用户名: 密码: 验证码:
陶瓷结合剂金刚石砂轮高速磨削硬质合金的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金是一种有别于较软的金属材料和硬脆陶瓷材料的混合硬碳化物和软金属相的硬脆复合材料。材料中软金属相以及硬质相含量的不同,使得材料的微细结构各异,导致硬质合金磨削性能大为不同。硬质合金优异的物理机械性能有助于该类材料在工程中的应用,但高硬度、高耐磨损的性能也使得对它的磨削加工变得非常困难。本课题旨在将高速磨削工艺应用于硬质合金加工,深入研究硬质合金磨削机理和高速磨削的磨削机制,为该难题的解决提供有效方案、实验基础以及理论依据。国内外学者较少在硬质合金高速磨削机理上做相关的研究。因此,本课题进行了陶瓷结合剂金刚石砂轮高速磨削(最高砂轮线速度达120m/s)硬质合金磨削机理的实验研究。论文的主要研究工作概括如下:
     1.本文采用陶瓷结合剂金刚石砂轮分别对五种显微结构和物理性能上具有独特特征的硬质合金进行大量的高速磨削实验。测量了不同加工参数下(砂轮线速度、磨削深度和工件速度)的磨削力。分析了加工参数、单颗磨粒最大未变形切屑厚度、切削长度和材料的物理机械性能对单位宽度磨削力、力比、单颗磨粒承受的磨削力、磨削比能大小的影响。研究发现磨削力和磨削比能与单颗磨粒最大未变形切屑厚度、切削长度、材料的物理机械性能和材料去除方式有关。利用最小二乘法拟合高速磨削实验数据,建立了磨削力和磨削比能与单颗磨粒最大未变形切屑厚度、切削长度的回归关系模型。通过分析磨削比能的分配机理表明,磨削过程中,大部分磨削能量消耗于金刚石磨粒对硬质合金的滑擦与塑性耕犁,单位宽度磨削功率Pm与单位时间单位宽度内金刚石颗粒耕犁面积Sw有很好的线性关系。与低速度磨削相比,高速磨削的磨削力和单颗磨粒承受的磨削力明显减小,而磨削力比和磨削比能增大。
     2.通过夹丝热电偶测量不同加工参数下磨削温度,使用温度拟合的方法估算热量分配比例。综合研究了不同加工参数及不同硬质合金类型对磨削弧区的温度特征以及传入工件的热量分配比例特征的影响。由于砂轮与工件接触区的热流密度与未变形切屑厚度有关,因此假设接触弧区中流入工件的热源分布为抛物线分布。用有限元的方法对温度场进行三维仿真,研究工件的热负荷引起的瞬态温度场。仿真表明,用抛物线热流分布比三角形热流分布更有说服力。仿真结果与实验结果进行了对比,验证了仿真结果的合理性。根据仿真获得的温度分布情况,可以预测工件的热影响程度。在湿磨条件下,顺磨五种硬质合金弧区温度低于185℃。热量分配比例随切深、砂轮线速度的增加和工件进给速度的减少而下降。通过温度拟合方法获得的热量分配比例在2.4%-14%范围之间。与低速度磨削相比,高速磨削的磨削温度升高,而热量分配比例下降。
     3.测量了不同加工参数下振动加速度信号以及磨削后工件的表面粗糙度和观察磨削后的表面形貌。研究了磨削振动特性和工件表面形貌特征,并用自回归三谱切片评估磨削表面特征的方法表征振动与表面粗糙度之间的关系。探讨了陶瓷结合剂金刚石砂轮高速磨削硬质合金的磨削机理。高速磨削时,振动加速度的幅值明显增大,并会导致磨削表面产生裂纹,影响磨削表面质量。磨削表面质量与加工条件、材料的去除方式、材料的显微结构和物理特性有关。表面粗糙度随磨削深度、工件进给速度、碳化钨颗粒度的增加而增大,随砂轮线速度增加而减小。通过最小二乘法拟合表面粗糙度数据,发现磨削三要素中,工件进给速度对表面粗糙度影响最大。表面粗糙度值随单颗磨粒最大未变形切屑厚度增加而单调递增。对比五种硬质合金材料磨削后的表面粗糙度表明,高速磨削更有利于脆性大的材料降低表面粗糙度值。硬质合金磨削表面形貌的观察表明,磨削加工过程中工件材料以脆性断裂和塑性去除两种方式去除。钨钴类硬质合金主要以塑性方式去除材料,钨钛钴类硬质合金(YT30)主要以脆性断裂的方式去除。
Cemented carbide is a kind of hard and brittle composite material which is a hybridof hard carbide and soft metal phase, and different from soft metal materials and hardand brittle ceramic material. The combination of hard particles in a relative ductilematrix leads to different materials micro-structure. It leads to different grindingperformance. Due to their excellent mechanical properties, such as high strength, highhardness and high wear resistance, cement carbide materials have been widely used inthe engineering fields where high wear resistance and thermal stability are required.Although the preeminent mechanical properties of cement carbides facilitate theirwide applications, they also render a challenging problem in grinding. The machiningefficiency and processing quality can not be considered at the same time. This hasthus limited the widespread applications of advanced engineering ceramics. Thisthesis project thus aimed at developing a high speed grinding technology forefficiency machining of cement carbides and investigating the associated removalmechanisms. Up to now, only a few research has been reported to investigatemechanisms for grinding of cemented carbides in high speed regime with vitrifieddiamond wheels. Therefore, the grinding mechanisms are explored in this thesis forhigh speed grinding of cemented carbides with vitrified diamond wheels at thegrinding speed of up to120m/s. The main work of this thesis can be summarized asfollows:
     1. Five kinds of cemented carbides with unique features in their microstructuresand mechanical properties are grinding in high speed regime with vitrified diamondwheel. The horizontal and vertical grinding forces are measured in different grindingparameters (e.g. peripheral wheel speed, depth of cut and workpiece velocity) duringgrinding. Effects of the various grinding parameters, the maximum undeformed chipthickness, the cutting length and physical-mechanical properties of materials on thespecific grinding forces, grinding force ratio, the average grinding force per grain andspecific grinding energy were investigated. The specific grinding forces and thespecific energy not only relate to the maximum undeformed chip thickness and thecutting length but also to physical-mechanical properties of materials and removal modes. The regression model on specific grinding forces and specific energy areestablished according to the relationship of the specific grinding forces and thespecific energy with the maximum undeformed chip thickness and the cutting length,which uses least square method fitting experimental data of high speed grinding.Through the analysis of the distribution mechanism of the grinding energy shows thatthe grinding energy expended is mainly associated with sliding and ductile plowing.A nearly proportional relationship is obtained between the consumed power per unitwidth (Pm) and the plowed face areas generated by all cutting points per unit width(Sw). Compared to conventional grinding, it is found that high speed grinding canobviously reduce grinding forces and the average grinding forces per grain butincrease force ratio and specific grinding energy.
     2. During the experiments, temperature distributions along the workpiece surfaceare measured with a foil thermocouple and the energy partition to the workpiece wasestimated using a temperature matching method. The influences of the grindingconditions, including wheel speed, depth of cut, workpiece velocity, and differentkinds of cemented carbides, on the temperatures and energy partitions wereinvestigated. The heat source acting on the workpiece surface is assumed to have aparabolic heat flux distribution is used to simulate the temperature field, for the heatflux density between the grinding wheel and the workpiece is related to the maximumundeformed chip thickness. The study then carries out three-dimensional finiteelement simulation to investigate the transient temperature field induced by thethermal loading to the workpiece. The simulation demonstrates that more convincingresults are obtained using the parabolic heat-flux distribution than the triangularheat-flux distribution. The simulation results is analyzed and compared to the testresults, the simulated result was verified. According to the simulation results oftemperature distribution, we can predict the heat affected grade of the workpiece. Inall cases, the maximum temperature rise at the grinding zone in wet grinding is lessthan185℃when down grinding five kinds of cemented carbides.Under all grindingparameters applied, the energy partitions to the workpiece in wet grinding, obtainedby the temperature matching method varied approximately from2.4to14%.Compared to conventional grinding, it is found that high speed grinding can reduceenergy partition but increase grinding temperature.
     3. Grinding vibration acceleration signals are measured under different grinding parameters during grinding. The surface roughness values are measured and themorphological features of ground workpiece surfaces are examined. Thecharacteristics of grinding vibration and surface morphology are researched. Amethod which is the combination of trispectrum and the autoregressive model used toevaluate the relationship between the vibration and the surface roughness.Mechanisms for high speed grinding of cemented carbides with vitrified diamondwheel are elucidated. High speed grinding induces an increase in the vibrationamplitude remarkably and cracks are generated on the ground surface, which havebad influences on the ground surface quality. It is found that grinding conditions, theremoval mode, microstructures and mechanical properties of the cemented carbideshave a significant influence on the ground surfaces. Surface roughness decrease withthe increasing of the peripheral wheel speed, while increase with a larger depth of cutor a faster workpiece velocity or a bigger tungsten carbide particles. The results offitting experimental data of surface roughness using least square method show thatthe workpiece velocity more influence on surface roughness compared to depth of cutand peripheral wheel speed. Surface roughness increases linearly with the maximumundeformed chip thickness. Through contrasting the surface roughness of five kindsof cemented carbides materials after grinding, pointed out that high speed grinding ismore advantageous to brittle material to reduce the surface roughness value. Theobservations on the ground morphology of cemented carbides demonstrate that theground surfaces are generated by the combined removal modes of brittle and ductile.Microscopic examination of the ground surfaces by a digital and video microscopesystem also revealed that material removal occurred mainly by ductile flow whilegrinding the cemented tungsten carbide and by brittle fracture while grinding thecemented titanium-tungsten carbide.
引文
[1]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1981:105.
    [2] K. Bonnya, P.D. Baets and Y. Perez, J. Vleugels, B. Lauwers. Friction and wearcharacteristics of WC–Co cemented carbides in dry reciprocating sliding contact[J]. Wear,2010,268:1504-1517.
    [3]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [4]赵恒华,冯宝富,高贯斌等.超高速磨削技术在机械制造领域中的应用[J].东北大学学报,2003,24(6):564-568.
    [5]高兴军,赵恒华.高速超高速磨削加工技术的发展及现状[J].辽宁石油化工大学学报,2004,24,(4):43-45.
    [6]陆名彰,熊万里,黄红武.超高速磨削技术的发展及其主要相关技术[J].湖南大学学报:自然科学版,2002,29(5):44-54.
    [7]朱从容.超高速磨削及其关键技术[J].磨床与磨削,2000,(4):51-52.
    [8] A. Yui and H.S. Lee. Surface grinding with ultra high speed CBN wheel[J]. Journal ofMaterials Processing Technology,1996,62:393-396.
    [9] A.J. Shin, M.B. Grant, T.M. Yonushonis and et al. Vitreous bond CBN wheel for high speedgrinding of zirconia and M2tool steel[J]. Transaction of the North American ManufacturingResearch Institution of SME,1998,26:195-200.
    [10] D.J. Stephenson, T. Jin and J. Corbett. High Efficiency Deep Grinding of a Low Alloy Steelwith plated CBN wheel[J]. Annals of the CIRP,2002,51(1):241-244.
    [11] T. Nakayama, M. Wakuda and M. Ota. Ultra-high speed grinding using a CBN wheel forhigh efficiency[J]. Key Engineering Materials,2004,257-258:273-279.
    [12]毛淑芳. CBN砂轮的高速、超高速磨削技术[J].精密制造与自动化,2005,(1):32-33.
    [13] Y. Ichida, R. Sato, Y. Morimoto and et al. Formation mechanism of finished surface inultrahigh-speed grinding with cubic Boron Nitride (CBN) wheels[J]. JSME InternationalJournal Series C,2006,49(1):100-105.
    [14]张国华.超高速磨削温度的研究[D].湖南:湖南大学,硕士学位论文,2006.
    [15]陈涛,盛晓敏,黄红武. CBN砂轮超高速磨削条件下加工表面粗糙度的实验研究[J].工艺与检测,2007,(5):60-63.
    [16]陈涛,盛晓敏,宓海青.40Cr超高速磨削工艺实验研究[J].湖南大学学报,2007,34(10):39-43.
    [17] J.C. Aurich, P. Herzenstiel and H. Sudermann. High-performance dry grinding using agrinding wheel with a defined grain pattern[J]. Annals of the CIRP,2008,57:357-362.
    [18] S. Ghosh, A.B. Chattopadhyay and S. Paul. Modelling of specific energy requirementduring high efficiency deep grinding[J]. International Journal of Machine Tools andManufacture,2008,48(11):1242-1253.
    [19]唐昆. TC4钛合金高效深磨工艺试验研究及其磨削质量预测[D].湖南:湖南大学,硕士学位论文,2007
    [20]肖鹏.钛合金TC4超高速磨削表面完整性的研究[D].湖南:湖南大学,硕士学位论文,2009.
    [21]盛晓敏,唐昆,宓海青等. TC4钛合金高效深磨磨削力及比磨削能特征研究[J].中国机械工程,2009,20(1):24-28.
    [22]俞兴华.陶瓷结合剂CBN砂轮高速磨削钛合金(TC4)的实验研究[D].福建:华侨大学,硕士学位论文,2011.
    [23] Z.W. Zhong, K. Ramesh and S.H. Yeo. Grinding of nickel-based super-alloys and advancedceramics[J]. Materials and Manufacturing Processes,2001,16(2):195~207.
    [24]冯宝富,赵恒华,蔡光起等.高速单颗磨粒磨削机理的研究[J].东北大学学报,2002,23(5):470-473.
    [25] D.V. Patil, S. Ghosh, A. Ghosh and et al. On grindability of Inconel718under highefficiency deep grinding by monolayer CBN wheel[J]. International Journal of AbrasiveTechnology,2007,1(2):173-186.
    [26] J.F.G. Oliveira, T.V. Franca and J.P. Wang. Experimental analysis of wheel/workpiecedynamic interactions in grinding[J]. Annals of the CIRP,2008,57:329-332.
    [27] T.W. Hwang, C.J. Evans, S.P. Whitenton and et al. High Speed Grinding of Silicon Nitridewith Electroplated Diamond Wheels, Part1: Wear and Wheel Life[J]. Transactions of theASME: Journal of Manufacturing Science and Engineering,2000,122(2):32-41.
    [28] T.W. Hwang, C.J. Evans and S. Malkin. High Speed Grinding of Silicon Nitride withElectroplated Diamond Wheels, Part2: Wheels Topography and Grinding Mechanisms[J].Transactions of the ASME: Journal of Manufacturing Science and Engineering,2000,122(2):42-50.
    [29] T. W. Hwang, C. J. Evans and S. Malkin. An Investigation of High Speed Grinding withElectroplated Diamond Wheels [J]. Annals of the CIRP,2000,49(1):245-248.
    [30] K. Ramesh, S.H. Yeo, S. Gowri and et al. Experimental evaluation of super high-speedgrinding of advanced ceramics[J]. International Journal of Advanced ManufacturingTechnology,2001,17:87-92.
    [31] L. Yin and H. Huang. Ceramic response to high speed grinding[J]. Machining Science andTechnology,2004,8(1):21-37.
    [32] L. Yin, H. Huang, K. Ramesh and et al. High speed versus conventional grinding in highremoval rate machining of alumina and alumina–titania[J]. International Journal of MachineTools and Manufacture,2005,45:897~907.
    [33] H. Huang and Y.C. Liu. Experimental investigations of machining characteristics andremoval mechanisms of advanced ceramics in high speed deep grinding[J]. InternationalJournal of Machine Tools and Manufacture,2003,43:811-823.
    [34] H. Huang, L. Yin and L.B. Zhou. High speed grinding of silicon nitride with resin bonddiamond wheels[J]. Journal of Materials Processing Technology,2003,141:329-336.
    [35] H. Huang. Machining characteristics and surface integrity of yttria stabilized tetragonalzirconia in high speed deep grinding[J]. Materials Science and Engineering,2003,345:155-163.
    [36] H. Huang and L. Yin. Grinding characteristics of engineering ceramics in high speedregime[J] International Journal of Abrasive Technology,2007,1(1):78-93.
    [37]谢桂芝.工程陶瓷高速深磨机理及热现象研究[D].湖南:湖南大学,博士学位论文,2009.
    [38] G.Z. Xie and H. Huang. An experimental investigation of temperature in high speed deepgrinding of partially stabililized zirconia[J]. International Journal of machine tools andManufacture,2008,48(14):1562-1568.
    [39]易了.工程陶瓷高效深磨磨削力和磨削能的特征及形成机理研究[D].湖南:湖南大学,硕士学位论文,2006.
    [40]王树启.砂轮在线电解修锐ELID技术在工程陶瓷高速磨削中的应用研究[D].湖南:湖南大学,硕士学位论文,2006.
    [41]易了,黄红武,谢桂芝等.部分稳定氧化锆PSZ高效深磨磨削力试验研究[J].精密制造与自动化,2006,65(1):23-26.
    [42] J.Y. Chen, H. Huang and X.P. Xu. An Experimental Study on the Grinding of Alumina witha Monolayer Brazed Diamond Wheel[J]. International Journal of Advanced ManufacturingTechnology,2009,41:16-23.
    [43] J.Y. Chen, J.Y. Shen, H. Huang and et al. Grinding Characteristics in High Speed Grindingof Engineering Ceramics with Brazed Diamond Wheels[J]. Journal of Materials ProcessingTechnology,2010,210:899-906.
    [44] J.Y. Chen and X.P. Xu. Temperature and Energy Partition in high speed grinding of aluminawith a brazed diamond wheel[J]. Machining Science and Technology,2010,14:440-454.
    [45]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社:2003,1-60.
    [46]任莹晖.纳米结构硬质合金磨削理论和工艺实验研究[D].湖南:湖南大学,博士学位论文,2009.
    [47]林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况[J].中国钨业,2005,20(2):19-24.
    [48]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988:5.
    [49]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1989:187-189.
    [50]赵秀娟.硬质合金与钢熔焊界面组织与性能[D].大连:大连交通大学,博士学位论文,2004.
    [51] A. Torrance and J.L. Metger. Dry versus wet grinding of carbide-II[J]. Microtecnic,1991,4:26-29.
    [52] J.L. Metzger. Diamond wheel performance versus selected parameters[J]. IndustrialDiamond Review,1981,6:304-310.
    [53] J.L. Metzger. Wheel Wear versus Workpiece/Wheel Rim Impact in Carbide Grinding[J].Industrial Diamond Review,1981,4:192-195.
    [54] J.L.Metzger and A.Torrance. Dry and wet grinding of carbide: Pt, Ⅰ[J]. Industrial DiamondReview,1990,6:296-303.
    [55] J.L. Metzger. The Effect of Grit Size and Carbide Grade in Plunge Grinding[J]. IndustrialDiamond Review,1982, V3:145-149.
    [56] S.G. Baily and C.M. Perrott. Wear Processes Exhibited by WC-Co Rotary Cutters inMining[J]. Wear,1974,29:117-128.
    [57] J. Larsen-Basse, C.M. Perrott and P.M. Robinson. Abrasive Wear of TungstenCarbide-Cobalt Comosites, I, Rotary Drilling Tests.[J]. Materials Science and Engineering,1974,13:83-91.
    [58] R.I. Blomberry, C.M. Perrott and P.M. Robinson. Abrasive Wear of Tungsten,Carbide-Cobalt Composites, II, Wear Mechanisms[J]. Materials Science and Engineering,1974,13:93-100.
    [59] J.F. Prins, D.R. Harding and G.S. James. An Apparatus for Testing Single DiamondParticles under Simulated Working Conditions[J]. Diamond Research, supplement toIndustrial Diamond Review,1970,39:11-15.
    [60] J. Larsen-Basse, C.M. Shishido and P.A. Tanouye. Some Features of Abraded WC-CoSurfaces[J]. Journal of the Australian Institute of Metals,1974,19(4):270-274.
    [61] W.A. Brainard and D.H. Buckley. Dynamic SEM Wear Studies of Tungsten CarbideCermets[J]. Tribology Transactions.1976,19(4):309-318.
    [62] K. Jia and T.E. Fischer. Abrasion Resistance of Nanostructured and Conventional CementedCarbides[J]. Wear,1996,200:206-214.
    [63] K. Jia and T.E. Fischer. Sliding Wear of Conventional and Nanostructured CementedCarbides[J]. Wear,1997,203-204:310-318.
    [64] G.V. Samsonov, S.A. Bozhko and I.P. Kushtalova. Plastic Deformation of Carbides inDiamond Grinding[J]. Technical Physics.1971,16:397-398.
    [65] P.O. Snell and F. Parnama. The Influence of Abrasive Polishing on the Stress State andToughness Properties of Cemented Carbides[A]. Proceedings of the International PowderMetallurgy Conference[C], Toronto, Canada,1973.645-664.
    [66] B.O. Jaensson. Residual Stresses and Stress-Strain Behavior of The WC-Co CompositeMaterial[J]. Materials Science and Engineering,1971,8(11):41-53.
    [67] A. Hara, M. Megata and S. Yazu. X-ray Study of Residual Stresses in Ground CementedCarbides[J]. Powder Metallurgy International,1970,2(2):43-47.
    [68] F. Hughes. Grinding with Diamond Abrasives, Part2-Tungsten Carbide[J]. IndustrialDiamond Review,1970,39(35):47-60.
    [69] R. Taverneir. Recent Progress in Carbide Grinding With Diamond Wheels[A]. Progress inIndustrial Diamond Technology[C], J. Burls, Editor, Acadimic Press, London,1966.107-122.
    [70] O. Zelwer and S. Malkin. Grinding of WC-Co cemented carbides[J]. Journal of Engineeringfor Industry,1980,102:209-220.
    [71] J.B.J.W. Hegeman, J.Th.M. De Hosson and G. De With. Grinding of WC–Cohardmetals[J].Wear,2001,248:187-196.
    [72] L. Yin, A. C. Spowage, K. Ramesh and et al. Influence of microstructure on ultraprecisiongrinding of cemented carbides[J]. International Journal of Machine Tools and Manufacture,2004,44(5):533-543.
    [73] L. Yin, E.Y.J. Vancoille, K. Ramesh and et al. Ultraprecision grinding of tungsten carbidefor spherical mirrors[J]. Proceedings of the Institution of Mechanical Engineers Part BJournal of Engineering Manufacture,218(4):419-429.
    [74] A. Abdullah, A. Pak, M. Farahi and et al. Profile wear of resin-bonded nickel-coateddiamond wheel and roughness in creep-feed grinding of cemented tungsten carbide[J].Journal of Materials Processing Technology,2007,183:165-168.
    [75] Z. Shi, H. Attia, D. Chellan and et al. Creep-feed grinding of tungsten carbide using smalldiameter electroplated diamond wheels[J]. Industrial Diamond Review,2008,(4):65-69.
    [76] B. Denkena and C. Spengler. Influence of Different Grinding Processes on Surface andSubsurface Characteristics of Carbide Tools[J]. Key Engineering Materials,2004,257-258:195-200.
    [77] N. Parkansky, L. Rapoport, B. Alterkop and et al. Effect of Transverse Current Injection onthe Grinding of Cemented Carbide[J]. The International Journal of AdvancedManufacturing Technology.2001,18(4):242-246.
    [78] S.Y. Luo, Y.C. Liu, C.C. Chou and et al. Performance of powder filled resin-bondeddiamond wheels in the vertical dry grinding of tungsten carbide[J]. Journal of MaterialsProcessing Technology,2001,118:329-336.
    [79] S.Y. Luo, Y.S. Liao, C.C. Chou and et al. Analysis of the wear of a resin-bonded diamondwheel in the grinding of tungsten carbide[J]. Journal of Material Processing Technology,1997,69:289-296.
    [80]郭秀云,于思远,陈锡让等.硬质合金磨削力的实验研究[J].硬质合金,1996,13(4):201-206.
    [81]郭秀云,林梦霞,汪丽新等.硬质合金磨削温度的实验研究[J].硬质合金,1997,14(1):40-44.
    [82]郭秀云,于思远,林滨.硬质合金磨削温度场的实验研究[J].硬质合金,1999,16(1):34-37.
    [83]郭秀云,于思远,汪丽新等.磨削硬质合金材料去除机理的实验研究[J].硬质合金,1997,14(2):99-103.
    [84]罗文宣,薛俊峰,薄海青等.整体硬质合金刀具磨削裂纹的原因分析及其工艺改进[J].工具技术,2006,40(6):37-40.
    [85]王志勇.一种刃磨硬质合金刀具的新方法[J].工具技术,2005,39(8):56-59.
    [86]张春晔,裴宏杰,王贵成.硬质合金刀具刃磨质量的研究[J].工具技术,2003,37(12):265-266.
    [87] C.Q. Dong, G.C. Wang, H.J. Pei and et al. The formation and Control of Surface Cracks inthe Cemented Carbide Materials in the process of Grinding[J]. Key Engineering Materials,2006,304-305:290-294.
    [88]刘明耀,潘飞.缓进给成型磨削硬质合金旋转锉刀用金属结合剂金刚石砂轮[J].磨料磨具与磨削,1990,5(59):27-33.
    [89]潘永智,艾兴,赵军等.超细晶粒硬质合金的高速摩擦磨损特性研究[J].摩擦学学报,2008,28(1):79-80.
    [90] S.S. Li, J.H. Xu, B. Xiao and et al. Performance of Brazed Diamond Cup-type Wheels withDefined Grain Pattern in Grinding Cemented Carbide[J]. Transactions of NanjingUniversity of Aeronautics&Astronautics,2007,24(1):55-58.
    [91] S.S. Li, J.H. Xu, B. Xiao and et al. Performace of Brazed Diamond Wheel in GrindingCemented Carbide[J]. Materials Science Forum,2006,532-533(1):381-384.
    [92] Y.J. Zhan, Y. Li, H. Huang and et al. Temperatures in Grinding Cemented Carbide (YT30)with a vacuum brazed diamond wheel [J]. Key Engineering Materials,2011,487:16-23.
    [93] Y.J. Zhan, Y. Li, H. Huang and et al. Energy and Material Removal Mechanisms for theGrinding of Cemented Carbide with Brazed Diamond Wheels[J]. Solid State Phenomena,2011,175:58-66.
    [94]詹友基,李远,黄辉等.钎焊金刚石砂轮磨削硬质合金的磨削力研究[J].中国机械工程,2010,21(15):1844-1849.
    [95] Y.J. Zhan, Y. Li, H. Huang and et al. Wear of Brazed Diamond Wheel in Grinding ofCemented Carbide[J]. Key Engineering Materials,2009,416:198-204.
    [96] Y.J. Zhan, X.P. Xu. An Experimental Investigation of Temperatures and Energy Partition inGrinding of Cemented Carbide with a Brazed Diamond wheel[J]. The International Journalof Advanced Manufacturing Technology,2012,61:117-125.
    [97] Y.H. Ren, B. Zhang, Z.X. Zhou. Specific energy in grinding of tungsten carbides of variousgrain sizes[J]. CIRP Annals-Manufacturing Technology,2009,58(1):299-302.
    [98] Y.H. Ren, B. Zhang, Z.X. Zhou. Grinding Force Prediction for Tungsten Carbides ofVarious Grain Size[J]. Nanotechnology and Precision Engineering.2008,6(6):415-423.
    [99]程敏,余剑武,谢桂芝等.硬质合金YG8高速磨削工艺试验研究[J].制造技术与机床,2011,(1):25-29.
    [100]张佳,王积森,鲍英.电火花机械复合磨削加工钢结硬质合金的实验研究[J].机械工程师,1997,6:3-4.
    [101]张海岩,张莉,魏臻.硬质合金刀具电解磨削工艺研究[J].硬质合金,1997,14(1):38-40.
    [102]段明扬.硬质合金的电解磨削镜面加工试验[J].机械工艺师,1995,(6):10-11.
    [103]孙永安,李县辉,张永乾.硬质合金的电解磨削加工[J].轴承,2002,(2):18-20.
    [104]宛剑业.硬质合金轧辊的精密加工[J].新技术新工艺,2006,(9):43-45.
    [105]邓洪波. YG类硬质合金刀具电解抛光的研究[D].广西:广西大学,硕士学位论文,2001.
    [106]钱崇梁. WC-Co硬质合金的加工残余应力[J].中国有色金属学报,1993,3:50-53.
    [107]李良福.刃磨时残余应力对硬质合金强度特性的影响[J].硬质合金,2001,18(1):1-3.
    [108]黄强.硬质合金材料热应力的有限元分析[D].武汉:武汉理工大学,硕士学位论文,2007.
    [109]朱波,袁哲俊,张飞虎等. ELID超精密磨削钢结硬质合金及其表面质量分析[J].中国机械工程,2000,11(8):866-868.
    [110]朱波,袁哲俊,赵清亮,等.钢结硬质合金ELID磨削表面的AFM分析[J].机械工艺师,2000,(11):7-9.
    [111]肖强.硬质合金的ELID磨削试验研究[J].工具技术,2005,39(2):27-29.
    [112]关佳亮,仇忠臣,赵增强等.钢结硬质合金的ELID高效磨削实验研究[J].机械设计与制造,2008,(11):107-108.
    [113]关佳亮.钢结硬质合金的ELID高效磨削实验研究[J].机械设计与制造,2008,11(11):107-108.
    [114]朱从容,李伟,于天明.铸铁结合剂金刚石砂轮ELID磨削硬质合金的性能研究[J].金刚石与磨料磨具工具,2008,168(6):5-8.
    [115]李长河,蔡光起.超高速磨削技术的特点及其在工业中的具体应用[J].通用机械,2005,(7):69-72.
    [116] J. Kopac and P. Krajnik. High-performance grinding-A Review[J]. Journal of MaterialsProcessing Technology,2006,175:278-284.
    [117] M.J. Jackson, C.J. Davis, M.P. Hitchiner and et al. High-speed grinding with CBN grindingwheels-applications and future technology[J]. Journal of Materials Processing Technology,2001,110:78-88.
    [118] S. Malkin.磨削技术理论与应用[M].蔡光起,巩亚东,宋贵亮译.沈阳:东北大学出版社,2002.
    [119] T.W. Hwang, E.P. Whitenton, N.N. Hsu and et al. Acoustic emission monitoring of highspeed grinding of silicon nitride[J]. Ultrasonics,2000,38:614-619.
    [120] A.J. Shih, S. B. McSpadden, T. O. Morris and et al. High speed and high material removalrate grinding of ceramics using the vitreous bond cbn wheel[J]. machining science andtechnology,2000,4(1):43-58.
    [121] K. Ramesh, H. Huang and L. Yin. Analytical and experimental investigation of coolantvelocity in high speed grinding[J]. International Journal of Machine Tools&Manufacture,2004,44:1069-1076.
    [122]徐西鹏,黄辉.断续CBN砂轮缓进给磨削K417航空叶片材料的研究[J].航空学报,1997,18(3):316-323.
    [123]孙方宏,傅玉灿,徐鸿钧.磨削液的加注方式对冷却效果的影响及其对策[J].机械设计与制造工程,1998,27(6):51-54.
    [124]任敬心,华定安.磨削原理[M].西安:西北工业大学出版社:1988,1-91.
    [125]李远.花岗石超大切深锯切机理与技术研究[D].泉州:华侨大学,博士学位论文,2004.
    [126] X.P. Xu, Y. Li and S. Malkin. Forces and energy in circular sawing and grinding ofgranite[J]. Transactions of ASME: Journal of Manufacturing Science&Engineering,2001,123(1):13-22.
    [127]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社,1999.
    [128] K. Jia, T.E. Fischer and B. Gallois. Microstructure, Hardness and Toughness ofNanostructured and Conventional WC-Co Composites[J]. Nanostructured Materials,1998,10(5):875-891.
    [129] B.R. Lawn, A.G. Evans and D.B. Marshall. Elastic/Plastic Indentation Damage in Ceramics:The Median/Radial Crack System[J]. Journal of American Ceramic Society,1980,63(9-10):574-581.
    [130] D.B. Marshall, B.R. Lawn and A.G. Evans. Elastic/Plastic Indentation Damage in Ceramics:The Latered Crack System. Journal of American Ceramic Society[J],1982,65(11):561-566.
    [131] S. Malkin and T.W. Hwang. Grinding mechanisms for ceramics[J]. Annals of the CIRP,1996, Vol.45(2):569-580.
    [132]沈剑云.结构陶瓷磨削机理与热特性分析[D].天津:天津大学,博士学位论文,2004.
    [133] T.W. Hwang and S. Malkin. Grinding mechanisms and energy balance for ceramics[J].Transactions of the ASME, Journal of Manufacturing and Engineering,1999,121:623-631.
    [134] X.P. Xu. Tribological interactions at the wheel-workpiece interface in surface grinding ofconstruction stone[J]. Surface and Interface Analysis,2004,36:1250-1253.
    [135] T.W. Hwang. Grinding energy and mechanisms for ceramics[D]. Boston: University ofMassachusetts, Ph.D. Dissertation,1997.
    [136] S. Chandrasekar, T.N Farris and B. Bhushan. Grinding temperatures for magnetic ceramicsand steel[J]. ASME Journal of Tribology,1990,112(3):535-540.
    [137] B. Zhu, C. Guo, J.E. Sunderland and et al. Energy Partition to the Workpiece for Grinding ofCeramics[J]. Annals of the CIRP,1995,44(1):267-271.
    [138]兰雄侯,王继先,高航.磨削温度理论研究的现状与进展[J].金刚石与磨料磨具工程,2001,3(123):5-6.
    [139]王霖,秦勇,刘镇昌等.磨削温度场的研究现状与发展趋势[J].工具技术,2002,36(6):7-9.
    [140] J.C. Jaeger. Moving Sources of Heat and Temperature at Sliding Contacts[J]. Proc. of theRoyal Society of New South Wales,1942,76:203-224.
    [141] K. Takazawa. Theory and Measuring of the Temperature Distribution in Ground SurfaceLayer, Theoretical Analyses on the Grinding Temperature (1st Report)[J]. Journal of JapanSociety of Precision Engineering,1964,30(11):851-857.
    [142] K. Takazawa. The Flowing Rate into the Work of the Heat Generated by Grinding,Theoretical Analyses on the Grinding Temperature (2st Report)[J]. Journal of Japan Societyof Precision Engineering,1964,30(12):914-920.
    [143] S. Kawamura, S. Nishiguchi and Y. Iwao. Studies on the Fundamental of Grinding Burn (1stReport), Growing Process and Thickness Calculation of Oxide Film[J]. Journal of JapanSociety of Precision Engineering,1977,43(6):702-707.
    [144] S. Kawamura, Y. Iwao and S. Nishiguchi. Studies on the Fundamental of Grinding Burn (2stReport), Surface Temperature in Process of Oxidation[J]. Journal of Japan Society ofPrecision Engineering,1979,45(1):83-88.
    [145] J.O. Outwater and M.C. Shaw. Surface Temperatures in Grinding[J]. Transactions of theASME,1952,74(1):73-86.
    [146] R.S. Hahn. The Relation Between Grinding Conditions and Thermal Damage in theWorkpiece[J]. Transactions of the ASME,1956,78(2):807-812.
    [147] N.R. Des Ruisseaux and R.D. Zerkle. Thermal Analysis of the Grinding Process[J].Transactions of the ASME, Journal of Engineering for Industry,1970,92:428-434.
    [148] N.R. Des Ruisseaux and R.D. Zerkle. Temperature in Semi-infinite and Cylindrical BodiesSubjected Moving Heat Sources and Surface Cooling[J]. Transactions of the ASME, Journalof Heat Transfer,1970,92(3):456-464.
    [149] S. Malkin, R.B. Anderson. Thermal Aspects of Grinding: Part1Energy Partition[J].Transactions of the ASME, Journal of Engineering for Industry,1974,96(4):1177-1183.
    [150] S. Malkin. Thermal Aspects of Grinding: Part2Surface Temperatures and WorkpieceBurn[J]. Transactions of the ASME, Journal of Engineering for Industry,1974,96(4):1184-1191.
    [151] T.D. Howes, K. Neailey and A.J. Harrison. Fluid Film Boiling in Shallow-cut Grinding[J].Annals of the CIRP,1987,36(1):223-226.
    [152] W.B. Rowe, H.S. Qi, M.N. Morgan and et al. The Effect of Deformation on the ContactArea in Grinding[J]. Annals of the CIRP,1993,42(1):409-412.
    [153] C. Guo and S. Malkin. Analysis of Energy Partition in Grinding[J]. Transactions of theASME, Journal of Engineering for Industry,1995,117(1):55-62.
    [154] C. Guo and S. Malkin. Heat Transfer in Grinding[J]. Journal of Materials Processing&Manufacturing Science,1992,1(1):16-27.
    [155] W.B. Rowe, S.C.E. Black, B. Mills and et al. Analysis of Grinding Temperatures by EnergyPartitioning[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,1996,210:579-588.
    [156] C. Guo, Y. Wu, V. Varghese and et al. Temperatures and Energy Partition for Grinding withVitrified CBN Wheels[J]. Annual of the CIRP,1999,48(1):247-250.
    [157] S. Malkin and C. Guo. Thermal Analysis of Grinding[J]. Annals of the CIRP,2007,56(2):760-782.
    [158]贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,(3):55-71.
    [159]徐鸿钧,徐西鹏,薛秉源.断续磨削时工件表层温度场的解析[J].机械工程学报,1994,30(1):30-36.
    [160]高航,宋振武.断续磨削温度场的研究[J].机械工程学报,1989,25(2):22-28.
    [161]高航,陆颖.立轴矩台平面磨削温度场的理论分析[J].东北大学学报,1997,18(5):473-476.
    [162]金滩.高效深切磨削技术的基础研究[D].沈阳:东北大学,博士学位论文,1999,12.
    [163] S. Ramanath and M.C. Shaw. Abrasive Grain Temperature at the Beginning of a Cut in FineGrinding[J]. Transactions of the ASME, Journal of Engineering for Industry,1988,110(1):15-18.
    [164] W.B. Rowe, J.A. Pettit, A. Boyle and et al. Avoidance of Thermal Damage in Grinding andPrediction of the Damage Threshold[J]. Annals of the CIRP,1988,37(1):327-330.
    [165]毛聪.平面磨削温度场及热损伤的研究[D].湖南:湖南大学,博士学位论文,2008.
    [166]李晓天.新型高温合金磨削烧伤机理及砂轮激光修锐技术[D].上海:上海交通大学,博士学位论文,2000,12-14.
    [167] S. Kohli, C. Guo and S. Malkin. Energy partition to the workpiece for grinding withaluminum oxide and CBN abrasive wheels. Journal of Engineering for Industry,1995,117(2):160-168.
    [168] N. K. Kim, C. Guo and S. Malkin. Heat flux distribution and energy partition in creep-feedgrinding. Annals of the ClRP,1997,46(1):227-232.
    [169] C. Guo and S. Malkin. Inverse heat transfer analysis of grinding, part1: Methods[J].Transactions of the ASME. Journal of Engineering for Industry,1996,118:137-142.
    [170] A.S. Lavine. A simple model for convective cooling during the grinding process[J]. Journalof Engineering for Industry,1988,110(1):1-6.
    [171] A.S. Lavine, S. Malkin and T. Jen. Thermal Aspects of Grinding with CBN[J]. Annals of theCIRP,1989,38(1):557-560.
    [172] W.B. Rowe, S.C.E. Black, B. Mills and et al. Grinding temperatures and energypartitioning[J]. Proceedings of the Royal Society of London, Series A: Mathematical,Physical and Engineering Sciences,1997,453(1960):1083-1104.
    [173] X.P. Xu. Experimental study on temperatures and energy partition at the diamond-graniteinterface in grinding[J]. Tribology International,2001,34(6):419-426.
    [174] X.P. Xu, H. Huang and W.M. Zeng. Thermal Study on the Grinding of Granite withSuperabrasive Tools[J].金刚石与磨料磨具工程,2003,135(3):12-16.
    [175] J.Y. Chen, H. Huang and X.P. Xu. An Experimental Study on the Grinding of Alumina witha Monolayer Brazed Diamond Wheel[J]. International Journal of Advanced ManufacturingTechnology,2009,41:16-23.
    [176] T. Jin and D.J. Stephenson. Investigation of the heat partitioning in high efficiency deepgrinding[J]. International Journal of Machine Tools&Manufacture,2003,43(11):1129-1134.
    [177] T. Jin and D.J. Stephenson. Analysis of grinding chip temperature and energy partitioning inhigh-efficiency deep grinding[J]. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture,2006,220(5):615-626.
    [178] T. Jin and D.J. Stephenson. Heat flux distributions and convective heat transfer in deepgrinding[J]. International Journal of Machine Tools&Manufacture,2006,46(14):1862-1868.
    [179] T. Jin, G.Q. Cai, H.D. Jeong and et al. Study on heat transfer in super-high-speed grinding:energy partition to the workpiece in HEDG[J]. Journal of Materials Processing Technology,2001,111:261-264.
    [180] T.N. Farris and S. Chandrasekar. High-speed sliding indention of ceramics: thermaleffects[J]. Journal of Materials Science,1990,25,4047-4053.
    [181] Y.S. Liao and S.Y. Luo. Effects of matrix characteristics on diamond composites[J]. Journalof Materials Science,1993,28:1245-1251.
    [182] X.P. Xu, Y. Li, W.Y. Zeng and et al. Quantitative analysis of the loads acting on the abrasivegrits in the diamond sawing of granites[J]. Journal of Materials Processing Technology,2002, Vol.129:50-55.
    [183] J.Y. Shen, F.Y. You and X.P. Xu. Thermal study in diamond grinding of zirconia[J]. KeyEngineering Materials,2008,359-360,133-137.
    [184]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998,20-24.
    [185]张磊.单程平面磨削淬硬技术的理论分析和试验研究[D].山东:山东大学,博士学位论文,2006,58-72.
    [186]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997,116-224.
    [187] T. Jin, D.J. Stephenson and W.B. Rowe. Estimation of the convection heat transfercoefficient of coolant within the grinding zone[J]. Proc.Institution of Mechanical Engineers,Part B, Journal of Engineering Manufacture,2004,217:397-407.
    [188]李锡文,杜润生,杨叔子.铣削力模型的频域特性研究[J].华中理工大学学报,2000,34(7):3-6.
    [189]李成贵.粗糙表面轮廓的对角线切片谱分析[J].中国机械工程,2004,15(2):124-127.
    [190]陈丙三,黄宜坚,蔡奇志.振动切削过程表面轮廓的高阶谱特性研究[J].中国机械工程,2010,21(6):683-689.
    [191] T.G. Bifano, T. Dow and R.O. Scattergood. Ductile-regime: a new technology for machiningbrittle material. Journal of Engineering for Industry,1991,113(2):184-189.
    [192] B. Zhang and T.D. Howes. Material removal mechanisms in grinding ceramics[J]. Annals ofthe CIRP,1994,43(1):305-308.
    [193]邓朝晖,张璧,孙宗禹等.陶瓷磨削材料去除机理的研究进展[J].中国机械工程,2002,13(18):1608-1611.
    [194]邓朝晖,张璧,周志雄等.陶瓷磨削的表面/亚表面损伤[J].湖南大学学报,2002,29(5):61-71.
    [195]郑建新,徐家文,吕正斌.陶瓷材料延性域磨削机理[J].硅酸盐学报.2006,34(1):102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700