用户名: 密码: 验证码:
Pickering乳液为模板的特殊结构聚合物/二氧化硅复合微球的制备、表征和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的主要目标为:以Pickering乳液为模板制备超粒子结构(supracolloidal structure)聚合物/二氧化硅复合微球,并对其性能及应用进行研究。通过Pickering乳液模板法制备的超粒子结构微球具有独特的以无机粒子为壳层的核壳结构,能够赋予微球独特的功能,因此越来越引起人们的注意。我们选择不同的单体或聚合物为原料,以不同类型的Pickering乳液为模板,制备具有不同结构和性能的聚合物/二氧化硅复合微球,为有机/无机复合微球的制备与结构设计提供新的思路以及实验依据。
     主要研究内容如下:
     1)采用溶胶-凝胶法制备了纳米二氧化硅粒子,并使用-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)对其进行表面改性。红外光谱和XPS分析结果证实KH-570确实接枝在纳米二氧化硅表面,接枝率可通过TGA测试结果计算;可以通过改性剂用量的不同来调节纳米二氧化硅的表面润湿性,得到适用于稳定不同类型Pickering乳液的纳米二氧化硅粒子。
     研究了纳米二氧化硅颗粒的表面润湿性以及润湿顺序、颗粒浓度、体系pH值对颗粒在油/水(苯乙烯/水)体系中所处位置以及所得乳液类型的影响:过于亲水或疏水的二氧化硅颗粒均不能用作稳定剂来制备Pickering乳液,亲水性适中的纳米二氧化硅颗粒可形成O/W型乳液,对于亲水/亲油适中的二氧化硅颗粒,优先润湿性决定了其最终稳定的Pickering乳液的类型。
     2)以改性二氧化硅粒子稳定的苯乙烯/水Pickering乳液为模板,成功制备了聚苯乙烯/二氧化硅复合微球。考察了二氧化硅表面润湿性、固体颗粒浓度以及引发剂种类等因素对聚苯乙烯/二氧化硅复合微球形貌的影响,结果发现在Pickering乳液聚合过程中,存在单体液滴内成核和水相成核两种成核方式,二者之间存在竞争作用,引发剂和二氧化硅粒子浓度对于微球的形成机理及最终形貌有着协同影响:当纳米二氧化硅粒子浓度较低,不能紧密包覆在液滴表面时,使用水溶性引发剂KPS,可以得到分散的PS微球,在其表面零星分布着纳米二氧化硅粒子;使用油溶性引发剂AIBN,则无法得到分散的微球。当纳米二氧化硅浓度较高,足以在液滴表面形成致密包覆层时,使用油溶性引发剂,可以得到分散性良好的微球,二氧化硅粒子在微球的表面密堆排列;若使用水溶性引发剂,所得产物微球的形状欠规整,并呈中空结构。
     3)以苯乙烯作为油相,去离子水分别作为内水相和外水相,改性二氧化硅作为稳定剂,制备了水/苯乙烯/水(W/O/W)型多重乳液,并以该多重乳液为模板制备了多孔PS/SiO2复合微球。通过SEM、XPS等分析手段证实了微球内部存在多孔结构,绝大多数二氧化硅粒子富集在微球内腔壁上。TGA表征结果证实微球内部包含有水相,含量与配方中数值基本相当。可以通过改变配方中的内水相体积分数,控制PS/SiO2复合微球的内部结构。当内水相体积分数为20%时,得到的微球内部为多孔结构,且孔与孔互不连通;当内水相体积分数为70%时,则可以得到中空微球。
     4)以正己烷为油相,聚乙烯醇(PVA)水溶液为水相,以及改性纳米二氧化硅粒子为稳定剂,制备了W/O型Pickering乳液,并以其为模板,通过循环冻融法制备了具有良好生物相容性的PVA/SiO2复合凝胶微球;扫描电镜和光学显微镜表征结果证实纳米二氧化硅粒子自组装在水油界面上,形成了以PVA凝胶为核,纳米二氧化硅粒子为壳的复合凝胶微球。系统研究了配方及工艺条件对PVA/SiO2复合凝胶微球形貌的影响。结果发现,当二氧化硅颗粒浓度较低时,微球粘附严重,二氧化硅颗粒浓度越高,制备的复合微球粒径越小,分散性越好;增大PVA浓度以及循环冻融次数都可以增大复合凝胶微球的机械强度,使微球干燥后形貌保持得更好。
     选用亚甲蓝作为模拟药物,装载到PVA/SiO2复合凝胶微球中,探索了复合凝胶微球的控释性能。发现复合凝胶微球对亚甲蓝有缓释作用,当循环冻融次数及PVA浓度增大时,释放速率减缓,药物累计释放量减少;当纳米二氧化硅粒子浓度过低,不能对凝胶微球形成良好包覆时,释放速率较快;而当纳米二氧化硅粒子浓度较高时,增大二氧化硅粒子浓度会使凝胶微球粒径减小,也会使得释放速率增大。分别采用一级动力学、Higuchi、Weibull及Hixson-Crowell模型对PVA/SiO2复合凝胶微球的释放数据进行拟合,发现其释放曲线可以用Weibull模型描述,其释放动力学符合Fick扩散规律。
The purpose of our investigation is to prepare supracolloidal structure polymer compositemicrosphere by means of Pickering emulsion template and also carry out a research on itsapplication. Different core materials and different types of Pickering emulsion template have beenchosen to fabricate organic-inorganic composite microsphere with different structures and properties.The main contents and the results of the dissertation are as follows:
     1) SiO2nanoparticles were prepared via sol-gel reaction and modified byEthacryloxypropyltrimethoxysilane (MPTMS). It was confirmed by FTIR and XPS that MPTMSwas successfully grafted to the surface of SiO2nanoparticles. The surface grafting degree of thefunctionalized SiO2nanoparticles was determined by TGA and the surface wettablity wasinvestigated through measuring the surface contact angle. The results showed that when the massratio of MPTMS to SiO2increased, the contact angle and the surface zeta potential increased, too.The surface wettablity could be tuned by controlling the grafting extent of MPTMS.
     Further, Pickering emulsions (styrene/water) stabilized by SiO2nanoparticles were investigated.It was shown that the particle wettability and the priority wettability had significant effect on thetype and stability of the emulsion prepared. Stable Pickering emulsion could not be obtained withparticles which were too hydrophilic or hydrophobic. The particles of moderate hydrophilieity couldstabilize O/W emulsions. For particles of moderate hydrophilieity/hydrophilieity, the prior wettibilitydecided the type of emulsion.
     2) Polystyrene/SiO2microspheres were fabricated via Pickering emulsion polymerizationstabilized by modified SiO2nanoparticles. The effect of particle wettability, particle concentrationand initiator sorts on the morphology of products was studied. It was found that at low particleconcentration, when hydrophilic initiator KPS was used, microspheres with SiO2nanoparticlesscattered on surface was obtained. Otherwise the product was aggregation when hydrophobicinitiator AIBN was used. At high particle concentration, when AIBN was applied as the initiator,dispersive microsphere with “densely packed” particle shell was prepared and when KPS was used,the products were hollow microspheres. The results showed that there were two nucleationmechanisms in the polymerizing process. The SiO2concentrations and initiator sorts wouldsynergistically impact the morphology of products corresponding to distinct formation mechanisms.
     3) W/O/W (water/styrene/water) Pickering emulsion stabilized by modified SiO2nanoparticles was prepared. Then polystyrene microspheres with aqueous cores were fabricated withthe multiple Pickering emulsion as template. The final structure and constituents of the microsphereswas investigated through SEM, XPS and TGA. It was found that multi-core structure exiting in the microsphere and most of SiO2nanoparticles were adsorbed at the inner wall of the core; when thevolume fraction of inner water was0.2, the inner structure of the microspheres obtained was porousand each pore was not interconnected; when the volume fraction of inner water increased to0.7,hollow microspheres were obtained. The results showed that the size and amount of aqueous cores inthe microspheres could be tuned by the original structure of the multiple Pickering emulsions.
     4) Using polyving akohol (PVA) solution as aqueous phase and Hexane as oil phase, W/OPickering emulsion stabilized modified SiO2nanoparticles was prepared. Subsequently, by applyingthe prepared Pickering emulsion as template, PVA/SiO2composite microsphere with PVA gel coresand shells of SiO2nanoparticles was fabricated through freezing-thawing method. The finalstructure and constituents of the microspheres were investigated by means of SEM, FTIR and TGA.The effect of PVA concentractoin, SiO2nanoparticles concentration and freezing-thawing cycletimes on the morphology of products was studied.
     The PVA/SiO2composite microspheres were applied as a drug carrier to study their controlledrelease behaviors and methylene blue was used as a model drug. It was found that PVAconcentractoin, SiO2nanoparticles concentration and freezing-thawing cycle times had effect on therelease behaviors. All release curves were respectively fitted by Monoexponential equation, Higuchiequation, the Weibull equation and Hixson-Crowell equation. Weibull equation was found to fit thebest to the release process. The fitted results proved that the drug release from the PVA/SiO2composite microsphere followed the Fick diffusion.
引文
[1] Fleming M S, Mandal T K, Walt D R. Nanosphere-microsphere assembly: Methods forcore-shell materials preparation. Chem. Mater.,2001,13(6):2210-2216.
    [2] Zhang Y P, Chu Y. The fabrication of core-shell functional materials with templates method.Progress in Chemistry,2007,19(1):35-41.
    [3] Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2microspheres in ionic liquids. J.Am. Chem. Soc.,2003,125(21):6386-6387.
    [4] Sun Q Y, Kooyman P, Grossmann J G, et al. The formation of well-derined hollow silica sphereswith multilamellar shell structure. Adv. Mater.,2003,15(13):1097.
    [5] William T W, Tseng J, Lee S. Functional MBS impact modifier for PC/PBT alloy. J. Appl.Polym. Sci.,2000,76:1280-1284.
    [6] Pan M W, Zhang L C, Wan L Z. Preparation and characterization of composite resin by vinylchloride grafted onto Poly(BA-EHA)/Poly(MMA-St). Polymer,2003,44:7121-7129.
    [7] Ma Guanghui (马光辉), Su Zhiguo (苏志国). New type of polymer material (新型高分子材料). Beijing: Chemical Industry press (北京:化学工业出版社),2003,135-170.
    [8] Espiard E, Guyot A, Perez J, et al. Poly(ethyl acrylate) latexes encapsulating nanoparticles ofsilica:3. Morphology and mechanical properties of reinforced film. Polymer,1995,36:4397-4403.
    [9] Bougeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization inpolar media:1. silica nanoparticles encapsulated by polystyrene. J. Colloid Interface Sci.,1998,197:293.
    [10] Ottewill R H, Schofield A B, Waters J A, et al. Preparation of core-shell polymer colloidparticles by encapsulation. J. Colloid Polym. Sci.,1997,275:274-283.
    [11] Pich A, Bhattacharya S, Adler H J P. Composite magnetic particles deposition of magnetite byheterocoagulation method. Polymer,2005,46:1077-1086.
    [12] Caruso R A, Susha A, Caruso F. Multilayered titania, silica, and laponite nanoparticle coatingson polystyrene colloidal templates and resulting inorganic hollow spheres. Chem. Mater.,2001,13(2):400-409.
    [13] Ji T, Lirtsman V G, Avny Y, et al. Preparation, characterization and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Adv. Mater.,2001,13(16):1253-1256.
    [14]刘润静,邹海魁,郭奋,等.核壳结构型纳米CaCO3-SiO2.nH2O复合粒子的制备,材料研究学报,2001,15(l):61-64.
    [15] Ocana M, Gonzale EliPe A R. Preparation and characterization of uniform spherical silicaparticles coated with Ni and Co compounds. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1999,157:315-32.
    [16] Sertchook H, Avnir D. Submicron silica/polystyrene composite particles prepared by a one-stepsol-gel process. Chem. Mater.,2003,15:1690-1694.
    [17] Kawaguchi H, Fujimoto K, Nakazawa Y, et al. Modification and functionalization of hydrogelmicrospheres.Colloids Surf. A,1996,109:147-154.
    [18] Bamnolker H, Nitzan B, Gura S, et al. New solid and hollow, magnetic and non-magnetic,organic-inorganic monodispersed hybrid microspheres: synthesis and characterization. J. Mater. Sci.Lett.,1997,16:1412-1415.
    [19] Shiho H, Manabe Y, Kawahashi N, Magnetic compounds as coatings on polymer particles andmagnetic properties of the composite particles. J. Mater. Chem.,2000,10:333-336.
    [20] Ramsden W. Separation of solids in the surface-layers of solutions and suspensions(Observation on surface-membranes, bubbles, emulsions, and mechanical coagulation)-preliminaryaccount. Proe. R. Soe., London, Ser.,1903-1904,72:156-164.
    [21] Pickering S U. Emulsions. J. Chem. Soc.,1907,91,2001-2021.
    [22] Sullivan A P, Kilpatrick P K. The effects of inorganic solid particles on water and crude oilemulsion stability. Ind. Eng. Chem. Res.,2002,41(14):3389-3404.
    [23] Castaldi F J, Tank-based bioremediation of petroleum waste sludges. Environ. Prog.,2003,22(1):25-36.
    [24] Henglein A. Small-particle research: physicochemical properties of extremely small colloidalmetal and semiconductor particles. Chem. Rev.,1989,89(8):1861-1873.
    [25] Giermanska-Kahn J, Sehlnitt V, Binks B P, etal. A new method to prepare monodispersePickering emulsions. Langmuir,2002,18:2515-2518.
    [26] Hsu M F, Nikolaides M G, Dinsmore A D, etal. Self-assembled shells composed of colloidalparticles: Fabrication and characterization. Langmuir,2005,21:2963-2970.
    [27] Yan N, Masliyah H. Characterization and demulsification of solids-stabilized oil-in-wateremulsions Part l. Partitioning of clay particles and preparation of emulsions. Colloids Surf. A,1995,96:229-242.
    [28] Yan N, Masliyah H. Characterization and demulsification of solids-stabilized oil-in-wateremulsions Part2, Demulsification by the addition of fresh oil. Colloids Surf. A,1995,96:243-252.
    [29] Yan N, Masliyah H. Demulsification of solid-stabilized oil-in-water emulsions. Colloids Surf. A,1996,117:15-25.
    [30] Yang F, Liu S Y, Sun D J. Pickering emulsions stabilized solely by layered double hydroxidesparticles: The effete of salt on emulsion formation and stability. J. Colloid Interface Sci.,2006,302:159-169.
    [31] Yang F, Niu Q, Sun D J, et al. Effect of dispersion PH on the formation and stability ofPickering emulsions stabilized by layered double hydroxides particles. J. Colloid Interface Sci.,2007,306:285-295.
    [32] Lan Q, Yang F, Sun D J, Synergistic effect of silica nanoparticle and cetyltrimethyl ammoniumbromide on the stabilization of O/W emulsions. Colloid Surf. A,2007,302:126-135.
    [33] Zou H, Wu S, Shen J. Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particlesand hollow particles. Langmuir,2008,24:10453-10461.
    [34] Balmer J A, Mykhaylyk O O, Fairclough J P A., et al. Unexpected facile redistribution ofadsorbed silica nanoparticles between latexes. J. Am. Chem. Soc.,2010,132:2166-2168.
    [35] Chen M, Wu L, Zhou S, You B. Synthesis of raspberry-like PMMA/SiO2nanocompositeparticles via a surfactant-free method. Macromolecules,2004,37:9613-9619.
    [36] Zhang Y, Zou Q, Shu X, Tang Q, et al. Preparation of raspberry-like polymer/silicananocomposite microspheres via emulsifier-free polymerization in water/acetone media. J. ColloidInterface Sci.2009,336:544-550.
    [37] Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latex particles:Effects of particle size. Langmuir,2001,17:4540-4547.
    [38] Binks B P, Fletcher P D I, Particles adsorbed at the oil-water interface: A theoreticalcomparison between spheres of uniform wettability and janus partieles. Langmuir,2001,17:4708-4010.
    [39] Israelachvili J N. Intermolecular and Surface Forces. n.e.A.A.P.,2003.
    [40] Pieranski P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett.,1980,45:569-572.
    [41] Omota F, Dimian A C, Bliek A. Adhesion of solid particles to gas bubbles. Part2: Experimental.Chem. Eng. Sci.,2006,61(2):835-844.
    [42] Paunov V N. Novel method for determining the three-phase contact angle of colloidparticlesadsorbed at air-water and oil-water interfaces. Langmuir,2003,19(19):7970-7976.
    [43] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquidinterfaces.Science,2003,299(5604):226-229.
    [44] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles. Adv.Colloid Interfac,2003,100:503-546.
    [45] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions. Langmuir,2000,16(23):8622-8631.
    [46] Chen W, Tan S, Ng T-K, Ford W T, Tong P. Long-Ranged Attraction between ChargedPolystyrene Spheres at Aqueous Interfaces. Physical Review Letters,2005,95:218-301.
    [47] Moneho-Jorda A, Martinez-LoPez F, Gonzalez A E, Hidalgo-Alvarez R. Role of long-rangerepulsive interactions in two-dimensional colloidal aggregation: Experiments and simulations.Langmuir,2002,18:9183-9191.
    [48] Thieme J, Abend S, Lagaly G. Aggregation in Pickering emulsions. Colloid Polym.Sci.,1999,277(2-3):257-260.
    [49] Danov K D, Pouligny B, Kralehevsky P A. Capillary forces between colloidal Partielesconfined in a liquid film: The finite-meniscus problem. Langmuir,2001,17:6599-6609.
    [50] Finkle P D, Hildebrand H D. The theory of emulsification. J Am. Chem. Soc.,1923,45:2780-2788.
    [51] Sehulman J H L. Control of contact angles at the oil-water-solid interfaces-emulsions stabilizedby solid particles (BaSO4). Trans. Faraday Soc.,1954,50:598-604.
    [52] Binks B P. Particles as surfactants-similarities and differences. Current Opinion in Colloid&Interface Science,2002,7:21-41.
    [53] Aveyard R, Binks B P, Clint J H. Emulsions stabilized solely by colloidal particles. Advances inColloid and lnterface Science,2003,100:503-546
    [54] Yan N, Masliyah J H. Characterization and demulsification solids-stabilized oil-in-wateremulsions Part1. Partitioning of clay particles and preparation of emulsions. Colloids and SurfacesA: Physicochemical and Engineering Aspects,1995,96:229-242.
    [55] Stiller S, Gers-Barlag H, Lergenmueller M, Pflücker F, Schulz J, Wittern K P, Daniels R.Investigation of the stability in emulsions stabilized with different surface modified titaniumdioxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,232:261-267.
    [56] Binks B P, Lumsdon S O. Transitional phase inversion of solid-stabilized emulsions usingparticle mixtures. Langmuir,2000,16:3748-3756.
    [57] Tambe D E, Sharma M M. The effect of colloidal particles on fluid-fluid interfacial propertiesand emulsion stability. Advances in Colliod and Interface Science,1994,52:1-63.
    [58] Menon V B, Wasan D T. Review of the factors affecting the stability of solids-stabilizedemulsions. Separation Science and Technology,1988,23(12-13):2131-2142.
    [59] Thieme J, Abend S, Lagaly G. Aggregation in Pickering emulsions. Colloid&Polymer Science,1999,277:257-260.
    [60] Abend S, Lagaly G. Bentonite and double hydroxides as emulsifying agents. Clay Minerals,2001,36:557-570.
    [61] Midmore B R. Preparation of a novel silica-stabilized oil/water emulsion. Colloide and SurfacesA: Physicochemical and Engineering Aspects,1998,132:257-265.
    [62] Vignati E, Piazza R, Lockhart T P. Pickering emulsions: Interfacial tension colloidal layermorphology, and trapped-particle motion. Langmuir,2003,19:6650-6656.
    [63] Yan Y, Masliyah J H. Solids-stabilized oil-in-water emulsions: Scavenging of emulsion dropletsby fresh oil addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,75:123-132.
    [64] Levine S, Bowen B D, Partridge S J. Stabilization of emulsions by fine particlesⅠ. Partitioningof particles between continuous phase and oil/water interface. Colloids and surfaces,1989,38:325-343.
    [65] Bechhold H, Dede L, Reiner L. Dreiphasige Emulsionen. Colloid&Polymer Science,1921,28:6-19.
    [66] Binks B P, Lumsdon S. Stability of oil-in-water emulsions stabilized by silica particle. PhysicalChemistry Chemical Physics,1999, l:3007-3016.
    [67] Ashby N P, Binks B P. Pickering emulsions stabilized by Laponite clay particles. PhysicalChemistry Chemical Physics,2000,2:5640-5646.
    [68] Yan N, Masliyah J H. Effect of pH on adsorption and desorption of clay particles at oil-waterinterface. Journal of colloid and Interface Science,1996,181:20-27.
    [69] Amalvy J I., Armes P, Binks B P, Rodrigues J A, Unali G F. Use of sterically-stabilizedpolystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-freeoil-in-water emulsions. Chemical Communications,2003,15:1826-1827.
    [70] Read E S, Fujii S, Amalvy J I, Randall D P, Armes S P. Effect of varing the oil phase on thebehavior of pH-responsive latex-based emulsifiers: Demulsification versus transitional phaseinversion. Langmuir,2004,20:7422-7429.
    [71] Binks B P, Murakami R, Armes S P, Fujii S, Sehmid A. pH-responsive aqueous foamsstabilized by ionizable latex particles. Langmuir,2007,23:8691-8694.
    [72] Li J, H. Stover H. D. Doubly pH-responsive Pickering emulsion. Langmuir,2008,24:13237-13240.
    [73] Lan Q, Liu C, Yang F, Liu, S Y, Xu J, Sun D J. Synthesis of bilayer oleic acid-coated Fe3O4nanoparticles and their application in pH-responsive Pickering emulsions. Journal of Colloid andlnterface Science,2007,310:260-269.
    [74] Tambe D E, Sharma M M. The effect of colloidal particles on fluid-fluid interfacial propertiesand emulsion stability. Advances in colloid and Interface Science,1994,52:1-63.
    [75] Bechhold H, Dede L, Reiner L. Dreiphasige Emulsionen [Jl, Colloid& Polymer Science,1921,28:6-19.
    [76] Tarimala S, Dai L L. Structure of micro particles in solid-stabilized emulsions. Langmuir,2004,20:3492-3494.
    [77] Yan Z L, Elliott J A W, Masliyah J H. Roles of various bitumen components in the stability ofwater-in-diluted-bitumen emulsions. Journal of Colloid and lnterface Science,1999,220:329-337.
    [78] Yan N, Gray M R, Masliyah J H. On water-in-oil emulsions stabilizedby fine solids. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2001,193:97-107.
    [79] Vignati E, Piazza R, Lockhart T P. Pickering emulsions: Interfacial tension colloidal layermorphology, and trapped-particle motion. Langmuir,2003,19:6650-6656.
    [80] Asekomhe S O, Chiang R, Masliyah J H, Elliott J A W. Some observations on the contractionbehavior of a water-in-oil drop with attached solids. Industrial&Engineering Chemistry Research,2005,44:1241-1249.
    [81] Binks B P, Rodrigues J A. Types of Phase inversion of silica particle stabilized emulsionscontaining triglyceride oil. Langmuir,2003,19:4905-4912.
    [82] Binks B P, Lumsdon S O. Effects of oil type and aqueous phase composition on oil-watermixtures containing particles of intermediate hydrophobicity. Physical Chemistry Chemical Physics,2000,2:2959-2967。
    [83] Binks B P, Clint J H. Solid wettability from surface energy components: Relevance to Pickeringemulsions. Langmuir,2002,18:1270-1273.
    [84] Binks B P, Desforges A, Duff D G. Synergistic stabilization of emulsions by a mixture ofsurface-active nanoparticles and surfactant. Langmuir,2007,23:1098-1106.
    [85] Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized by amixture of silica nanoparticles and cationic surfactant. Langmuir,2007,23:3626-3636.
    [86] Binks B P, Rodrigues J A. Enhanced stabilization of emulsions due to surfactant-inducednanoparticle flocculation. Langmuir,2007,23:7436-7439.
    [87] Binks B P, Rodrigues B A. Influence of surfactant structure on the double inversion ofemulsions in the presence of nanoparticles. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2009,345:195-201.
    [88] Cui Z G, Shi K Z, Cui Y Z, Binks B P. Double phase inversion of emulsions stabilized by amixture of CaCO3nanoparticles and sodium dodecyl sulphate. Colloids and Surfaces A:Physicochemical and Engineering A Aspects,2008,329:67-74.
    [89] Midmore B R. Effect of aqueous phase composition on the properties of a silica-stabilized w/oEmulsion. Journal of Colloid and Interface Science,1999,213:352-359.
    [90] Gosa K L, Uricanu V. Emulsions stabilized with PEO-PPO-PEO block copolymers and silica.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,197:257-269.
    [91] Lagal G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions: Ⅱ. Preparation andproperties of emulsions with smectites and nonionic surfaetants. Applied Clay Science,1999,14:83-103.
    [92] Lagal G, Reese M, Abend S. Smectites as colloidal stabilizers of emulsions: Ⅱ. RheologicalProperties of smectite-laden emulsions, Applied Clay Science,1999,14:279-298.
    [93] Sehulman J H L. Control of contaet angles at the oil-water-solid interfaces-emulsions stabilizedby solid partieles (BaSO4). Trans Faraday Sci.,1954,50:598-604.
    [94] Tambe D E, Sharma M M. Hydrodynamics of thin liquid films bounded by viscoelasticinterfaces. Journal of Colloid and Interface Science,1991,147:137-151.
    [95] Tambe D E, Sharma M M. Factors controlling the stability of colloid-stabilized emulsions: Ⅲ.Measurement of the rheological properties of Colloid-Laden interfaces. Journal of Colloid andInterface Science,1995,171:456-462.
    [96] Lan Q, Yang F, Zhang S Y, Liu S Y, Xu H, Sun D J. Synergistic effect of silica nanoparticleand cetyltrimethylal ammonium bromide on the stabilization of O/W emulsions. Colloide andSurfaces A: Physicochemical and Engineering Aspects,2007,302:126-135.
    [97] Li C F, Zhang S Y, Wang J, Feng X S, Sun D J, Xu J. Interactions between Brij Surfactants andLaponite Nanoparticles and Emulsions Stabilized by Their Mixtures. Aeta Chimica Sinica,2008,66:2313-2320.
    [98] Binks B P, Desforges A, Duff D G, Synergistic stabilization of emulsions by a mixture ofsurface-active nanoparticles and surfactant. Langmuir,2007,23:1098-1106.
    [99] Legrand J, Chamerois M, Placin F, Poirie J E, Bibette J, Leal-Calderon F. Solid colloidalparticles inducing coalescence in bitumen-in-water emulsions. Langmuir,2005,21:64-70.
    [100] Velev O D, Furusawa K, Nagayama K. Assembly of latex particles by using emulsion dropletsas templates.1. Microstruetured hollow spheres. Langmuir,1996,12(10):2374-2384.
    [101] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bauseh A R, Weitz D A.Colloidosomes: Seleetively permeable capsules composed of colloidal partieles. Science,2002,298(5595):1006-1009.
    [102] Guan Y Y, Meng X H, Qiu D. Hollow microsphere with mesoporous shell by Pickeringemulsion polymerization as a Potential colloidal collector for organic contaminants in water.Langmuir,2014,30,3681.
    [103] Pan J M, Li L L, Hang H, Wu R R, Dai X H, Shi W D, Yan Y S. Fabrication and evaluationof magnetic/hollow double-shelled imprinted sorbents formed by Pickering emulsion polymerization.Langmuir,2013,29,4959.
    [104] Kim Y J, Liu Y D, Seo Y, Choi H J, Pickering-emulsion-polymerized polystyrene/Fe2O3composite particles and their magnetoresponsive characteristics. Langmuir,2013,29,4959.
    [105] Zhang M M, Ngo T H, Rabiah N I, Otanicar T P, Phelan P E, Swaminathan R, Dai L L.Core shell and asymmetric polystyrene gold composite particles via one-step Pickering emulsionpolymerization. Langmuir,2014,30,75.
    [106] Bon S A F, Colver P J. Pickering miniemulsion polymerization using Laponite clay as astabilizer. Langmuir,2007,23(16):8316-8322.
    [107] Gao Q X,Wang C Y, Liu H X,Wang C H, Liu X X, Tong Z. Suspension polymerization basedon inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsuleswith tunablesupracolloidal structure.Polymer,2009,50(12):2587-2594.
    [108] Colver P J, Colard C A L, Bon S A F. Multilayered nanocomposite polymer colloids usingemulsion polymerization stabilized by solid partieles. J. Am. Chem. Soc.,2008,130(50):16850-16851.
    [109] Schmid A,Tonnar J, Armes S P. A new highly efficient route to polymer-silica colloidalnanocomposite particles. Adv. Mater.,2008,20(17):3331-3336.
    [110] Schmid A, Armes S P, Leite C A P. Galembeck F.Efficient preparation of polystyrene/silicacolloidal nanocomposite particles by emulsion polymerization using a glycerol-functionalized silicasol. Langmuir,2009,25(4):2486-2494.
    [111]李煌. Pickering乳液聚合制备核-壳结构PS-SiO2复合微球.功能高分子学报,2009,22(2).
    [112] Duan L L,Chen M, Zhou S X, Wu L M. Synthesis and charaeterization ofPoly(N-isopropylacrylamide)/silica composite microspheres via inverse pickering suspensionpolymerization. Langmuir,2009,25(6):3467-3472.
    [113] Zhang K, Wu W, Meng H, Guo K, Chen J F. Pickering emulsion polymerization: preparationof polystyrene/nano-SiO2composite microspheres with core-shell structure. Powder Technol.,2009,190(3):393-400.
    [114] Chen J H, Cheng C Y, Chiu W Y, Lee C F, Liang N Y. Synthesis of ZnO/polystyrenecomposites particles by Pickering emulsion polymerization. Eur. Polym. J.,2008,44(10):3271-3279.
    [115]高雪梅.纳米镍/聚苯胺的原位合成及性能表征.哈尔滨:黑龙江大学,2009.
    [116] Zhang Y H, Zou Q C, Shu X W, Tang Q Q, Chen M, Wu L M. Preparationof raspberry-likepolymer/silica nanocomposite microspheres via emulsifier-free polymerization in water/acetonemedia. J. Colloid Interface Sci.,2009,336(2):544-550.
    [117] Perey M J, Bartllet C, Lobb J C, et al. Synthesis and characterization of vinyl polymer-silicacolloidal nanocomposites. Langmuir,2000,16(17):6913-6920.
    [118] Zhang J, Chen K Q, Zhao H Y. PMMA colloid particles armored by clay layers withPDMAEMA polymer brushes. J. Polym. Sci. Pol.Chem.,2008,46(8):2632-2639.
    [119] Yang Y F, Zhang J, Liu L, Li C X, Zhao H Y. Synthesis of PS and PDMAEMA mixedpolymer brushes on the surface of layered silicate and their application in Pickering suspensionpolymerization. J. Polym. Sci. Pol. Chem.,2007,45(24):5759-5769.
    [1] Bon S A F, Colver P J. Pickering miniemulsion polymerization using laponite clay as a stabilizer.Langmuir,2007,23:8316-8322.
    [2] Jeng J, Chen T Y, Lee C F, Liang N Y, Chiu W Y. Growth mechanism and Ph regulationcharacteristics of composite latex particles prepared from Pickering emulsion polymerization ofaniline/ZnO using different hydrophilicities of oil phases. Polymer,2008,49:3265-3271.
    [3] Chen T, Colver P J, Bon S A F. Organic–Inorganic Hybrid Hollow Spheres prepared fromTiO2-Stabilized Pickering Emulsion Polymerization. Adv. Mater.,2007,19:2286-2289.
    [4] Zaragoza-Contreras, E A, Escobar C A H, Fontes A N, Gallardo S G F. Synthesis of carbonblack/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM.Micron,2011,42:263-270.
    [5] Zou H, Wu S, Shen J. Preparation of Silica-Coated Poly(styrene-co-4-vinylpyridine) Particlesand Hollow Particles. Langmuir,2008,24:10453-10461.
    [6] Balmer J A, Mykhaylyk O O, Fairclough, J P A, Ryan A J, Armes S P, Murray, M W, Murray KA, Williams N S J. Unexpected Facile Redistribution of Adsorbed Silica Nanoparticles BetweenLatexes. J. Am. Chem. Soc.,2010,132:2166-2168.
    [7] Chen M, Wu L, Zhou S, You B. Synthesis of Raspberry-like PMMA/SiO2NanocompositeParticles via a Surfactant-Free Method. Macromolecules,2004,37:9613-9619.
    [8] Zhang Y, Zou Q, Shu X, Tang Q, Chen M, Wu L. Preparation of raspberry-like polymer/silicananocomposite microspheres via emulsifier-free polymerization in water/acetone media. J. ColloidInterface Sci.2009,336:544-550.
    [9] Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silica particles. Phys.Chem. Chem. Phys.1999,1:3007-3016.
    [1] Hasell T, Yang J X, Wang W X, Li J. Brown P D, Poliakoff M. Preparation ofpolymer-nanoparticle composite beads by a nanoparticle-stabilised suspension polymerization. J.Mater. Chem.,2007,17:4382-4386.
    [2] Yang J, Hasell T, Wang W X, Li J, Brown P D, Poliakoff M. Preparation of hybrid polymernanocomposite microparticles by a nanoparticle stabilised dispersion polymerization. J. Mater.Chem.,2008,18:998-1001.
    [3] Zhang J, Chen K Q, Zhao H Y. PMMA colloid particles armored by clay layers withPDMAEMA polymer brushes. J. Polym. Sci. Part A Polym. Chem.,2008,46:2632-2639.
    [4] Chen K Q, Yang Y F, Sa Q N, Shi L Q, Zhao H Y. Suspension polymerization stabilized bytriblock copolymer with CdS nanoparticles. Polymer,2008,49:2650-2655.
    [5] Cauvin S, Colver P J, Bon S A F. Pickering Stabilized Miniemulsion Polymerization: Preparationof Clay Armored Latexes. Macromolecules,2005,38:7887-7889.
    [6] Voorn D J, Ming W, van Herk A M. Polymer-Clay Nanocomposite Latex Particles by InversePickering Emulsion Polymerization Stabilized with Hydrophobic Montmorillonite Platelets.Macromolecules,2006,39:2137-2143.
    [7] C. Barthet, A.J. Hiekey,Cairns, etal.Sythesis of novel Polymer-silica colloidal nanocompositesvia free-radiccal polymerization of vinyl monomers. AdV. Mater.,1999,11:408-410.
    [8] M.J. Percy, C. Barthet, B.J.C. Lobb,etal.Sythesis and charaeterization of vinyl Polymer-silicacolloidal nanocomposites. Langmuir,2000,16:6913-6920.
    [9] M. Chen, L. Wu, S. Zhou, B. You. Synthesis of rassberry-like PMMA/SiO2nanocompositepartieles via asurfactant-free method. Macromolecules,2004,37:9613-9619.
    [10] T. Chen, P.J. Colver, S.A.F. Bon. Organic-inorganic hybrid hollow spheres preparedfromTiO2-stabilized Pickering emulsion polymerization. Ady. Mater.,2007,19:2286-2289.
    [11] Bon S A F, Cauvin S, Colver P J. Colloidosomes as micron-sized polymerization vessels tocreate supracolloidal interpenetrating Polymer network reinforeed capsules. Soft Matter.,2007,3:194-199.
    [12] Aveyard R, Binks B P, Clint J H. Emulsions stabilized solely by colloidal particles. Adv.Colloid Interface Sci.,2003,100-102:503-546.
    [13] Yan N, Gray M R, Masliyah J H. On water-in-oil emulsions stabilized by fine solids. ColloidsSurf. A,2001,193:97-107.
    [14] He Y, Yu X. Preparation of SiO2nanoparticle-armored polyaniline microspheres in a Pickeringemulsion. Mater. Lett.,2007,62:2071-2074.
    [15] Bon S A F, Colver P J. Pickering miniemulsion polymerization using laponite clay as astabilizer. Langmuir,2007,23:8316-8322.
    [16] Wen N, Tang Q, Chen M, Wu L. Synthesis of PVAc/SiO2latices stabilized by SiO2nanoparticle. J. Colloid Interf. Sci.,2008,320:152-158.
    [17] Jeng J, Chen T Y, Lee C F, Liang N Y, Chiu W Y. Growth mechanism and pH regulationcharacteristics of composite latex particles prepared from Pickering emulsion polymerization ofaniline/ZnO using different hydrophilicities of oil phases. Polymer,2008,49:3265-3271.
    [18] Yin D, Zhang Q, Yin C, Jia Y, Zhang H. Effect of particle coverage on morphology ofSiO2-covered polymer microspheres by Pickering emulsion polymerization. Colloids Surf. A,2010,367:70-75.
    [19] Ma H, Dai L L. Synthesis of polystyrene-silica composite particles via one-stepnanoparticle-stabilized emulsion polymerization. J. Colloid Interf. Sci.,2009,333:807-811.
    [20] Ma G, Li J. Compromise between dominant polymerization mechanisms in preparation ofpolymer microspheres. Chem. Eng. Sci.,2004,59:1711-1721.
    [1] Lou X W, Archer L A, Yang Z. Hollow Micro-/Nanostructures: Synthesis and Applications. JAdvanced Materials,2008,20:3987–4019.
    [2] Hu D, Zhang X, Zhang C, Ding S, Yang Z. Quaternized polystyrene composite hollow particles.Polymer,2012,53:3802-3806.
    [3] Oh J K, Lee D I, Park J M. Biopolymer-based microgels/nanogels for drug delivery applications.Progress in Polymer Science,2009,34:1261-1282.
    [4] Yang X, Chen L, Huang B, Bai F, Yang X. Synthesis of pH-sensitive hollow polymermicrospheres and their application as drug carriers. Polymer,2009:50:3556-3563.
    [5] Yuan Q, Yang L, Wang M. The Mechanism of the Formation of Multihollow Polymer Spheresthrough Sulfonated Polystyrene Particles. Langmuir,2009,25:2729-2735.
    [6] Bergbreiter D E. Self-Assembled, Sub-Micrometer Diameter Semipermeable Capsules.Angewandte Chemie International Edition,1999,38:2870-2872.
    [7] Okubo M, Ito A, Hashiba A. Production of submicron-sized multihollow polymer particleshaving high transition temperatures by the stepwise alkali/acid method. Colloid and PolymerScience,1996,274:428-432.
    [8] Okubo M, Sakauchi A, Okada M. Evaporation behavior of water from aqueous dispersions ofmultihollow particles prepared by the stepwise alkali/acid method. Colloid and Polymer Science,2002,280:38-45.
    [9] Hotz J, Meier W. Vesicle-Templated Polymer Hollow Spheres. Langmuir,1998,14:1031-1036.
    [10] Lima Luz C T, Coutinho, F M B. The influence of the diluent system on the porous structureformation of copolymers based on2-vinylpyridine and divinylbenzene. Diluent system:II-n-heptane/toluene. Polymer,2001,42:4931-4938.
    [11] Yang Z Z, Zhao D L, Xu M, Xu Y Z. Mechanistic investigation on the formation of epoxy resinmulti-hollow spheres prepared by a phase inversion emulsification technique. Macromol. RapidCommun.,2000,21:574-578.
    [12] Kim, J W, Joe Y G, Suh K D. Poly(methyl methacrylate) hollow particles bywater-in-oil-in-water emulsion polymerization. J. Colloid and Polymer Science,1999,277:252-256.
    [13] Jiao J, Burgess D J. Rheology and Stability of Water-in-Oil-in-Water Multiple EmulsionsContaining Span83and Tween80. J AAPS Pharm. Sci.,2003,5:62-73.
    [14] Frelichowska J, Bolzinger M A, Chevalier Y. Effects of solid particle content on properties ofo/w Pickering emulsions. J Colloid and Interface Science,2010,351:348-356.
    [15] Yin D, Zhang Q, Yin C, Jia Y, Zhang H. Effect of particle coverage on morphology ofSiO2-covered polymer microspheres by Pickering emulsion polymerization. J Colloids andSurfaces A,2010,367:70-75.
    [16] Matosa M, Timgrenb A, Sj b M, Dejmekb P, Raynerb M. Preparation and encapsulationproperties of double Pickering emulsions stabilized by quinoa starch granules. J Colloids andSurfaces A,2013,423:147-157.
    [17] Zhou H, Shi T J, Zhou X. Preparation of polystyrene/SiO2microsphere via Pickering emulsionpolymerization: Synergistic effect of SiO2concentrations and initiator sorts. J Applied SurfaceScience,2013,266:33-38.
    [18] Binks B P, Particles as surfactants-similarities and differences. J Curr Opin Colloid InterfaceSci,2002,7:21-41.
    [19] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles. J AdvColloid Interface Sci,2003,100-102:503-546.
    [20] Binks B P, Horozov T S. Colloidal Particles at Liquid Interfaces. Cambridge: CambridgeUniversity Press,2006.
    [21] Pickering S U. CXCVI.-Emulsions. J Chem Soc,1907,91:2001-2021.
    [22] Yan N, Masliyah J H. Effect of pH on adsorption and desorption of clay particles at oil-waterinterface. J Colloid Interface Sci,1996,181:20-27.
    [23] Walstra P. Emulsion stability. In: Becher P. Encyclopedia of Emulsion Technology, New York:NY: Marcel Dekker Inc,1996, p:1-56.
    [1] Nguyen K T, West J L. Photopolymerizable hydrogels for tissue engineering applications.Biomaterials,2002,23:4307-14.
    [2] Roy I, Gupta M N. Smart polymeric materials: emerging biochemical applications. Chem Biol2000,10:1161-71.
    [3] Katime I, Novoa R, de Apodaca E D, Rodríguez E. Release of the ophylline and aminophyllinefrom acrylic acid/n-alkyl methacrylate hydrogels. J. Polym Sci. Part A Polym Chem2004,42:2756-65.
    [4] Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogelcontact lenses. Biomaterials,2008,29:2259-69.
    [5] Tang Y, Singh J. Controlled delivery of aspirin: effect of aspirin on polymer degradation and invitro release from PLGA based phase sensitive systems. Int. J. Pharm.,2008,357:119-25.
    [6] Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chem. Rev.,2001,101(7):1869-1879.
    [7] Drury J L, Mooney D J. Hydrogels for tissue engineering: scaffold design variables andapplications. Biomaterials,2003,24(24):4337-4351.
    [8] Peppas N A, Langer R. New challenges in biomaterials. Science,1994,263:1715-1720.
    [9] Ogomi D, Serizawa T, Akashi M. Controlled release based on the dissolution of a calciumcarbonate layer deposited on hydrogels. J. Control Release,2005,103(2):315-323.
    [10] Schnepp Z A C, Gonzalez-McQuire R, Mann S. Hybrid biocomposites based on calciumphosphate mineralization of self-assembled supramolecular hydrogels. Adv. Mater.,2006,18(14):1869.
    [11] Liang Y Y, Zhang L M, Jiang W, et al. Embedding magnetic nanoparticles intopolysaccharide-based hydrogels for magnetically assisted bioseparation. Chemphyschem.2007,8(16):2367-2372.
    [12] Ribeiro C C, Barrias C C, Barbosa M A. Calcium phosphate-alginate microspheres as enzymedelivery matrices. Biomaterials,2004,25(18):4363-4373.
    [13] Hassan C M, Stewart J E, Peppa N A. Diffusional Characteristics of Hydrogels Produced byConventional Crosslinking or by Freezing/Thawing Methodss. Adv. Polym. Sci.,2000,153:37-65.
    [14] Hickey A S, Peppas N A, Mesh size and diffusive characteristics of semicrystalline poly(vinylalcohol) membranes prepared by freezing/thawing techniques. J. Membr. Sci.,1995,107(3):229-237.
    [15] Peppas N A, Mongia N K. Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drugdelivery characteristics. Eur. J. Pharm. Biopharm.,1997,43(1):51-58.
    [16] Mollazadeh S, Javadpour J, Khavandi A, In situ synthesis and characterization of nano-sizehydroxyapatite in poly(vinyl alcohol) matrix. Ceram. Int.,2007,33(8):1579-1583.
    [17]徐建宽,袁直,何炳林.环氧化交联聚乙烯醇球的制备.离子交换与吸附,2002,18(1):64-68.
    [18] Cayre O J, Noble P F, Paunov V N. Fabrication of novel colloidosome microcapsules withgelled aqueous cores. J. Mater. Chem.,2004,14(22):3351-3355.
    [19] Paunov V N, Noble P F, Cayre O J, et al. Fabrication off novel types of colloidosomemicrocapsules for drug delivery applications. Proceedings of the Symposium on NanoscaleMaterials Science in Biology and Medicine held at the2004MRS Fall Meeting, Boston, MA, FNov28-Dec02,2004.
    [20] Noble P F, Cayre O J, Alargova R G, et al. Fabrication of "hairy" colloidosomes with shells ofpolymeric microrods. J. Am. Chem. Soc.,2004,126(26):8092-8093.
    [21] Kosmidis K., Argyrakis P., Macheras P. Fractal kinetics in drug release from finite fractalmatrices. J. Chem. Phys.,2003,119(12):6373-6377.
    [22] Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based onhydroxypropyl methyl cellulose (HPMC). Adv. Drug Deliver. Rev.,2001,48(2-3):139-157.
    [23] Papadopoulou V., Kosmidis K., Vlachou M., et al. On the use of the Weibull function for thediscernment of drug release mechanisms. Int. J. Pharm.,2006,309(1-2):44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700