用户名: 密码: 验证码:
厌氧发酵液培养链带藻高生物量累积及热裂解产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻作为一种新型生物燃料原料的重要来源,具有分布广泛、适应能力强、生长迅速及油脂含量高等优点。利用厌氧发酵液培养微藻,在处理废液的同时还可有效降低微藻生产成本。热裂解是生物质气化和燃料燃烧过程中必不可少的一个阶段,可以将生物质转化为液体燃料或其它高附加值产品。本文优化了厌氧发酵液培养链带藻的高生物量累积工艺;采用热裂解-气相色谱-质谱联用技术,在不同温度下测定了不同培养条件下链带藻的热裂解产物组分变化;对链带藻热裂解过程进行生命周期评价;并对提取油脂后的链带藻残渣的能源化应用潜力进行了研究。
     本文采用二次正交旋转组合试验设计,建立了链带藻生物量累积与各影响因素间的回归模型。厌氧发酵液培养链带藻的高生物量累积最佳工艺参数组合为:柠檬酸铁铵添加量为0.0348g/L、K2HPO4添加量为0.1584g/L、MgSO4·7H2O添加量为0.489g/L。在该条件下,试验获得的生物量累积为0.777g/L,接近于模型的预测值0.782g/L。
     分别选择BG11培养基、厌氧发酵液和厌氧发酵液-添加营养元素培养的链带藻为原料(BG11/8-10、ZY/8-10和W/8-10)进行热裂解研究,对一系列总离子流色谱图进行分析的结果表明:三种原料的热裂解产物主要包括脂肪族烃类、芳香族烃类、脂肪酸类、含氮化合物、酚类、多环芳香烃类、酮类、醇类、醛类和呋喃类化合物等。但是较高温度容易导致含氮化合物、多环芳香烃等污染物的大量生成。因此如果利用以上三种原料制备生物油,则其最佳热裂解温度分别是700℃C、600℃C和300℃C。
     本文利用生命周期评价方法,以1kg链带藻为功能单位,选取能效分析和环境潜在影响为考察指标,分别综合评估了最适温度下1kg BG11/8-10、ZY/8-10和W/8-10的热裂解过程。结果表明,能量转换效率η均大于1,说明三个过程均是有利的;且W/8-10热裂解过程能源转化效率最高,为6.21。三个过程的生命周期环境影响分别为1347.63、1165.67和838.52mPET2000,其中W/8-10热裂解过程对环境影响最低。因此,W/8-10热裂解过程为最佳选择。
     本文还研究了链带藻提取油脂后残渣的能源化潜力。通过分析其热裂解产物组分及含量发现:产物中不仅含有脂肪族烃类、芳香族烃类和脂肪酸类等潜在能源物质,还包括一些含氮、含氯化合物类、多环芳烃类和极少量含硫化合物等污染物。相比700℃C下热裂解产生生物油的含量(29.3%),8000C时热裂解产生的生物油含量最高,为36.6%。但是800℃C较700℃C多产生了21.4%的污染物。基于较低污染物排放水平和较高生物油产率,链带藻提取油脂后残渣的最适热裂解温度为700℃C左右。
Microalgae, which are known as the new source of biofuel production, have such features as extensive distribution, widely adaptability, rapid growth and high in lipid content, etc. By conducting anaerobic digested wastewater (ADW) to cultivate microalgae, not only it is beneficial to the wastewater disposal but also can lower the cost of the algae production effectively. During the process of biomass gasification, liquefaction and combustion, biomass pyrolysis technology is an indispensable procedure, which can convert the biomass to liquid fuel or other valuable chemical products. Current thesis primarily focus on the following four aspects:the optimization of biomass accumulation of Desmodesmus sp. cultivation in ADW; the yield and chemical composition of pyrolysis products of Desmodesmus sp. by Py-GC/MS; the analysis of pyrolysis process of Desmodesmus sp. based on life cycle assessment (LCA); potential energy application of lipid-extracted Desmodesmus sp.
     Response surface methodology (RSM) was applied to optimize the biomass accumulation of Desmodesmus sp. cultivation in ADW. The optimal biomass accumulation conditions were the additive volume of Ammonium ferric citrate (0.0348g/L), K2HPO4(0.1584g/L), and MgSO4·7H2O (0.489g/L). Under such conditions, the experimental biomass accumulation of Desmodesmus sp. was0.777g/L, which was close to the predicted value (0.782g/L).
     The pyrolysis-gas chromatographic mass spectrometry (Py-GC/MS) was investigated to determine yield and chemical composition of pyrolysis products of Desmodesmus sp. cultivation in BG11medium, ADW, and ADW-added nutrient elements, respectively (BG11/8-10, ZY/8-10and W/8-10). It was comcluded that the chemical compounds from pyrolysis products of Desmodesmus sp. cultivation in three conditions, which were mentioned above, mainly consisted of aliphatic hydrocarbons, aromatic hydrocarbons, acids, nitrogen compounds, phenols, polycyclic aromatic hydrocarbons (PAHs), alcohols, aldehydes, and furans. However, higher temperature would easily lead to mass generation of nitrogen compounds and PAHs. Therefore,700℃,600℃and300℃were found to be favorable for producing biofuel from BG11/8-10, ZY/8-10and W/8-10.
     The whole pyrolysis process of1kg BG11/8-10, ZY/8-10and W/8-10under the optimal temperature were evaluated by using the method of LCA, respectively. The environment emissions and energy efficiency were under considerable for the corresponding parametric study. The functional unit was1kg microalgae. It was concluded that the energy conversion efficiency for the three processes were larger than1, which indicated that all the three processes are profitable. In addition, the energy conversion efficiency, which was6.21, of W/8-10was found to be the largest. The environmental impact of the three processes were515.61,449.78and323.68mPET2ooo, among which the pyrolysis process of W/8-10has the lowest environmental impacts. Thus, the pyrolysis process of W/8-10was the optimal selection.
     It was found that, among the pyrolysis products of lipid-extracted Desmodesmus sp., aliphatic hydrocarbons, aromatic hydrocarbons, and acids can be used as in the potential energy materials; nitrogen compounds, chlorine-containing compounds, and PAHs, and small amount of sulfur-containing compounds functioned in pollutants. Pyrolysis of lipid-extracted Desmodesmus sp. at800℃produced36.61%(the maximum yield) of pyrolysis products, compared to that of29.34%at700℃, but more pollutants (21.42%) were produced in the meanwhile. Under such consideration, a reasonably high yield and minimum release of pollutants temperature (700℃) was found to be optimum for producing bio-oil from lipid-extracted Desmodesmus sp.
引文
Adam J, Antonakou E, Lappas A, et al. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials [J]. Microporous and Mesoporous Materials,2006,96 (1):93-101
    Aksu Z, Acikel U. Modelling of a single-staged bioseparation process for simultaneous removal of iron (III) and chromium (VI) by using Chlorella vulgaris [J]. Biochemical Engineering Journal,2000, 4 (3):229-238
    An J Y, Sim S J, Lee J S, et al. Hydrocarbon production from secondarily treated piggery wastewater by the green algae Botryococcus Braunii [J]. Journal of Applied Phycology,2003,15:185-191
    Babich I V, Van der Hulst M, Lefferts L, et al. Catalytic pyrolysis of microalgae to high-quality liquid biofuels [J]. Biomass and Bioenergy,2011,35 (7):3199-3207
    Bae, YJ, Ryu, C, Jeon, J K et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae [J]. Bioresource Technology,2011,102:3512-3520
    Bala M. Mechenisms of theemochemical biomass conversion processes. Part 1:reaction of pyrolysis [J]. Energy Source Part A:Recovery, Utilization, and Environmental Effects,2008,30 (7): 620-635
    Becker W. Microalgae in human and animal nutrition. In:Richmond A, (Ed.), Handbook of microalgae culture. Blackwell Science Ltd., Oxford,2007, pp.312-351
    Brentrup F, Kusters J, Kuhlmann H, et al. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology:I. Theoretical concept of a LCA method tailored to crop production [J]. European Journal of Agronomy,2004,20 (3):247-264
    Brennan L, Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renewable and Sustainable Energy Reviews,2010, 14 (2):557-577
    Bridgwater A. IEA bioenergy update 27:biomass pyrolysis [J]. Biomass and Bioenergy,2007,31: 1-20
    Campanella A, Muncrief R, Harold M P, et al. Thermolysis of microalgae and duckweed in a CO2 swept fixed-bed reactor:Bio-oil yield and compositional effects [J]. Bioresource Technology, 2012,109:154-162
    Cantrell K B, Ducey T, Ro K S, et al. Livestock waste to bioenergy generation opportunities [J]. Bioresource Technology,2008,99 (17):7941-7953
    Cao Y, Liu Z, Cheng G, et al. Exploring single and multi-met al biosorption by immobilized spent Tricholoma Lobayense using multi-step response surface methodology [J]. Chemical Engineering Journal,2010,164 (1):183-195
    Chen M, Dei R C H, Wang W X, et al. Marine diatom uptake of iron bound with natural colloids of different origins [J]. Marine Chemistry,2003,81 (3):177-189
    Chen M, Wang W X. Bioavailability of natural colloid-bound iron to marine plankton:Influences of colloidal size and aging [J]. Limnology and Oceanography,2001,46 (8):1956-1967
    Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances,2007,25 (3):294-306.
    Clark, James H, Deswarte F, et al. Introduction to chemicals from biomass. John Wiley and Sons, 2011
    Clements D. Gerpen J V. Biodiesel production technology [J]. National Renewable Energy Laboratory. NREL/SR-510-36244,2004
    Demirbas A. Oily products from mosses and algae via pyrolysis [J]. Energy Sources, Part A,2006, 28 (10):933-940
    Dismukes G C, Carrieri D. Bennette N, et al. Aquatic phototrophs:efficient alternatives to land-based crops for biofuels [J]. Current Opinion in Biotechnology,2008,19 (3):235-240
    Dote Y, Sawayama S, Inoue S, et al. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction [J]. Fuel,1994,73 (12):1855-1857
    Du Z, Li Y, Wang X, et al. Microwave-assisted pyroly sis of microalgae for biofuel production [J]. Bioresource Technology,2011,102 (7):4890-4896
    Du Z, Ma X, Li Y, et al. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites:Catalyst screening in a pyroprobe [J]. Bioresource Technology,2013,139:397-401
    Duan P, Savage P E. Catalytic treatment of crude algal bio-oil in supercritical water:optimization studies [J]. Energy and Environmental Science,2011,4 (4):1447-1456
    Dunahay T, Benemann J, Roessler P, et al. A look back at the US Department of Energy's Aquatic Species Program:Biodiesel from algae [M]. Golden, CO:National Renewable Energy Laboratory, 1998
    Friedl A, Padouvas E, Rotter H, et al. Prediction of heating values of biomass fuel from elemental composition [J]. Analytica Chimica Acta,2005,544 (1):191-198
    Gallagher B J. The economics of producing biodiesel from algae [J]. Renewable Energy,2011,36 (1):158-162
    GaoMT, Shimamura T, Ishida N, et al. Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel [J]. Journal of Bioscience and Bioengineering,2012,114 (3):330-333
    Ghirardi M L, Zhang L, Lee J W, et al. Microalgae:a green source of renewable H2 [J]. Trends in Biotechnology,2000,18 (12):506-511
    Gokhale S V, Jyoti K. K, Lele S S, et al. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina Platensis/Chlorella Vulgaris biomass [J]. Bioresource Technology,2008,99 (9):3600-3608
    Goyal H B, Seal D, Saxena R C, et al. Bio-fuels from thermochemical conversion of renewable resources:a review [J]. Renewable and Sustainable Energy Reviews,2008,12 (2):504-517
    Grierson S, Strezov V, Ellem G, et al. Thermal characterisation of microalgae under slow pyrolysis conditions [J]. Journal of Analytical and Applied Pyrolysis,2009,85 (1):118-123
    Harman-Ware A E, Morgan T, Wilson M, et al. Microalgae as a renewable fuel source:Fast pyrolysis of Scenedesmus sp. [J]. Renewable Energy,2013,60:625-632
    Hirano A, Hon-Nami K, Kunito S, et al. Temperature effect on continuous gasification of microalgal biomass:theoretical yield of methanol production and its energy balance [J]. Catalysis Today, 1998,45 (1):399-404
    Houghton J T. (Ed.).Climate change 1995:The science of climate change:contributing of working group 1 to the second assessment report of the intergovernmental Panel on Climate Change [M]. Cambridge University Press,1996
    Hu B, Min M, Zhou W, et al. Enhanced mixotrophic growth of microalgae Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal [J]. Bioresource Technology,2012,126:71-79
    Hu Q. Biotechnology and Applied Phycology. In:Richmond A, (Ed.), Hand book of microalgae culture. Blackwell Science Ltd., Oxford,2007, pp.83-94
    Hu Z, Zheng Y, Yan F, et al. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization [J]. Energy,2013,52:119-125
    Hu Z, Ma X, Chen C, et al. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae [J]. Bioresource Technology,2012,107:487-493
    Huang G H, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology [J]. Applied Energy,2010,87 (1):38-46
    Jorgensen P E, Eriksen T, Jensen B K. Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FDA hydrolysis [J]. Water Research,1992, 26 (11):1495-1501
    Ji F, Liu Y, Hao R, et al. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digesting wastewater [J]. Bioresource Technology,2014,161: 200-207
    Kruse O, Hankamer B. Microalgal hydrogen production [J]. Current Opinion in Biotechnology,2010, 21 (3):238-243
    Kumar R, Bishnoi N R, Bishnoi K, et al. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass [J]. Chemical Engineering Journal,2008,135(3): 202-208
    Lee K, Inaba A. Life Cycle Assessment Best Practices of ISO 14040 Series [MJ. SCenter for Ecodesign and LCA (CEL), Ajou University,2004
    Li D, Chen L, Xu D, et al. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens and C. Agardh [J]. Bioresource Technology,2012,104:737-742
    Li G, Zhou Y, Ji F, et al. Yield and characteristics of pyrolysis products obtained from Schizochytrium Limacinum under different temperature regimes [J]. Energies,2013,6 (7):3339-3352
    Li R, Zhong Z, Jin B, et al. Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms [J]. Energy and Fuels,2012,26 (5):2996-3002
    Li X, Hu H Y, Jia Y, et al. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalgae, Scenedesmus sp. LX1, growing in secondary effluent [J]. New Biotechnology,2010,27 (1):59-63
    Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green algae Neochloris oleoabundans [J]. Applied Microbiology and Biotechnology,2008,81 (4):629-636
    Liu Y, Lotero E, Goodwin Jr J G, et al. Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis [J]. Journal of Catalysis,2006,243 (2):221-228
    Liu Y Q, Lingo R X, Lim J W, et al. Investigation on pyrolysis of microalgae Botryococcus Brauniiand and Hapalosiphon sp. [J]. Industrial and Engineering Chemistry Research,2012,51:10320-10326
    Maddi B, Viamajala S, Varanasi S, et al. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass [J]. Bioresource Technology,2011,102 (23): 11018-11026
    Maggi R, Delmon B. Characterization and upgrading of bio-oils produced by rapid thermal processing [J]. Biomass and Bioenergy,1994,7 (1):245-249
    Mahinpey N, Murugan P, Mani T, et al. Analysis of bio-oil, biogas. and biochar from pressurized pyrolysis of wheat straw using a tubular reactor [J]. Energy and Fuels,2009,23 (5):2736-2742
    Martins B L, Cruz C C V, Luna A S, et al. Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass [J]. Biochemical Engineering Journal.2006,27 (3):310-314
    Marsmann M. The ISO 14040 family [J]. The International Journal of Life Cycle Assessment,2000, 5 (6):317-318
    McKendry P. Energy production from biomass (part 2):conversion technologies [J]. Bioresource Technology,2002,83 (1):47-54
    Metting Jr F B. Biodiversity and application of microalgae [J]. Journal of Industrial Microbiology, 1996,17:477-489
    Miao X, Wu Q, Yang C, et al. Fast pyrolysis of microalgae to produce renewable fuels [J]. Journal of Analytical and Applied Pyrolysis,2004,71 (2):855-863
    Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides [J]. Journal of Biotechnology,2004,110 (1):85-93
    Minowa T, Yokoyama S, Kishimoto M, et al. Oil production from algal cells of Dunaliella tertiolecta by directthermochemical liquefaction [J]. Fuel,1995,74 (12):1735-1738
    Modi M K, Reddy J R C, Rao B, et al. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor [J]. Bioresource Technology,2007,98 (6):1260-1264
    Mohan D, Pittman C U, Steele P H, et al. Pyrolysis of wood/biomass for bio-oil:A critical review [J]. Energy and Fuels,2006,20 (3):848-889
    Pan P, Hu C, Yang W, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils [J]. Bioresource Technology,2010,101 (12):4593-4599
    Park J H, Yoon J J, Park H D,et al. Anaerobic digestibility of algal bioethanol residue [J]. Bioresource Technology,2012,113:78-82
    Patil V, Tran K Q, Giselrod H R, et al. Towards sustainable production of biofuels from microalgae [J]. International Journal of Molecular Sciences,2008,9 (7):1188-1195
    Patterson D. Gatlin III D M. Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops Ocellatus) [J]. Aquaculture,2013,416:92-98
    Qin J. Bio-hydrocarbons from algae:impacts of temperature, light and salinity on algae growth [M]. Rirdc,2005
    Rao Q, Labuza T P. Effect of moisture content on selected physicochemical properties of two commercial hen egg white powers [J]. Food Chemical,2012,132 (1):373-384
    Rashid N, Lee K, Mahmood Q, et al. Bio-hydrogen production by Chlorella vulgar is under diverse photo periods [J]. Bioresource Technology,2011,102 (2):2101-2104
    Raveendran K, Ganesh A. Heating value of biomass and biomass pyrolysis products [J]. Fuel,1996, 75:1715-1720
    Razzak S A, Hossain, M M, Lucky R A, et al. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-A review. Renewable and Sustainable Energy Reviews,2013, 27:622-653
    Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil:Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and Bioengineering,2009,102 (1):100-112.
    Ross A B, Anastasakis K, Kubacki M, et al. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA [J]. Journal of Analytical and Applied Pyrolysis,2009,85 (1):3-10
    Ross A B, Jones J M, Kubacki M L, et al. Classification of microalgae as fuel and its thermochemical behavior [J]. Bioresource Technology,2008,99 (14):6494-6504
    Sari A, Uluozlu O D, Tuzen M. Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia Genujlexa) biomass [J]. Chemical Engineering Journal,2011,167 (1):155-161
    Schenk P M, Thomas-Hall S R, Stephens E, et al. Second generation biofuels:high-efficiency microalgae for biodiesel production [J]. Bioenergy Research,2008,1 (1):20-43
    Searchinger T, Heimlich R, Houghton R A, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change [J]. Science,2008,319 (5867): 1238-1240
    Sleeswijk A W, van Oers L F C M, Guinee J B, et al. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000 [J]. Science of the Total Environment,2008,390 (1):227-240
    Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae [J]. Journal of Bioscience and Bioengineering,2006,101 (2):87-96
    Sunda W G, Huntsman S A. Interrelated influence of iron, light and cell size on marine phytoplankton growth [J]. Nature,1997,390 (6658):389-392
    Thangalazhy-Gopakumar S, Adhikari S, Chattanathan S A, et al. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst [J]. Bioresource Technology,2012,118: 150-157
    Torri C, Samori C, Adamiano A, et al. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas Reinhardtii biomass residue after bio-hydrogen production [J]. Bioresource Technology,2011,102 (18):8707-8713
    Vardon D R, Sharma B K, Blazina G V, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis [J]. Bioresource Technology,2012,109: 178-187
    Vilar V J P, Botelho C, Boaventura R A R, et al. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste [J]. Process Biochemistry,2005, 40 (10):3267-3275
    Wang K, Brown R C, Homsy S, et al. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production [J]. Bioresource Technology,2013,127:494-499
    Wang L, Li Y, Chen P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. [J]. Bioresource Technology,2010,101 (8):2623-2628
    Wang S, Wang Q, Jiang X, et al. Compositional analysis of bio-oil derived from pyrolysis of seaweed [J]. Energy Conversion and Management,2013,68:273-280
    Wang X H, Chen H P, Ding X J, et al. Properties of gas and char from microwave pyrolysis of pine sawdust [J]. Bioresources,2009,4 (3):946-959
    Wijffels R H, Barbosa M J. An outlook on microalgae biofuels [J]. Science (Washington),2010, 329 (5993):796-799
    Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella prototheeoid.es by heterotrophic growth in fermenters [J]. Journal of Biotechnology,2006,126:499-507
    Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion and Management,2004,45:651-671
    Yen H W, Brune D E. Anaerobic co-digestion of algal sludge and waste paper to produce methane [J]. Bioresource Technology,2007,98 (1):130-134
    Zhang H, Xiao R, Huang H, et al. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor [J]. Bioresource Technology,2009,100 (3):1428-1434
    Zheng H, Gao Z, Yin F, et al. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis [J]. Bioresource Technology,2012,117: 1-6
    Zhang M, Fernando L P, Resende, AM, et al. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR [J]. Journal of Analytical and Applied Pyrolysis,2012,98:65-71
    蔡卓平,段舜山,朱红惠,等.“污水-微藻-能源”串联技术新进展.生态环境学报,2012,7:1380-1386
    曹阳.洋葱中蒜氨酸酶固定化研究:[硕士学位论文].北京:中国农业大学,2010
    陈璧瑕.沼液农用对玉米产量、品质及土壤环境质量的影响研究.雅安:四川农业大学,2010
    陈冠益,高文学,颜蓓蓓,等.生物质气化技术研究现状与发展.煤气与热力,2006,26(7):20-26
    陈永杏,董红敏,陶秀萍,等.猪场沼液灌溉冬小麦对土壤质量的影响.中国农学通报,2011,27(3):154-158
    陈春香.微藻及其与煤的混合热解燃烧特性研究:[博士学位论文].广州:华南理工大学,2012
    陈绍晴,宋丹,杨瑾,等.户用沼气模式生命周期减排清单与环境效益分析.中国人口资源与环境,2012,22(8):76-83
    陈玉碧.添加沼液对微藻生物量积累影响的研究:[硕士学位论文].北京:中国农业大学,2012
    杜瑞卿,庞发虎,褚雪英,等.响应面分析法优化山茱萸多糖提取工艺参数.计算机与应化学,2008,25(1):99-103
    黄春林.合成高分子生物医学材料制品的生命周期评价:[硕士学位论文].四川:西南交通大学,2004
    郝鲜俊,洪坚平,乔志伟,等.沼液对甘蓝连作土壤生物学性质的影响.应用与环境生物学报,2011,17(3):384-387
    郝长春.富油小球藻(Chlorella sorokiniana)的异样优化培养及主要成分的提取研究:[博士学位论文].北京:中国农业大学,2011
    何玮,王琳,张健,等.沼液不同施用量对皇竹草产量及土壤肥力的影响.草业与畜牧,2012,5-7
    胡洪营,李鑫.利用污水资源生产微藻生物柴油的关键技术及潜力分析.生态环境学报,2010,19(3):739-744
    霍翠英,吴树彪,郭建斌,等.猪粪发酵沼液中植物激素及喹啉酮类成份分析.中国沼气,2011,29(5):7-10
    籍春蕾.规模化养殖场两种粪便处理系统环境影响生命周期评价-以养牛场为例:[硕士学位论文].南京:南京农业大学,2011
    蒋瑶,谭晓风.植物乙酰辅酶A羧化酶基因的分子生物学研究进展.经济林研究,2009,27(2):111-117
    李岩,周文广,张晓东,等.微藻培养技术处理猪粪厌氧发酵废水效果.农业工程学报,2011, 1:95-97
    李彦超,廖新悌,林东教,等.不同沼液灌溉强度对土壤和渗滤液的影响.家畜生态学报,2009,30(4):52-56
    刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响:[博士学位论文].青岛:中国科学院海洋研究所,2008
    刘竞.微藻热解特性分析及其资源化利用生命周期评价:[硕士学位论文].广州:华南理工大学,2010
    刘振强.微藻优化培养、采收及沼液培养微藻的研究:[硕士学位论文].浙江:浙江工业大学,2012
    孟庆国,赵凤兰,张聿高,等.气相色谱法测定沼液中的游离蛋白氨基酸.农业环境保护,2000,19(2):104-105
    孟庆国,周静茹.厌氧消化残留物的再利用及其中微量元素的测定.农业环境保护,1998,17(2):81-83
    苏洁.中国生物质乙醇燃料生命周期分析:[硕士学位论文].上海:上海交通大学,2005
    覃舟.施用沼液对紫甘蓝产量、营养品质及土壤质量的影响.江西农业学报,2009,21(7):83-86
    王爱华.竹/木质产品生命周期评价及其应用研究:[博士学位论文].北京:中国林业科学研究院,2007
    王翠,李环,王钦琪,等.pH值对沼液培养的普通小球藻生长及油含量积累的影响.生物工程学报,2010,26(8):1074-1079
    王付冬.营养及环境因子对三株微藻生长及脂类积累的影响:[硕士学位论文].广州:暨南大学,2010
    王明新,包永红,吴文良,等.华北平原冬小麦生命周期环境影响评价.农业环境科学学报,2006,25(5):1127-1132
    王卫平,陆新苗,魏章焕,等.施用沼液对柑桔产量和品质以及土壤环境的影响[J].农业环境科学学报,2011,30(11):2300-2305
    王卫平,朱凤香,陈小旸,等.沼液浇灌对土壤质量和萝卜产量品质的影响.中国农学通报,2009,25(24):484-487
    王卫平,朱凤香,陈晓旸,等.沼液农灌对土壤质量和青菜产量品质的影响.浙江农业学报,2010,22(1):73-76
    王宗寿.利用沼液种植黑麦草对土壤环境质量的影响.农业环境科学学报,2007,26(2):172-175
    夏旗.钝顶螺旋藻对沼液的处理与利用:[硕士学位论文].重庆:西南大学,2011
    徐位力,苏开君,王伟平,等.用二次正交旋转组合设计优化马占相思增殖培养基.广东林业科技,2004,19(4):13-16
    袁征.铁、不同氮源和光强对海洋微藻生长的交互影响:[硕士学位论文].青岛:中国海洋大学,2003
    杨建新,徐成,王如松.产品生命周期评价方法及应用.北京:气象出版社,2002
    杨乐,张凤华,庞玮,等.沼液灌溉对绿洲农田土壤养分的影响.石河子大学学报,2011,29(5):542-545
    芋耀贤.玉米芯化学催化液化的试验研究:[硕士学位论文].北京:中国农业大学,2007
    张进,张妙仙,单胜道,等.沼液对水稻生长产量及其重金属含量的影响.农业环境科学学报,2009,28(10):2005-2009
    张铁明.微量元素-锌,铁,锰对淡水浮游藻类增殖的影响:[硕士学位论文].北京:首都师范大学,2006
    张颖,夏训峰,李中和,等.规模化养牛场粪便处理生命周期评价.农业环境科学学报,2010,29(7):1423-1427
    赵凤莲,孙钦平,李吉进,等.不同来源沼肥对油菜、西芹产量及氮素利用率的影响.中国农学通报,2011,27(8):156-161
    郑爱榕,陈敏,吕娥,等.海洋胶体中的氮,磷和铁对微藻生长的效应.自然科学进展,2004,14(3):339-343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700