用户名: 密码: 验证码:
二维三轴编织带缠绕碳纤维复合材料机匣包容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维复合材料由于具有高比强度、高比模量和耐腐蚀等优点而被广泛应用于航空航天领域。GE公司在新一代大涵道比商用航空发动机GEnx中使用了一种二维三轴碳纤维编织带缠绕复合材料机匣,并于2007年7月通过整机包容性适航试验,取得单机减重160kg的效果。航空发动机的叶片包容过程为典型的非规则高速撞击过程,而复合材料的高速冲击特性和动态响应比金属材料更加复杂,因此,系统深入的研究复合材料机匣的包容特性,对我国研制高性能大涵道比航空发动机具有十分重要的意义。本文结合试验、理论分析和数值仿真主要完成以下研究工作:
     (1)进行数值仿真计算方法的研究。基于ANSYS/LS-DYNA软件,建立二维三轴编织复合材料单层靶板和多层靶板在弹体高速冲击下的数值仿真计算模型,包括纱线模型、单胞模型和连续介质模型。比较不同计算模型的仿真预测效果以及计算效率。结果表明,纱线模型可以有效的表现纱线的断裂失效、滑移、拔出等行为,但建模难度大,计算时间长;单胞模型和连续介质模型预测的失效模式主要表现为沿纵向和横向的裂纹,其中单胞模型可以表现编织纱线的铺设方向,比连续介质模型的描述更加接近实际,但靶板的抗弹性能预测和计算效率上相差不大,但连续介质模型建模更加方便,适合工程应用,因此在机匣包容性数值仿真中可使用连续介质模型。
     (2)进行二维三轴编织复合材料层合靶板的弹道冲击特性研究。使用钛合金平头圆柱弹体和矩形叶片弹体进行对比试验,评估弹体形状差异对试验结果的影响。使用二维三轴编织布层合板与缎纹机织布层合板进行对比试验,研究碳纤维增强结构对复合材料靶板抗弹能力的影响。根据试验得到的复合材料靶板失效模式和失效区域形状,修改Lopez-Puente理论模型,建立弹体冲击靶板过程中能量对弹体位移的微分方程,有效的预测两种复合材料靶板的弹道极限。采用连续介质模型和连续损伤力学(Continum damage mechanism, CDM)材料模型,仿真分析二维三轴编织复合材料靶板受弹体高速冲击的过程及损伤机理。
     (3)进行二维三轴编织带缠绕增强复合材料机匣的叶片包容性研究。在高速旋转试验台上使用TC4钛合叶片完成3次复合材料机匣包容性试验,获得了包容、接近临界包容和非包容三种典型的试验结果。结合试验和数值仿真,详细研究了高速旋转飞失叶片与机匣的撞击过程。采用数值仿真方法对影响机匣包容性的三个关键因素—机匣壁厚、叶片动能和冲击角度的影响进行了参数化分析,给出复合材料机匣壁厚的经验设计公式。
     (4)进行二维三轴碳纤维编织复合材料机匣在大型航空发动机中的应用研究。针对某型航空发动机一级风扇,使用碳纤维增强复合材料叶片和二维三轴碳纤维编织带缠绕复合材料机匣代替原有的钛合金叶片和钛合金机匣,以期减轻重量并提高包容能力,使其满足适航要求。分别建立不同壁厚的风扇机匣的单叶片包容模型和三叶片包容模型,研究复合材料叶片与复合材料机匣的撞击过程,并对追随叶片的影响进行了分析。结果表明,使用复合材料机匣和叶片可有效的减轻风扇系统的重量,并且提高包容效率。
Carbon fiber Reinforced composites have been widely used in aerospace field due to its advantages of high specific strength, high specific modulus and corrosion resistance. The GE company employs2D carbon fiber tri-axial braided composites in the fan containment system on the GEnx engine. The usage of composite enables GEnx engine reducing weight about160kg and passing the full engine test in July2007. The containment process of the aero-engine fan case is a typical non-ideal high speed impact process. Besides, the impact characteristics and dynamic responses of the composite casing are more complicated than the metal casing. Thus investigating on the composite fan casing systematically and thoroughly have great significane for its application on the commercial aircraft engine. In the current dissertation, the following issues were studied in terms of experiments, theoretical analysis and numerical simulations:
     (1) Investigation on the numerical simulation methods. Based on the commercial finite element codes ANSYS/LS-DYNA, the high velocity impact model of single layer and multi-layers triaxial braided composites were developed by virtue of three types of modeling methods, i.e. yarn model, unit cell model and continuum model. The numerical simulation results and the computation efficiency were compared for three methods. It is concluded that, the yarn model is efficient in predicting the fiber fracture failure, sliding and pull-out, but is difficult in modeling and cost greatly more computation time. The unit cell model and continuum model predicted similar failure modes-the cracking along the longitudinal and transverse direction. The unit cell model can describe the fiber orientation of braided fibers, thus is closer to the actual reinforced architecture. As the impact resistance performance and the computation efficiency predicted by the continuum model is very close to the unit cell model, but the continum model can be developed more convinently, and suitable for enginering application. In consequence, the continuum model was used in studying the high velocity impact response of composite casing.
     (2) Investigation on the ballistic impact properties of the2D triaxial braided composite. Ballistic tests were conducted with the titanium flat-ended cylinder projectile and the rectangular blade-like projectile to evaluate the influences of the projectile shape on the test results. To figure out the influences of the carbon fiber reinforcement architecture on the ballistic performace, one type of satin woven laminated composites were also used in comparison tests. Based on the failure modes and damage area shape observed in tests, the Lopez-Puente model were modified, and the energy differential equation with repect to projectile displacement were established. The theoretical model was validated by predicting the ballistic limit correctly. In addition, the numerical model employing the CDM material model and continuum modeling method were used to study the impact process and the damage mechanism of the composite target.
     (3) Investigation on the containment mechanism of the2D triaxial braided composite casing. Component containment tests were conducted on the high speed rotating machninery for the composite casing using TC4titanium blade. Three typical results were obtained in the tests, including contained result, near critical contained result and uncontained result. The impact process between the blade and the composite casing was analyzed by the numerical simulation results in combination of test results. Three crutial influencing factors-casing thickness, blade kinetic energy and the impact angle were analyzed in detail by parametric study, which derived the empirical designing equations for composite casing.
     (4) Investigation on the engineering application of the2D triaxial braided composite casing on the large aircraft engine.The original titanium fan blade and stiffened casing were substituted for the composite fan blade and casing to improve the containment performance of the first stage fan containment system for a certain type aero-engine, and satisfy the demand of airworthiness regulation. A series of single blade and three blades containment finite element model were developed. The impact process between the composite fan blade and the braided compsite fan casing were analyzed, and the effects of the trailing blades on the containment process were also investigated. It is concluded that the using of the composite containment system can reduce weight of the aeroengine and improve the containment efficiency at the same time.
引文
[1]Sarkar S., Atluri S N., Effects of multiple blade interaction on the containment of blade fragments during a rotor failure[J]. Finite Elements in Analysis and Design,1996,23: 211-223.
    [2]宣海军,陆晓,洪伟荣,廖连芳.航空发动机机匣包容性研究综述[J].航空动力学报,2010,25(8):1860-1870.
    [3]United Kingdom Air Accidents Investigation Branch, Report on the accident to Boeing 737-236, G-BGJL at Manchester International Airport on 22 August 1985[R], Aircraft Accident, Report from the British Department of Transport, No.8/88 (EW/C929).
    [4]National Transportation Safety Board, Uncontained engine failure/fire valujet airlines flight 597, Douglas DC-9-32, N908VJ, Atlanta Georgia[R], Aircraft Accident Report, NTSB ATL95MA106.
    [5]National Transportation Safety Board, Uncontained engine failure Delta Air Lines Flight 1288, McDonnell Douglas MD-88, N927DA, Pensacola Florida, July 6,1996, Aircraft Accident Report[R],NTSB/AAR-98-01, January 13,1998.
    [6]Examination of a Failed Fan Blade Rolls-Royce RB211 Trent 892. Turbofan Engine Boeing 777-300, A6-EMM.2001.
    [7]Aviation Safety Network. Aircraft accident Boeing 767-223ER N330AA Los Angeles international airport. http://aviation-safetv.net/database/record.php?id=20060602-0.
    [8]The Aviation Herald,2008. Incident:Phuket Airlines B743 at Jeddah on Jul 4th 2008, uncontained engine failure during takeoff. http://avherald.com/h?article=40937294/0000&opt=0
    [9]The Aviation Herald,2009. Crash:Caspian Airlines T154 near Janat-Abad on Jul 15th 2009, uncontained engine failure. http://avherald.com/h?article=41cb2735/0004&opt=7680
    [10]The Aviation Herald,2010. Incident:Qantas B744 near San Francisco on Aug 31st 2010, uncontained engine failure,http://avherald.com/h?article=4305467b/0004&opt=0
    [11]The Aviation Herald,2010. Accident:Qantas A388 near Singapore on Nov 4th 2010, uncontained engine failure. The Aviation Herald. http://avherald.com/h?article=43309c6d&opt=0
    [12]The Aviation Herald,2012. Incident:Air Berlin A332 at Phuket on Dec 20th 2012, uncontained engine failure and fire. http://avherald.com/h?article=45ad3851&opt=0
    [13]The Aviation Herald,2013.Incident:Spirit A319 at Dallas on Oct 15th 2013, contained engine failure. http://avherald.com/h?article=:46a09b94
    [14]SAE Committee on Engine Containment, Report on Aircraft Engine Containment[R], SAE AIR 4003, September 1987.
    [15]FAA/SAE Committee on Uncontained Turbine Engine Rotor Events[R], Aerospace Information Report, No.4770, July 1994.
    [16]SAE Committee on Engine Containment, Report on Aircraft Engine Containment[R], SAE AIR 4003, September 1987.
    [17]FAA Advisory Circular. Design considerations for minimizing hazards caused by uncontained turbine engine and aluxiliary power unttrotor failure.1997[R], Report No: AC20-128A:
    [18]Moussa N.A., Whale M.D., Groszmann D.E., Zhang X.J., The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[R], Federal Aviation Administration, Report No. DOT/FAA/AR-96/95, January 1997.
    [19]FAR33, Airworthiness standards:Aircraft engines[S]. United States:Federal Aviation Administration,1984.
    [20]MIL-STD-1783B, Engine structural integrity program[S]. United States:Department of Defense,2002.
    [21]Defense standard 00-971, General specification for aircraft gas turbine engines [S]. United Kingdom:Ministry of Defense,1987.
    [22]CCAR-33,航空发动机适航规定[S].北京:中国民用航空总局,2005.
    [23]国防科学技术工业委员会.GJB3366-航空涡轮发动机包容性要求[S].北京,1998.
    [24]沈尔明,王志宏,滕佰秋等,先进树脂基复合材料在大涵道比发动机上的应用[J].航空制造技术,2011(17):56-61.
    [25]陈光,航空发动机结构设计分析[M].北京:北京航空航天大学出版社.
    [26]Horibe K., Kawahira K., Sakai J., et al. Development of GE90-115B Turbofan Engine[J]. IHI Engineering Review,2004,37(1):1-8.
    [27]Mecham M., GEnx development emphasizes composites, combuster technology [J]. Avitation Week & Space Technology,2006.4.16.
    [28]陈光,用于波音787客机的GEnx发动机设计特点[J].航空发动机,2010,36(1):1-6.
    [29]赵云峰,先进纤维增强树脂基复合材料在航空航天工业中的应用[J].军民两用技术与产品,2010(1):4-6.
    [30]陈亚莉,GEnx发动机在材料应用上的创新[J].航空维修与工程,2007(4):54-56.
    [31]McMillan D.A., Material development for Fan Blade Containment Casing[C], in Journal of Physics:Conference Series.2008.
    [32]Rolls-Royce shares next generation engine designs, February,2014. http://www.rolls-royce.com/news/press releases/2014/260214 next-generation.jsp
    [33]Horsley J., The Rolls-Royce way of validating fan integrity[C].29th Joint Propulsion Conference and Exhibit, Monterey, CA,1993:28-30.
    [34]Gogolewski R.P., Cunningham B.J., Terminal Ballistic Experiments for the Development of Turbine Engine Blade Containment Technology [R]. Lawarance Livermore national laboratory, No.UCRL-ID-1209301995.
    [35]何庆,宣海军,刘璐璐,航空发动机风扇叶片撞击机匣的响应机理研究[J].兵工学报,2011,32(Supp1.2):45-50.
    [36]Carney K.S., Pereira J.M., Revilock D.M., et al., Jet engine fan blade containment using an alternate geometry[J]. International Journal of Impact Engineering,2009,36: 720-728.
    [37]Gogolewski R.P., Morgan B.R., Ballistic experiment s with titanium and aluminum targets[R]. Lawrence Livermore National Laboratory, No. UCRL-ID-136691,2001.
    [38]Ambur D.R., Jaunky N., Lawson R.E., et al., A gas actuated projectile launcher for high energy impact testing of structure[R], NASA Report, No.AIAA-99-1385,1999
    [39]Ambur D.R., Jaunky N., Lawson R.E., et al., Numerical simulations for high-energy impact of thin plates [J]. International Journal of Impact Engineering,2001.25(7): 683-702.
    [40]Cobb A., FAA Debris Mitigation Impact Test Report[R], No. DOT/FAA/AR-99/54, 1999.
    [41]Mathis J.A., Parduhn S.C., Alvarez P., Analysis of turbine engine rotor containment and shielding structures[R]. No. AIAA 93-1718,1993.
    [42]Pereira J.M., Lerch B.A., Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications[J]. International Journal of Impact Engineering,2001.25(8):715-733.
    [43]Carney K.S., Pereira J.M., Revilock D.M., et al, Jet engine fan blade containment using an alternate geometry [J]. International Journal of Impact Engineering,2009.36: 720-728.
    [44]Lundin S.J., Mueller R.B., Advanced Aircraft Materials, Engine Debris Penetration Testing[R]. FAA, No.DOT/FAA/AR-03/37,2005.
    [45]Kelley S., Johnson G., Statistical Testing of Aircraft materials for transport airplane rotor burst fragment shielding[R]. FAA, No. DOT/FAA/AR-06/9,2006.
    [46]Teng X., Wierzbicki T., Gouging and Fracture of Engine Containment Structure under fragment impact[J]. Journal of Aerospace Engineering,2008.21(3):174-186.
    [47]Buyuk M., Loikkanen M., Kan C.S., Explicit Finite Element Analysis of 2024-T3/T351 Aluminum Material Under Impact Loading for Airplane Engine Containment and Fragment Shielding[R]. FAA Report, No.DOT/FAA/AR-08/36,2009.
    [48]李娟娟,宣海军,洪伟荣等,靶板抗轮盘碎片撞击能力的数值模拟[J].航空动力学报,2009.24(10):2308-2313.
    [49]Li J., Xuan H., Liao L., et al., Penetration of disk fragments following impact on thin plate[J]. Journal of Zhejiang University SCIENCE A,2009.10(5):677-684.
    [50]何庆,宣海军,廖连芳等,薄靶板受叶片形弹体撞击的数值仿真研究[J].工程力学,2010.27(4):234-239.
    [51]丁志伟,宣海军,陆晓,平板条叶片侵彻靶板的动响应研究[J].航空发动机,2011.37(3):54-57.
    [52]丁志伟,平板条叶片撞击金属靶板数值仿真方法研究[D],浙江大学,2011.
    [53]陈光涛,宣海军,刘璐璐等,钛合金加筋板抗碎片冲击性能研究[J].兵工学报,2013.34(S 1):220-224.
    [54]杨双林,双层金属机匣模拟包容性试验及数值分析[D],南京航空航天大学,2010.
    [55]杨乐,加筋铝合金板抗冲击性能研究及结构优化[D],南京航空航天大学,2012.
    [56]Zhang T., Chen W., Guan Y., et al., Study on Titanium Alloy TC4 Ballistic Penetration Resistance Part Ⅰ[J]. Chinese Journal of Aeronautics,2012.25(3):388-395.
    [57]Zhang T., Chen W., Guan Y., et al., Study on ballistic penetration resistance of titanium alloy TC4,Part Ⅱ-numerical analysis[J]. Chinese Journal of Aeronautics,2012.26(3): 606-613.
    [58]Delucia R.A., Mangano G.J., Rotor Burst Protection Program:Statistics on Aircraft Gas Turbine Engine Failures That Occurred in Commercial Aviation During 1971 [R]. Naval Air Propulsion Test Center, NASA-CR-131525, Feb 1973.
    [59]Mangano G.J., Delucia R.A., Rotor Burst Protection Program:Statistics on Aircraft Gas Turbine Engine Rotor Failures that Occurred in U.S. Commercial Aviation During 1972[R]. Naval Air Propulsion Test Cente, NASA-CR-136900, Mar 1974
    [60]Delucia R.A., Mangano G.J., Rotor Burst Protection Program:Statistics On Aircraft Gas Turbine Engine Rotor Failures That Occurred In U.S. Commercial Aviation During 1975[R]. Naval Air Propulsion Test Center, NASA-CR-135304, May 1977.
    [61]Delucia R.A., Salvino J. T., Rotor Burst Protection Program:Statistics On Aircraft Gas Turbine Engine Rotor Failures That Occurred In U.S. Commercial Aviation During 1978[R]. Naval Air Propulsion Test Center, NASA-CR-136900,1981.
    [62]Delucia R.A., Fenton B.C., Chapdelaine E. R.,Statistics on Aircraft Gas Turbine Engine Rotor Failures That Occurred in U.S Commercial Aviation During 1988[R]. Naval Air Propulsion Test Center, ADA255741,1992.
    [63]Martino A.A., Mangano G.J., Rotor burst protection program Initial Test. phase Ⅳ final report[R]. Naval Air Propulsion Test Center, No. NAPTC-AED-1869,1969.
    [64]Mccallum R.B., Simplified Analysis of a Trifragmen Rotor Disk Interaction with a Containment Ring[J]. Journal of Aircraft,1970.7(3):283-285.
    [65]Hagg A.G., Sankey G.O., The containment of disc burst fragments by cylindrical shells[J]. Journal of Engineering for Power,1974(4):114-123.
    [66]Heermann K.F., McClure K.R., Eriksson R.H., Study to improve turbine engine rotor blade containment[R]. FAA, FAA-RD-77-100,1977.
    [67]Mathis J. A., Design Procedures and Analysis of Turbine Rotor Fragment Hazard Containment[R]. FAA, No. DOT/FAA/AR-96/121,1997.
    [68]Stamper E., Hale S., The Use of LS-DYNA Models to Predict Containment of Disk Burst Fragments[C],10th International LS-DYNA Users Conference. Dearborn, Michigan, USA, June 2008.
    [69]Xuan H., Liu L., Feng Y., et al., Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-Science A,2012.13(9):665-673.
    [70]李娟娟,宣海军,廖连芳:轮盘碎片撞击圆筒体的试验研究[J].兵工学报,2009.30(S2):218-222.
    [71]李娟娟,圆环/轮盘包容问题的数值评定方法研究[D].浙江大学,2010.
    [72]刘璐璐,宣海军,张娜等,某涡轮冷却器压气机轮盘包容性研究[C],第22届结构工程会议,新疆,乌鲁木齐,2013.
    [73]陈光涛,几种航空发动机机匣的包容性研究[D],浙江大学,2014.
    [74]Collins T.P., Witmer E.A., Application of the collison-imparted velocity method for containment structure[R]. NASA, No. NASA CR-134494,1973.
    [75]Wu R. W.H., Witmer E.A., Approximate Analysis of Containment/Deflection Ring Responses to Engine Rotor Fragment Impact[J]. Journal of Aircraft,1973.10(1):28-37.
    [76]Zirin R.M., Witmer E.A., Examination of the collision force method for analyzing the responses of simple containment deflection structures[R]. NASA, No. NACA CR-120952, 1972.
    [77]Sarkar S., Atluri S.N., Effects of multiple blade interaction on the containment of blade fragments during a rotor failure[J]. Finite Elements in Analysis and Design,1996. 23(2-4):211-223.
    [78]Kraus A., Frischbier J., Containment and penetration in case of blade loss in a low pressure turbine[C], DYNAmore LS-DYNA Forum. Bad Mergentheim, September 2002.
    [79]Hermosilla U., Alcaraz J.L., Aja A.M., Blade Impact Simulation Against Turbine Casings[C].2004 ABAQUS Users'Conference, Boston, MA USA,2004.
    [80]Shmotin Y.N., Gabov D. V., Numerical Analysis of Aircraft Engine Fan Blade-Out[C], 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, California,2006.
    [81]龚梦贤,王旅生,曹风兰,叶片包容性试验研究初探[J].燃气涡轮试验与研究,1991.4(3):41-46.
    [82]龚梦贤,王旅生,曹凤兰,叶片包容性试验研究[J].航空动力学报,1992,7(2):144-146.
    [83]吴荣仁,汽轮机、航空发动机断裂叶片撞击机壳的模拟试验研究[J].动力工程,2000,20(4):775-777.
    [84]郑劲松,高速旋转平板叶片撞击同心圆筒壳体试验的研究[J].爆炸与冲击,2002,22(3):267-272.
    [85]文颖娟,陈伟,关玉璞,考虑温度影响的叶片/机匣包容数值分析研究[C].中国航空学会第三届航空发动机可靠性学术交流会,湖北宜昌,2005.
    [86]李建华,刘杰,WJ9发动机涡轮转子叶片包容性研究[C].中国航空学会(动力)第三届小发动机,中国航空学会(直升机)第三届动力与传动学术讨论会.浙江温州,2000.
    [87]范志强,航空发动机机匣包容性理论和试验研究[D],南京航空航天大学,2006.
    [88]范志强,高德平,覃志贤等,机匣包容性破坏势能法的试验验证[J].燃气涡轮试验与研究,2006,19(2):26-29.
    [89]范志强,高德平,姜涛等,模型机匣的包容性试验和数值模拟[J].南京航空航天大学学报,2006,38(5):551-556.
    [90]姜涛,覃志贤,范志强,航天发动机机匣包容性试验的数值模拟[J].燃气涡轮试验与研究,2008,21(4):34-37.
    [91]黎飞龙,吴宝勤,范志强,航空发动机叶片包容性瞬态响应的数值仿真[J].兵工自动化,2010.29(7):22-24.
    [92]Xuan H., Wu R., Aeroengine turbine blade containment tests using high-speed rotor spin testing facility[J]. Aerospace Science and Technology,2006.10(6):501-508.
    [93]宣海军,洪伟荣,吴荣仁,航空发动机涡轮叶片包容试验及数值模拟[J].航空动力学报,2005,20(5):762-767.
    [94]张晓峰,宣海军,吴荣仁,航空发动机叶片包容模拟试验与数值仿真研究[J].航空发动机,2005,31(4):39-42.
    [95]张伯熹,航空发动机涡轮叶片的包容试验和数值仿真[D],浙江大学,2006.
    [96]He Q., Xuan H., Liao L., et al., Simulation methodology development for rotating blade containment analysis[J]. Journal of Zhejiang University-SCIENCE A,2012.13(4): 239-259.
    [97]于亚彬,陈伟,模型机匣/叶片的包容性数值分析[J].航空动力学报,2005,20(3):429-433.
    [98]于亚彬,陈伟,风机叶片包容性分析[J].应用力学学报,2005,22(4):647-649.
    [99]于连超,陈伟,.关玉璞等,多层机匣的包容性数值仿真研究[J].航空发动机,2009,35(4):32-35.
    [100]李海波,航空发动机机匣的包容性数值分析与实验研究[D],南京理工大学,2010.
    [101]陈思佳,章定国,段玥晨等,航空发动机真实机匣的包容性数值仿真[J].计算机辅助工程,2013.22(2):31-35.
    [102]何庆,宣海军,刘璐璐,某型发动机一级风扇机匣包容性数值仿真[J].航空动力学报,2012.26(10):1-6.
    [103]何庆,宣海军,刘璐璐,航空发动机风扇叶片撞击机匣的响应机理研究[J].兵工学报,2011.32(S1):143-148.
    [104]何庆,宣海军,刘璐璐等,叶片相互作用对机匣叶片包容过程的影响[J].工程力学,2012.29(S1):180-184.
    [105]He Q., Xuan H., Liu L., et al, Perforation of aero-engine fan casing by a single rotating blade[J]. Aerospace Science and Technology,2013.25(1):234-241.
    [106]梁春华,RR公司完成TRENT900发动机的叶片包容试验[J].航空发动机,2003,29(3):44.
    [107]Trent 1000 ready to fly following blade-off test. http://www.flightglobal.com/news/articles/trent-1000-ready-to-fly-following-blade-off-te st-213726/
    [108]GE aviation, GEnx Completes Successful Fan Blade Out Test. http://www.geaviation.com/press/genx/genx 20070705.html
    [109]Yang B., Blade containment evaluation of civil aircraft engines[J]. Chinese Journal of Aeronautics,2013.26(1):9-16.
    [110]Chamis C.C., Johns R.H., Computional Engine Structure Analysis[R]. NASA, No. NASA-TM-87231,1986.
    [111]Lawrence C., Carney K., Gallardo V., Simulation of Aircraft Engine Blade-Out Structural Dynamics[R]. NASA, No. NASA/TM-2001-210957/REV1,2001.
    [112]Lawrence C., Carney K., Gallardo V., A Study of Fan Stage-Casing interaction models[R]. NASA, No. NASA/TM—2003-212215,2003.
    [113]Carney K.S., Lawrence C., Carney D.V., Aircraft Engine Blade-Out Dynamics[C],7th International LS-DYNA Users Conference. Dearborn, Michigan, USA,2003.
    [114]Cosme N., Chevrolet D., Bonini J., et al, Prediction of transient engine loads and damage due to hollow fan blade-off[J]. Revue Europeenne des Elements,2002.11(5):651-666.
    [115]Ortiz R., Herran M., Chalons H., Blade loss studies in low-pressure turbines-from blade containment to controled blade shedding[C]. Computational Methods and Experimental Measurementsm, Carvoeiro, Portugal,2009.
    [116]Sinha S.K., Dorbala S., Dynamic Loads in the Fan Containment Structure of a turbofan engine[J]. Journal of Aerospace Engineering,2009.22(3):260-269.
    [117]Heidari M., Carlson D. L., Sinha S., et al, An Efficient Multi-Disciplinary Simulation of Engine Fan-Blade out Event using MD Nastran[R]. AIAA 092407,2008.
    [118]M.S.公司,采用MDNastran对航空发动机叶片飞脱进行高效的多学科仿真[J].航空制造技术,2009(2):74-77.
    [119]Husband J.B., Developing an Efficient FEM Structural Simulation of a Fan Blade Off test in a Turbofan jet engine[D]. University of Saskatchewan,2007.
    [120]Jain R., Prediction of Transient Loads and Perforation of Engine Casing During Blade-Off Event of Fan Rotor Assembly[C], Proceedings of the IMPLAST 2010 Conference, Rhode Island USA,2010.
    [121]叶冬,高速柔性转子突加大不平衡响应研究[D],浙江大学,2014.
    [122]Mallick P.K., Fiber reinforced composites materials, manufacturing, and design[M]. New York:CRC Press,2007.
    [123]Bristow R.J., Davidson C.D., Development of fiber shields for engine containment[C]. Workshop on An Assessment of Technology for Turbojet Engine Rotor Failures. Cambridge, Massachusetts,1978
    [124]Gerstle J.H., Analysis of Rotor Fragment Impact on Ballistic Fabric engine burst containment shields[J]. Journal of Aircraft,1975,12(4):388-393.
    [125]Gerstle J.H., Analysis methods for Kevlar shield response to rotor fragments[C]. Workshop on An Assessment of Technology for Turbojet Engine Rotor Failures, Cambridge, Massachusetts,1978.
    [126]Weaver A.T., Lightweight engine containment[C]. Workshop on An Assessment of Technology for Turbojet Engine Rotor Failures, Cambridge, Massachusetts,1978.
    [127]Stotler C.L., Coppa A.P., Containment of composite fan blades-Final report[R]. NASA, No. NASA-CR-159544(R79AEG197),1979.
    [128]Stotler C.L., Development of advanced lightweight system containment-Final report[R]. NASA, NASA CR-165212(R81AEG208),1981.
    [129]Pepin Associates Inc., Fiber Reinforced Structures for small turbine engine fragment containment-phase II[R]. FAA, No. DOT/FAA/AR-95/110,1995.
    [130]Pepin J., Fiber-Reinforced Structures for turbine engine rotor fragment containment[R]. FAA, No. DOT/FAA/AR-99/6,1999.
    [131]Holms A.G., Concepts for the development of light-weight composite strucutural for rotor burst containment[R]. NASA, No. NASA-TM-X-73633,1977.
    [132]Mangano G.J., Salvlno J.T., DeLucla R.A.. Rotor burst protection program-experimention [C]. Workshop on An Assessment of Technology for Turbojet Engine Rotor Failures, Cambridge, Massachusetts,1978
    [133]Pereira J.M., Roberts G.D., Revilock D.M., Elevated Temperature Ballistic Impact Testing of PBO and kevlar fabrics for Application in Supersonic Jet Engine Fan Containment Systems[R].NASA, No. NASA TM-107532,1997.
    [134]Salvino J.T., DeLucia R.A., Russo T., Experimental guidelines for the design of turbine rotor fragment containment rings[R]. DOT/FAA/CT-88/21,1988.
    [135]Le D.D., Evaluation of Lightweight Material Concepts for Aircraft Turbine Engine Rotor Failure Protection[R]. FAA, No. DOT/FAA/AR-96/110,1997.
    [136]Shockey D.A., Giovanola J. H., Simons J. W., et al., Advanced Armor Technology-Application Potential for Engine Fragment Barriers for Commercial Aircraft[R]. DOT/FAA/AR-97/53,1997.
    [137]Frankberger C.E., FAA T53-L-13L Turbine Fragment Containment Test[R]. DOT/FAA/AR-98/22,1998.
    [138]Rajan S.D., Mobasher B., Sharda J., et al., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems.Part 1:Static Tests and Modeling[R]. DOT/FAA/AR-04/40,P1,2004.
    [139]Sharda J., Deenadayalu C, Mobasher B., et al., Modeling of Multilayer Composite Fabrics for Gas Turbine[J]. Journal of Aerospace Engineering,2006.19(1):38-45.
    [140]Bansal S., Mobasher B., Rajan S.D., Development of Fabric Constitutive Behavior for Use in Modeling Engine Fan Blade-Out Events[J]. Journal of Aerospace Engineering, 2009.7:249-259.
    [141]Pereira J.M., Revilock D.M., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems.Part 2:Ballistic Impact Testing[R]. DOT/FAA/AR-04/40,P2,2004.
    [142]Pereira J.M., Revilock D.M., Ballistic Impact Response of Kevlar 49 and Zylon under condition representing Jet Engine Fan containment[J]. Journal of Aerospace Engineering,2009.22(3):240-248.
    [143]Simmons J., Erlich D., Shockey D., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems.Part 3:Model Development and Simulation of Experiments[R]. DOT/FAA/AR-04/40,P3,2004.
    [144]Gomuc R., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems,Part 4:Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine[R]. DOT/FAA/AR-04/40,P4,2004.
    [145]Rajan S.D., Mobasher B., Sankaran S., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase Ⅱ Part 1:Fabric Material Tests and Modeling[R]. DOT/FAA/AR-08/37,P1,2009.
    [146]Revilock D.M., Pereira J.M., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase Ⅱ Part 2:Ballistic Impact Testing[R]. DOT/FAA/AR-08/37,P2,2009.
    [147]Simons J., Shockey D., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II, Update to Part 3:Material Model Development and Simulation Experiments[R]. DOT/FAA/AR-10/22,2006.
    [148]Vintilescu I.V., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II,Part 4:Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine[R]. DOT/FAA/AR-08/37,P4,2008.
    [149]Rajan S.D., Mobasher B., Stahlecker Z., et al., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase Ⅲ,Part Ⅰ:Material Model and Numerical Simulations[R]. DOT/FAA/AR-10/23,P1,2010.
    [150]Rajan S.D., Mobasher B., Stahlecker Z., et al., Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase Ⅲ, Part 2:Arizona State University Fabric Material Tests[R]. DOT/FAA/AR-10/23,P2,2010.
    [151]Naik D., Sankaran S., Mobasher B., et al., Development of reliable modeling methodologies for fan blade out containment analysis. Part I:Experimental studies [J]. International Journal of Impact Engineering,2009.36(1):1-11.
    [152]Stahlecker Z., Mobasher B., Rajan S. D., et al, Development of reliable modeling methodologies for engine fan blade out containment analysis. Part Ⅱ:Finite element analysis[J]. International Journal of Impact Engineering,2009.36(3):447-459.
    [153]Lane A.D., Development of an Advanced Fan Blade Containment System[R]. DOT/FAA/CT-89/20,1989.
    [154]Presley K.L., Assessment of an Advanced Containment System[R]. DOT/FAA/AR-97/82, 1999.
    [155]Hebsur M.G., Noebe R.D., Revilock D.M., Impact Resistance of Lightweight Hybrid Structures for gas turbine engine fan containment application[J]. Journal of Materials Engineering and Performance,2003,12:470-479.
    [156]Roberts G.D., Revilock D.M., Binienda W.K., Impact testing and analysis of composites for aircraft engine fan cases[J]. Journal of Aerospace Engineering,2002.15(3): 104-110.
    [157]Binienda W.K., Sancaktar E., Design, Progressive Modeling,Manufacture,and Testing of Composite shield for turbine engine blade containment[R]. NASA Grant NCC3-744, 2002.
    [158]Griffiths B., Composite fan blade containment case[J]. High-performance composites, 2005(5):76-78.
    [159]Roberts G.D., Pereira J. M., Revilock D. M., et al, Ballistic impact of braided composite with a soft projectile[J]. Journal of Aerospace Engineering,2005.18(1):3-7.
    [160]Cheng J., Material mdeling of strain rate dependent polymer and 2D triaxially braided composites[D].The University of Akron,2006.
    [161]Cheng J., Binienda W.K., Simplified Braiding through Integration Points Model for triaxially braided composites [J]. Journal of Aerospace Engineering,2008.21(3): 152-161.
    [162]Staniszewski M., Simulation of tri-axially braided composites half-cylinder behavior during ballistic impact[D]. The University of Akron,2007.
    [163]Littell J., The experimental and analytical characterization of the macromechanical response for triaxial braided composite materials[D]. The University of Akron,2008.
    [164]Littell J.D., Binienda W. K., Goldberg R. K., et al, Full-field Strain Methods for Investigating Failure Mechanisms in triaxial braided composites[J]. Earth & Space,2008: 1-12.
    [165]Littell J.D., Ruggeri C.R., Goldberg R.K., et al, Measurement of Epoxy Resin Tension, Compression, and Shear Stress-Strain Curves over a Wide Range of Strain Rates Using Small Test Specimens [J]. Journal of Aerospace Engineering,2008.21(3):162-173.
    [166]Littell, J.D., Binienda W.K., Arnold W.A., et al, Effect of microscopic damage events on static and ballistic impact strength of triaxial braid composites [J]. Composites:Part A, 2009.40(12):1846-1862.
    [167]Zheng X., Binienda W.K., Rate-Dependent Shell Element Composite Material Model implementation in LS-DYNA[J]. Journal of Aerospace Engineering,2008(7):140-151.
    [168]Li X., Binienda W.K., Littell J.D., Methodology for Impact Modeling of Triaxial Braided Composites Using Shell Elements[J]. Journal of Aerospace Engineering,2009.22(3): 310-317.
    [169]Ruggeri C., High strain rate data acquisition of 2D braided composite structures[D]. The University of Akron,2009.
    [170]Li X., Mesomechanical model for failure study of two dimensional triaxial braided composite material[D]. The University of Akron,2010.
    [171]Li X., Binienda W.K. Goldberg R.K., Finite Element Model for Failure Study of two-dimensional triaxially braided composite[R]. NASA/TM-2010-216372,2010.
    [172]Li X., Binienda W.K., Goldberg R.K., Finite-Element Model for Failure Study of Two-Dimensional triaxially braided composite [J]. Journal of Aerospace Engineering, 2011.24(2):170-180.
    [173]Kohlman L.W., Bail J.L., Roberts G.D., et al, A Notched Coupon Approach for Tensile Testing of Braided Composites[J]. Composites:Part A,2012.43(10):1680-1688.
    [174]Goldberg R.K., Blinzler B.J., Binienda W.K., Investigation of a Macromechanical Approach to analyzing triaxially-braided polymer composites[R]. NASA/TM-2010-216371,2010.
    [175]Goldberg R.K., Blinzler B.J., Binienda W.K., Modification of a Macromechanical Finite-Element Based Model for Impact Analysis of triaxially braided composites[J]. Journal of Aerospace Engineering,2012.25(3):383-394.
    [176]Pereira J.M., Roberts G.D., Ruggeri C.R., Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials[R]. NASA/TM-2010-216763,2010.
    [177]邓君,纤维增强复合材料层合板抗冲击性试验及数值分析[D],南京航空航天大学,2010.
    [178]张科伟,复合材料/钛合金板冲击损伤分析与评估方法研究[D],南京航空航天大学,2011.
    [179]陆晓,碳纤维增强复合材料机匣包容性的数值评定方法研究[D],浙江大学,2011.
    [180]刘璐璐,宣海军,何庆等,复合材料机匣受叶片撞击损伤过程研究[J].兵工学报,2011.32(S2):264-268.
    [181]刘璐璐,宣海军,张娜,航空发动机复合材料机匣叶片包容性研究[J].工程力学,2013.30增:314-319.
    [182]陈薇,纤维复合材料及其组合靶板的抗破片机理及弹道特性研究[D],南京理工大学,2006.
    [183]王元博,纤维增强层合材料的抗弹性能和破坏机理研究[D],中国科学技术大学2006.
    [184]Abrate S., Impact on laminated composites-Recent advances[J]. Applied Mechanics Reviews,1994.47(11):517-544.
    [185]张铱芬,穆建春,复合材料层合结构冲击损伤研究进展(Ⅰ)[J].太原理工大学学报,2009.30(6):563-566.
    [186]金子明,隋金玲,张菡英等.纤维增强复合防弹板研究进展及抗弹性能研究[J].玻璃钢.2001,1:1-6.
    [187]Goldsmith H.W., Dharan C.K.H., Changt H., Quasi-static and ballistic perforation of carbon fiber laminates [J]. International Journal of Solids and Structures,1995.32(1): 89-103.
    [188]Morye S.S., Hine P.J., Duckett R.A., et al., Modelling of the energy absorption by polymer composites upon ballistic impacts [J]. Composites Science and Technology, 2000.60(14):2631-2642.
    [189]Liu P.F., Zheng J.Y., Recent developments on damage modeling and finite element analysis for composite laminates:A review[J]. Materials and Design.2010(31): 3825-3834
    [190]Orifici A.C., Herszberg I., Thomson R.S., Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures.2008(86):194-210.
    [191]Zhang Y.X., Yang C.H., Recent development in finite element analysis for laminated composite plates[J]. Composite Structures.2009,88:147-157.
    [192]张丽,李亚智,张金奎,复合材料层合板在低速冲击作用下的损失分析[J].科学技术与工程.2010,10(5):1170-1174.
    [193]任春雨,朱锡,梅志远,复合材料层合板冲击模型研究现状[J].兵器材料科学工程,2005,28(4):59-67.
    [194]Hayhurst C.J., Hiermaier S. J., Clegg R. A., et al., Development of Material Models for Nextel and Kelvar-Epoxy for high pressure and strain rates[J]. International Journal of Impact Engineering,1999.23(1):365-376.
    [195]Silvaa M.A.G., Cisma-siua C., Chiorean C.G., Numerical simulation of ballistic impact on composite laminates[J]. International Journal of Impact Engineering,2005.31: 289-306.
    [196]Kumar S., Gupta D.S., Singh L, et al., Behavior of KevlarEpoxy Composite Plates Under Ballistic Impact[J]. Journal of Reinforced Plastics and Composites,2010.29(13): 2048-2064.
    [197]Sevkat E., Liaw B., Delale F., et al., A combined experimental and numerical approach to study ballistic impact response of S2-glass fibe/toughened epoxy composite beams [J]. Composites Science and Technology,2009.69:965-982.
    [198]Cheng W.L., Langlie S., Itoh S., High velocity impact of thick composites [J]. International Journal of Impact Engineering,2003.29(1-10):167-184.
    [199]Chang F.K., Chang K.Y., A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials.1987,21(9): 834-855.
    [200]Chang K. Y., Liu S., Chang F. K., Damage tolerance of laminated composites containing an open hole and subject to tensile loadings[J]. Journal of Composite Materials.1991, 25(5):274-301.
    [201]Tan S. C., A progressive failure model for composite laminates containing openings[J]. Journal of Cornposite Materials.1991,25(5):556-577.
    [202]Tan S. C, Perez J., Progressive failure of laminated composites with a hole under compressive loading [J]. Journal of Reinforced Plastics and Composites.1993,12(10): 1043-1057.
    [203]Hou J.P., Petrinic N., Ruiz C., et al., Prediction of impact damage in composite plates[Jj. Composites Science and Technology,2000(60):273-281.
    [204]Her S., Liang Y., The finite element analysis of composite laminates and shell structures to low velocity impact[J]. Composite Structures,2004.66:277-285.
    [205]Choi H. Y., Chang F., A Model for Predicting Damage in Graphite/Epoxy Laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992.26:2134-2169.
    [206]李树虎,陈以蔚,彭刚等,树脂基复合材料抗弹性能数值模拟[J].材料工程,2009(增2):113-118.
    [207]赵立军,赵桂范,吴洪涛,纤维复合层压板抗贯穿的数值仿真[J].振动工程学报,2004.17(S):757-760.
    [208]Li C.F., Hu N, Yin Y. J., et al., Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part Ⅰ. An FEM numerical model[J]. Composites: Part A,2002.33:1055-1062.
    [209]Nishikawa M., Hemmi K., Takeda N., Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact[J]. Composite Structures,2011.93: 1416-1423.
    [210]Ladeveze P., LeDantec E., Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology,1992.43(3):257-267.
    [211]Allix O., Ladeveze P., Interlaminar interface modelling for the prediction of delamination[J]. Composite Structures,1992.22(4):235-242.
    [212]Johnson A.F., Pickettb A.K., Rozyckic P., Computational methods for predicting impact damage in composite structures[J]. Composites Science and Technology,2001.61: 2183-2192.
    [213]Johnson A.F., Holzapfel M., Influence of delamination on impact damage in composite structures[J]. Composites Science and Technology,2006.66:807-815.
    [214]Matzenmiller A., Lubliner J., Taylor R.L., A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials,1995.20(2):125-152.
    [215]Gower H.L., Cronin D.S., Plumtree A., Ballistic impact response of laminated composite panels[J]. International Journal of Impact Engineering,2008.35(9):1000-1008.
    [216]Nandlall D., Williams K., Vaziri R., Numerical simulation of the ballistic response of GRP plates[J]. Composites Science and Technology,1998.58(9):1463-1469.
    [217]Williams K.V., Vaziri R., Application of a damage mechanics model for predicting the impact response of composite materials[J]. Computers and Structures,2001.79(10): 997-1011.
    [218]Williams K.V., Vaziri R., Poursartip A., A physically based continuum damage mechanics model for thin laminated composite structures[J]. International Journal of Solids and Structures,2003.40(9):2267-2300.
    [219]Yen C., Ballistic impact modeling of composite materials[C],7th International LS-DYNA Users Conference.Dearborn, Michigan,USA,2002.
    [220]Chan S., Fawaz, Z., Behdinan K., et al., Ballistic limit prediction using a numerical model with progressive damage capability [J]. Composite Structures,2007.77(4):466-474.
    [221]Deka L.J., Bartus S.D., Vaidya U.K., Damage evolution and energy absorption of E-glass/polypropylene on laminates subjected to ballistic impact[J]. Journal of Material Science,2008.43(13):4399-4410.
    [222]Deka L.J., Bartus S.D., Vaidya U.K., Multi-site impact response of S2-glass/epoxy composite laminates[J]. Composites Science and Technology,2009.69(6):725-735.
    [223]Gama B.A., Jr. Gillespie J.W., Finite element modeling of impact, damage evolution and penetration of thick-section composites[J]. International Journal of Impact Engineering, 2011.38(4):181-197.
    [224]Loikkanen M., Powell D., Jet engine rotor fragment impact on composite panel[J]. Journal of Structural Mechanics,2007.40(4):80-94.
    [225]王元博,王肖钧,卞梁等,CDM模型及在纤维增强层合材料侵彻数值模拟中的应用[J].爆炸与冲击,2008.28(2):172-177.
    [226]崔海坡,温卫东,复合材料层合板冲击损伤影响因素分析[J].中国机械工程,2008.19(5):613-617.
    [227]覃悦,弹丸正撞击下纤维增强树脂基层合板破坏模式的理论和数值研究[D],中国科学技术大学,2009.
    [228]王跃全,童明波,朱书华,基于CDM的复合材料层合板三维非线性渐进损伤分析[J].南京航空航天大学学报,2009.41(6):709-714.
    [229]Santiuste C, Sanchez-Saez S, Barbero E. A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams[J]. Composite Structures.2010,92:2406-2414.
    [230]Xiao J.R., Gama B.A. and Jr. Gillespie J.W., Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading[J]. Composite Structures,2007.78(2):182-196.
    [231]Ishikawa T., Chou T., Elastic Behavior of Woven Hybrid Composites[J]. Journal of Composite Materials,1982.16:2-19.
    [232]Yang J., Ma C., Chou T., Fiber Inclination Model of Three-Dimensional Textile Structural composites [J]. Journal of Composite Materials,1986.20:472-484.
    [233]Byun J., The analytical characterization of 2-D braided textile composites [J]. Composites Science and Technology,2000.60:705-716.
    [234]Yan Y., Van Hoa S., Energy Approach for Prediction of Mechanical Behavior of 2-D Triaxially Braided Composites. Part II:Parameter Analysis[J]. Journal of Composite Materials,2002.36(10):1233-1253.
    [235]Quek S.C., Waas, A. M., Shahwan K. W., et al., Analysis of 2D triaxial flat braided textile composites[J]. International Journal of Mechanical Sciences,2003.45(6-7): 1077-1096.
    [236]Miravete A., Bielsa J M, Chiminelli A, et al.,3D mesomechanical analysis of three-axial braided composite materials [J]. Composites Science and Technology,2006.66: 2954-2964.
    [237]Song S., Waas A. M., Shahwan K. W., et al, Braided textile composites under compressive loads:Modeling the response, strength and degration[J]. Composites Science and Technology,2007.67(15-16):3059-3070.
    [238]Ivanov D.S., Baudry F., Van Den Broucke, B., et al., Failure analysis of triaxial braided composite[J]. Composites Science and Technology,2009.69(9):1372-1380.
    [239]Xiao X., Botkin M., Johnson N., Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA[J]. Thin-Walled Structures,2009.47:740-749.
    [240]Xiao X., McGregor C., Vaziri R., et al, Progress in braided composite tube crush simulation[J]. InternationalJournal of Impact Engineering,2009.36(5):711-719.
    [241]Xiao X., A Coupled Damage-plasticity Model for Energy Absorption in Composite[JJ. International Journal of Damage Mechanics,2010.19:727-751.
    [242]Iannucci L., Progressive failure modelling of woven carbon composite under impact[J]. International Journal of Impact Engineering,2006.32(6):1013-1043.
    [243]Xie D., Salvi A.G., Sun C., et al, Discrete Cohesive Zone Model to Simulate static fracture in 2D triaxially braided carbon fiber composites[J]. Journal of Composite materials,2006.40(22):2025-2046.
    [244]Shockey D.A., Erlich D.C., Simons J.W., Improved Barriers to Turbine engine fragments-Interim report III[R]. DOT/FAA/AR-99/8,Ⅲ,1999.
    [245]Cheeseman B.A., Bogetti T.A., Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures,2003.61:161-173.
    [246]Duan Y., Keefe M., Bogetti T. A., et al., Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric[J]. International Journal of Impact Engineering,2005.31(8):996-1012.
    [247]Chocron S., Figueroa E., King N., Modeling and validation of full fabric targets under ballistic impact[J]. Composites Science and Technology,2010.70:2012-2022.
    [248]Liu P.F., Chu J. K., Liu Y. L., et al., A study on the failure mechanisms of carbon fiber-epoxy composite laminates using acoustic emission[J]. Materials & Design,2012. 37:228-235.
    [249]Billon H.H., Robinson D.J., Models for the ballistic impact of fabric armour[J]. International Journal of Impact Engineering,2001.25(4):411-422.
    [250]Christensen R.M., A critical evaluation for a class of micromechanics models[J]. Journal of the Mechanics and Physics of Solids,1990,38(3):379-404.
    [251]Christensen R.M. A survey of and evaluation methodology for fiber composite material failure theories [C]. Proceeding 20th International Congress of Theoretical and Applied Mechanics, Chicago.2000.
    [252]李东风,王浩静,贺福等,T300和T700炭纤维的结构与性能[J].新型炭材料,2007.22(1):59-64.
    [253]Gilata A., Goldberg R.K., Roberts G.D., Experimental study of strain-rate-dependent behavior of carbon/epoxy composite[J]. Composites Science and Technology,2002.62: 1469-1476.
    [254]Hosur M.V., Alxander J.,Vaidya U. K., et al., high strain rate compression response of carbopn/epoxy laminate composites[J]. Composite Structures,2001.52:405-417.
    [255]Ulven C., Vaidya U. K., Hosur M.V., Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels[J]. Composite Structures,2003. 61(1-2):143-150.
    [256]Gellert E.P., Cimpoeru S.J., Woodward R.L., A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites[J]. International Journal of Impact Engineering,2000.24(5):445-456.
    [257]Wu E., Chang L., Woven glass/epoxy laminates subjected to projectile impact[J]. International Journal of Impact Engineering,1995.16(4):607-619.
    [258]黄英,刘晓辉,李郁忠, Kevlar织物增强复合材料层合板冲击损伤特性研究[J].西北工业大学学报,2002.20(3):486-491.
    [259]Chu C.K., Chen Y.L., Hseu G.C., et al, The Study of Obliquity on the Ballistic Performance of Basket Fabric Composite Materials [J]. Journal of Composite materials, 2007.41(3):1539-1558.
    [260]Lopez-Puente J., Zaera R., Navarro C, Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon-epoxy woven laminates [J]. Composites:Part A,2008.39(2):374-387.
    [261]张佐光,霍刚,张大兴等,纤维复合材料的弹道吸能研究[J].复合材料学报,1998.15(2):74-81.
    [262]王晓强,朱锡,梅志远等,超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J].爆炸与冲击,2009.29(1):29-34.
    [263]熊杰,顾伯洪,王善元等,防弹层压复合材料防弹性能的实验研究[J].纺织学报,2003.24(6):555-557.
    [264]金宏彬,丁辛,复合材料弹道冲击性能研究进展[J].玻璃钢/复合材料2002(2):19-23.
    [265]Bibo G.A., Hogg P.J., Review-The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour[J]. Journal of Materials Science, 1996.31:1115-1137.
    [266]Kim J., Sham M, Impact and delamination failure of woven-fabric composites [J]. Composites Science and Technology,2000.60(5):745-761.
    [267]梅志远,朱锡,任春雨等,弹道冲击下层合板破坏模式及抗弹性能实验研究[J].海军工程大学学报,2005.17(1):11-15.
    [268]梅志远,朱锡,张立军,FRC层合板抗高速冲击机理研究[J].复合材料学报,2006.23(2):143-149.
    [269]Falzon P.J., Herszberg I., Mechanical Performance of 2-D Braided Carbon/epoxy composites[J], Composires Science and Technology,1997.58(2):253-265.
    [270]LoPez-Puente J., Zaera R., Navarro C., An analytical model for high velocity impacts on thin CFRPs woven laminated plates[J]. International Journal of Solids and Structures, 2007.44(9):2837-2851.
    [271]Naik N.K., Shrirao P., Reddy B.C.K., Ballistic impact behaviour of woven fabric composites-formulation[J]. International Journal of Impact Engineering,2006.32(9): 1521-1552.
    [272]Naik N.K., Doshi A.V., Ballistic impact behaviour of thick composites_Parametric studies[J]. Composite Structures,2008.82(3):447-464.
    [273]http://sbir.gsfc.nasa.gov/SBIR/successes/ss/3-114text.html
    [274]Bristow R.J., Davidson C. D., Gerstle J.H., Advances in engine burst containment and finite element applications to battle-damaged structure[C], in the 42nd Structuresand HaterialsPanel Meeting.1976:Ottawa,Canada.
    [275]王晓亮,刘志真,纪双英等,商用航空发动机先进复合材料风扇叶片研究进展[J].新材料产业,2010(11):36-41.
    [276]李锐,宋焕成,复合材料涡轮风扇叶片的发展[J].航空学报,1987.8(8):348-354.
    [277]李杰,GE公司复合材料风扇叶片的发展和工艺[J].航空发动机,2008.34(4):54-55.
    [278]Guy Norris, Rolls-Royce Reveals Next-Gen Engine Plan.2014,3. http://aviationweek.com/awin/rolls-royce-reveals-next-gen-engine-plan-0
    [279]李杰,可供中国大型航空发动机借鉴的新技术-后掠大流量宽弦复合材料风扇叶片技术综述[C],大型飞机关键技术高层论坛暨中国航空学会2007年学术年会,2007.
    [280]贺福,孙微,碳纤维复合材料在大飞机上的应用[J].高科技纤维与应用,2007.32(6):5-8.
    [281]Coroneos R.M., Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine[R].2012, NASA Report, No. NASA/TM-2012-217632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700