition and the Activation Energy of Diffusion in Steels and Nonferrous Alloys[J].Physics of Metals and Metallography,2005,99(4):343-347.
    [120] Tanaka K, Takamiya H, Iwata N, et al. Microstructure and Bond Strength of Steels UsingLow-Cr-Substituted Cementite Foil[J]. Tetsu-To-Hagane/Journal of the Iron and SteelInstitute of Japan,2010,96(8):498-503.
    [121] Purcek G, Saray O, Karaman I, et al. High Strength and High Ductility of Ultrafine-Grained,Interstitial-Free Steel Produced by Ecae and Annealing[J]. Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science,2012,43(6):1884-1894.
    [122]周文凤,李昌安,王武顺.65Mn钢弹簧垫圈热处理工艺改进[J].热加工工艺,2010,39(6):163-164.
    [123]杜忠泽,黄俊霞,符寒光,等.65Mn钢大塑性变形后的组织与力学性能[J].吉林大学学报(工学版),2006,36(2):143-147.
    [124] Mohanty R R, Girina O A, Fonstein N M. Effect of Heating Rate on the AusteniteFormation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region[C].101Philip Drive, Assinippi Park, Norwell, MA02061, United States: Springer Boston,2011:3680-3690.
    [125] Xu W, Ferry M. Recrystallisation Processes in Cold Rolled Low Carbon Steel StripContaining Different Starting Microstructures[J]. Materials Science and Technology,2010,26(3):333-342.
    [126] Selim S R, El-Nekhaly S H. Effect of Spheroidizing Annealing of Vanadium Steel onCorrosion Rate in Hcl Solutions[J]. Modelling, Measurement and Control C,1999,60(1):2-38.
    [127] Przybyla C P, McDowell D L. Microstructure-Sensitive Extreme-Value Probabilities ofHigh-Cycle Fatigue for Surface Vs. Subsurface Crack Formation in Duplex Ti-6Al-4V[J].Acta Materialia,2012,60(1):293-305.
    [128] Meier J C, Katsounaros I, Galeano C, et al. Stability Investigations of Electrocatalysts onthe Nanoscale[J]. Energy and Environmental Science,2012,5(11):9319-9330.
    [129] Lee S, Hagihara K, Nakano T. Microstructural and Orientation Dependence of the PlasticDeformation Behavior in C-Type Ti-15Mo-5Zr-3Al Alloy Single Crystals[J]. Metallurgicaland Materials Transactions A: Physical Metallurgy and Materials Science,2012,43(5):1588-1597.
    [130]林一坚,罗光敏,李小军,等.细珠光体在变形中的行为[J].材料科学与工程学报,2008,26(3):369-371.
    [131] De S K, Deva A, Mukhopadhyay S, et al. Assessment of Formability of Hot-Rolled Steelthrough Determination of Hole-Expansion Ratio[J]. Materials and Manufacturing Processes,2011,26(1):37-42.
    [132]杨刚,冯旭东,兰玉红,等.亚温淬火对65Mn钢组织及性能的影响[J].热处理技术与装备,2009,30(3):74-77.
    [133] Ray K K, Jha R N. Probabilistic Fracture Resistance of a Forged Quality Medium CarbonAlloy Steel[C]. Dubrovnik, Croatia: Trans Tech Publications Ltd,2012:53-56.
    [134] Fukahori T, Suzuki S, Yamada N, et al. Effect of Microstructure on Formation of DuctileFracture Surface in Steel Plate[C]. Quebec City, QC, Canada: Trans Tech Publications,2012:678-683.
    [135] Bulian G, Francescutto A. Effect of Roll Modelling in Beam Waves Under Multi-FrequencyExcitation[J]. Ocean Engineering,2011,38(13):1448-1463.
    [136] Kim Y K, Kwak W J, Shin T J, et al. A New Model for the Prediction of Roll Force andTension Profiles in Flat Rolling[J]. ISIJ International,2010,50(11):1644-1652.
    [137]夏中山,郑申白.高精度板带轧制力计算模型研究[J].河北冶金,2007,(02):13-16.
    [138] Komori K. An Upper Bound Method for Analysis of Three-Dimensional Deformation in theFlat Rolling of Bars[J]. International Journal of Mechanical Sciences,2002,44(1):37-55.
    [139] Jiang Z Y, Zhu H T, Tieu A K, et al. Modelling of Work Roll Edge Contact in Thin StripRolling[J]. Journal of Materials Processing Technology,2004,155-156(1-3):1280-1285.
    [140]日本钢铁协会编.板带轧制理论与实践[M].王国栋,吴国良,译.北京:中国铁道出版社,1990.
    [141] Hambleton J P, Drescher A. On Modeling a Rolling Wheel in the Presence of PlasticDeformation as a Three-Or Two-Dimensional Process[J]. International Journal ofMechanical Sciences,2009,51(11-12):846-855.
    [142] Ji Y H, Park J J. Development of Severe Plastic Deformation by Various AsymmetricRolling Processes[J]. Materials Science and Engineering A,2009,499(1-2):14-17.
    [143] Kang C G, Kim Y D. Optimum Shape Design Techniques of Direct Roller Under ThermalLoad and Rolling Force in the Direct Rolling Process of Molten Materials ConsideringSolid Fraction[J]. Journal of Materials Processing Technology,1997,67(1-3):71-77.
    [144] Foletti S, Beretta S, Bucca G. A Numerical3D Model to Study Ratcheting Damage of aTramcar Line[J]. Wear,2010,268(5-6):737-746.
    [145]李春胜.钢铁材料手册[M].江西科学技术出版社,2004.
    [146]吴迪,赵宪明.棒线材连轧机低温轧制规程研究[J].钢铁,2001,36(12):30-33.
    [147] Serajzadeh S, Mohammadzadeh M. Effects of Deformation Parameters on the FinalMicrostructure and Mechanical Properties in Warm Rolling of a Low-Carbon Steel[J].International Journal of Advanced Manufacturing Technology,2007,34(3-4):262-269.
    [148]康永林,曹树卫.国内外热轧钢材轧制技术的发展[J].河南冶金,2011,19(01):7-10.
    [149]唐荻,赵爱民,武会宾,等.板带钢轧制新技术及品种研发进展[J].钢铁,2012,47(11):1-8.
    [150]张晓刚.近年来低合金高强度钢的进展[J].钢铁,2011,46(11):1-9.
    [151] Sawanishi C, Ogura T, Sumi H, et al. Interfacial Microstructure Observation andNanoindentation Measurements in Mild Steel/Ht780Clad Plate[J]. Materials Science andTechnology (United Kingdom),2012,28(12):1459-1464.
    [152] Arruabarrena J, Uranga P, Lopez B, et al. Carbide Spheroidization Kinetics in a Low-AlloyMedium-Carbon Steel: Relevance of Deformation After Transformation[C]. Columbus, OH,United states: Association for Iron and Steel Technology, AISTECH,2011:439-447.
    [153] Storojeva L, Ponge D, Kaspar R, et al. Development of Microstructure and Texture ofMedium Carbon Steel During Heavy Warm Deformation[J]. Acta Materialia,2004,52(8):2209-2220.
    [154] Storojeva L, Ponge D, Raabe D, et al. On the Influence of Heavy Warm Reduction on theMicrostructure and Mechanical Properties of a Medium-Carbon Ferritic-Pearlitic Steel[J].Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques,2004,95(12):1108-1114.
    [155] Tober G, Anopuo O, Maier P. Microstructural Investigation of Carbon Steel After HotRolling to Optimize Complex Hot Forming of Thick Plates[C]. Orlando, FL, United states:Minerals, Metals and Materials Society,2012:27-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700