用户名: 密码: 验证码:
羧酸甜菜碱聚合物的药物载体和医用植入体材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质在表面的非特异性吸附是纳米药物载体和医用植入体材料所面临的一个重要问题。目前,能够在复杂生物环境中有效抵抗非特异性蛋白质吸附,并能在诸如药物载体、医用植入体等领域中实际应用的材料十分有限。近年来,聚两性离子材料已被证实具有优良的抗非特异性蛋白质吸附性能和生物相容性,如聚甲基丙烯酰氧基乙基磷酰胆碱(PMPC)、聚磺基甜菜碱甲基丙烯酸酯(PSBMA)和聚羧基甜菜碱甲基丙烯酸酯(PCBMA),这与其强烈的水合能力和优秀的仿生结构密不可分。因此,这些两性离子材料的生物医学应用成为研究热点之一。本论文围绕聚两性离子材料的优秀特性,考察了羧酸甜菜碱聚合物在复杂环境中的相容性,探索了可逆交联的羧酸甜菜碱聚合物胶束的血液稳定性,评估了靶向基团修饰的聚己内酯-b-聚羧基甜菜碱交联胶束在乳腺癌治疗中的疗效,并研究了羧酸甜菜碱酯在新型生物相容性硅橡胶中的应用。主要内容和结论包括以下四部分:
     1、以β-CD为引发剂,利用原子转移自由基聚合(ATRP)制备了四种不同分子量的星状羧酸甜菜碱聚合物。体外实验表明,这类聚合物被巨噬细胞RAW264.7内吞不明显。体内循环实验发现,分子量为123KDa的星状聚合物在小鼠血液中的循环半衰期可延长至40小时。在多次尾静脉注射两性离子星状聚合物后,仍保持与首次相似的衰减过程,并且未发现主要组织器官有明显损伤或炎症,以及血液中抗体的增加。由此证明了羧酸甜菜碱聚合物具有细胞内吞慢、无免疫原性和长循环等性能,有望成为PEG的替代物。
     2、研究了一种通过共聚物自组装得到的胶束,该共聚物以羧酸甜菜碱甲基丙烯酸酯(CBMA)作为亲水性单元,硫辛酸甲基丙烯酸羟乙酯(MAEL)作为疏水性和交联单元。该胶束可以很容易地包载抗肿瘤药物阿霉素(DOX),并可在模拟细胞内还原环境下快速释放DOX。这种可逆交联的生物相容的两性离子胶束具有在纤维蛋白原(1mg/mL)和50%胎牛血清(FBS)中优异的稳定性和细胞内环境下加速释放药物的优点。
     3、研究了含交联基团的聚己内酯-b-聚羧基甜菜碱的阿霉素胶束载体,并在其表面修饰靶向基团精氨酸-甘氨酸-天冬氨酸-酪氨酸-赖氨酸环肽c(RGDyK),从而使其能主动靶向作用于肿瘤细胞。本交联载药胶束可延长阿霉素在血液中的循环时间,并在c(RGDyK)靶向识别引导下,增强了阿霉素的抗肿瘤效果,同时降低了由阿霉素引起的心肌和生物毒性。这些结果说明,经c(RGDyK)修饰的两性离子交联胶束是一种很有前途的药物载体。
     4、利用光聚合技术制备了一种由羧基甜菜碱酯衍生物、3-甲基丙烯氧基丙基三(三甲基硅氧烷基)硅烷(TRIS)和有机硅大分子单体双-αω-(甲基丙烯酰氧基丙基)聚二甲基硅氧烷组成的新型硅橡胶。该材料可通过两性离子前体羧基甜菜碱酯衍生物的表面水解得到高亲水性两性离子材料覆盖的硅橡胶材料,并表现出优异的抗非特异性蛋白质吸附和细菌粘附能力。也因为疏水基体的保护使酯水解速率缓慢而可控,极大提高了材料抗非特异性蛋白质吸附性能的长效性。这种表面水解方式使该材料能够避免水中的溶胀,水解前后能保持一致的光学和机械性能。因此,这种长效抗非特异性蛋白质吸附材料在隐形眼镜和其他医疗设备等领域具有良好的应用前景。
The non-specific protein adsorption on surfaces is a challenging problem faced by nano drug carriers and medical implantable materials. At present, there are few materials that can effectively resist non-specific protein adsorption from complex media for practical applications, such as drug carriers and medical implants. Polyzwitterionic materials such as poly(2-methacryloyloxyethyl phosphorylcholine)(PMPC), poly(sulfobetaine methacylate)(PSBMA) and poly(carboxybetaine methacylate)(PCBMA) are believed as ideal candidate materials for those applications in recent years due to their excellent nonfouling and biocompatibility properties. Both excellent properties mainly originated from the high levels of hydration and biomimetic-like structures, respectively. In this dissertation, we systematically investigated the in vivo compatibility of carboxybetaine polymer, the blood stability of reversible cross-linked carboxybetaine polymer micelles, and the cancer therapeutic efficacy of targeted cross-linked micelles of doxorubicin-encapsulated polycaprolactone-b-polycarboxybetaine. In addition, we developed a new biocompatible silicone baesd on a carboxybetaine ester analogue. The main contents and conclusions of this dissertation include the following four parts:
     1. Four star carboxybetaine polymers with different molecular weights via atom transfer radical polymerization (ATRP) from a β-CD initiator were prepared for investigating the in vivo compatibility of carboxybetaine polymer. Results show that the internalization of macrophage cell RAW264.7in vitro is dramatically reduced. The circulation half-life of the largest star polymer (123KDa) in mice is prolonged to40hours. Furthermore, the circulation time of repeated injections shows similar results to the first injection; no appreciable damage or inflammation was observed in major organ tissues, and no obvious increase of antibody occured in blood. These results suggest that the CBMA coatings for nanoparticles have advantages such as reducing cellular uptake, no immune response and long circulation time, which might be a good alternative of PEG.
     2. The cross-linked micelles based on a copolymer composed of carboxybetaine methacrylate (CBMA) as hydrophilic and nonfouling segment,2-(methacryloyloxy)ethyl lipoate (MAEL) as hydrophobic and cross-linked segment were prepared for investigating the blood stability of the micelles with CBMA protection layer. The micelles can easily encapsulate the anticancer drug doxorubicin (DOX), and quickly release DOX in response to an intracellular reductive environment. With the advantages in excellent stability in fibrinogen (1mg/mL) PBS solution and50%fetal bovine serum (FBS), and accelerated intracellular drug release, the biocompatible zwitterionic micelle stabilized by reversible cross-linkage is a promising drug carrier candidate.
     3. It has been demonstrated that the active targeting of doxorubicin-encapsulated polycaprolactone-b-polycarboxybetaine cross-linked micelles to the integrin on cancer cells can be realized by the conjugation of cyclic pentapeptide c(RGDyK) on CBMA shell. The doxorubicin encapsulated cross-linked micelles show a prolonged circulation time in plasma in respect of the modification of c(RGDyK). Under the guide of c(RGDyK), the antitumor effeciveness of doxorubicin was enhanced, while the cardiac toxicity and biotoxicity of doxorubicin reduced. These results indicate that the c(RGDyK)-modified zwitterionic cross-linked micelle is a promising drug carrier.
     4. A new biocompatible silicone comprising a carboxybetaine (CB) ester analogue,3-methacryloxypropyltris-(trimethylsiloxy)silane (TRIS) and an organic silicone macromer bis-a,co-(methacryloxypropyl) polydimethylsiloxane using photo-polymerisation was developed. Following interfacial hydrolysis of the CB ester, the resulting zwitterionic material coated silicone became significantly more hydrophilic and exhibited high resistance to both non-specific protein adsorption and bacterial adhesion. Moreover, the stability of these nonfouling properties was dramatically improved by using a slow and controlled rate of ester hydrolysis of the original protective hydrophobic matrix. Meanwhile, the original optical and mechanical properties of the bare silicone remained unchanged after surface activation. These results indicate that this material is an ideal candidate for preparing contact lenses and other medical devices.
引文
[1]Jiang S, Cao Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials.2010;22:920-32.
    [2]Chen S, Jiang S. An New Avenue to Nonfouling Materials. Advanced Materials. 2008;20:335-8.
    [3]Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces.2000; 18:261-75.
    [4]Castner DG, Ratner BD. Biomedical surface science:Foundations to frontiers. Surface Science.2002;500:28-60.
    [5]Kane RS, Deschatelets P, Whitesides GM. Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir.2003; 19:2388-91.
    [6]Chen S, Zheng J, Li L, Jiang S. Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society. 2005;127:14473-8.
    [7]Kenausis GL, Voros J, Elbert DL, Huang NP, Hofer R, Ruiz-Taylor L, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces:Attachment mechanism and effects of polymer architecture on resistance to protein adsorption. Journal of Physical Chemistry B.2000; 104:3298-309.
    [8]Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al.'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG):influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B-Biointerfaces.2000; 18:301-13.
    [9]Banerjee I, Pangule RC, Kane RS. Antifouling Coatings:Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials.2011;23:690-718.
    [10]Kozak D, Chen A, Bax J, Trau M. Protein resistance of dextran and dextran-poly(ethylene glycol) copolymer films. Biofouling.2011;27-.497-503.
    [11]Metzke M, Guan Z. Structure-Property Studies on Carbohydrate-Derived Polymers for Use as Protein-Resistant Biomaterials. Biomacromolecules. 2007;9:208-15.
    [12]Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A Survey of Structure-property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir.2001;17:5605-20.
    [13]Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for Surfaces that Resist the Adsorption of Proteins. Journal of the American Chemical Society.2000;122:8303-4.
    [14]Luk Y-Y, Kato M, Mrksich M. Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir.2000;16:9604-8.
    [15]Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption. The Journal of Physical Chemistry B.1998;102:426-36.
    [16]Li L, Chen S, Zheng J, Ratner BD, Jiang S. Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:The Molecular Basis for Nonfouling Behavior. The Journal of Physical Chemistry B.2005; 109:2934-41.
    [17]Cheng T-L, Wu P-Y, Wu M-F, Chern J-W, Roffler SR. Accelerated Clearance of Polyethylene Glycol-Modified Proteins by Anti-Polyethylene Glycol IgM. Bioconjugate Chemistry.1999;10:520-8.
    [18]Wu J, Wang Z, Lin W, Chen S. Investigation of the interaction between poly(ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta Biomaterialia.2013;9:6414-20.
    [19]Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research.1998;39:323-30.
    [20]Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem.2005;381:534-46.
    [21]Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids and Surfaces B-Biointerfaces.2000;18:325-35.
    [22]Nakabayashi N, Williams DF. Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials.2003;24:2431-5.
    [23]Umeda T, Nakaya T, Imoto M. Polymeric phospholipid analogues,14. The convenient preparation of a vinyl monomer containing a phospholipid analogue. Die Makromolekulare Chemie, Rapid Communications.1982;3:457-9.
    [24]Zhang Z, Chao T, Chen SF, Jiang SY. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir.2006;22:10072-7.
    [25]Zhang Z, Chen SF, Chang Y, Jiang SY. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B.2006;110:10799-804.
    [26]Wu J, Chen S. Investigation of the Hydration of Nonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir. 2012;28:2137-44.
    [27]Wu J, Lin W, Wang Z, Chen S, Chang Y. Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir.2012;28:7436-41.
    [28]Yaseen M, Lu JR, Webster JRP, Penfold J. The Structure of Zwitterionic Phosphocholine Surfactant Monolayers. Langmuir.2006;22:5825-32.
    [29]Nagle JF, Zhang R, Tristram-Nagle S, Sun W, Petrache HI, Suter RM. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophysical Journal.1996;70:1419-31.
    [30]Hower JC, Bernards MT, Chen S, Tsao H-K, Sheng Y-J, Jiang S. Hydration of "Nonfouling" Functional Groups. The Journal of Physical Chemistry B. 2008;113:197-201.
    [31]Chen S, Liu L, Jiang S. Strong Resistance of Oligo(phosphorylcholine) Self-Assembled Monolayers to Protein Adsorption. Langmuir.2006;22:2418-21.
    [32]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009;30:5892-6.
    [33]Yang W, Xue H, Li W, Zhang JL, Jiang SY. Pursuing "Zero" Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir. 2009;25:11911-6.
    [34]Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang S. Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces:Structural and Environmental Effects. Biomacromolecules.2008;9:2686-92.
    [35]Zhang Z, Cheng G, Carr LR, Vaisocherova H, Chen S, Jiang S. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials.2008;29:4719-25.
    [36]Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials.2007;28:4192-9. [37] Rodriguez Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB. Interaction of Blood Plasma with Antifouling Surfaces. Langmuir. 2009;25:6328-33.
    [38]Zhang Z, Chen S, Jiang S. Dual-Functional Biomimetic Materials:Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules.2006;7:3311-5.
    [39]Zhou J, Yuan J, Zang X, Shen J, Lin S. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids and Surfaces B:Biointerfaces.2005;41:55-62.
    [40]Carr LR, Xue H, Jiang S. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials.2011;32:961-8.
    [41]Nam K, Kimura T, Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomaterials.2007;28:1-8.
    [42]Karanikolopoulos N, Pitsikalis M, Hadjichristidis N, Georgikopoulou K, Calogeropoulou T, Dunlap JR. pH-Responsive Aggregates from Double Hydrophilic Block Copolymers Carrying Zwitterionic Groups. Encapsulation of Antiparasitic Compounds for the Treatment of Leishmaniasis. Langmuir.2007;23:4214-24.
    [43]Kimura M, Fukumoto K, Watanabe J, Takai M, Ishihara K. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Biomaterials.2005;26:6853-62.
    [44]Goto F, Ishihara K, Iwasaki Y, Katayama K, Enomoto R, Yusa S-i. Thermo-responsive behavior of hybrid core cross-linked polymer micelles with biocompatible shells. Polymer.2011;52:2810-8.
    [45]Mi L, Bernards MT, Cheng G, Yu Q, Jiang S. pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials.2010;31:2919-25.
    [46]Li G, Xue H, Gao C, Zhang F, Jiang S. Nonfouling Polyampholytes from an Ion-Pair Comonomer with Biomimetic Adhesive Groups. Macromolecules. 2009;43:14-6.
    [47]Bernards MT, Cheng G, Zhang Z, Chen S, Jiang S. Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules.2008;41:4216-9.
    [48]Ishii T, Wada A, Tsuzuki S, Casolaro M, Ito Y. Copolymers Including 1-Histidine and Hydrophobic Moiety for Preparation of Nonbiofouling Surface. Biomacromolecules.2007;8:3340-4.
    [49]Shiraishi K, Ohnishi T, Sugiyama K. Preparation of poly(methyl methacrylate) microspheres modified with amino acid moieties. Macromolecular Chemistry and Physics.1998;199:2023-8.
    [50]Nagaoka S, Shundo A, Satoh T, Nagira K, Kishi R, Ueno K, et al. Method for a Convenient and Efficient Synthesis of Amino Acid Acrylic Monomers with Zwitterionic Structure. Synthetic Communications.2005;35:2529-34.
    [51]Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in Drug Delivery:Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition.2010;49:6288-308.
    [52]Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjugate Chemistry.2003;14:412-9.
    [53]Huang CK, Lo CL, Chen HH, Hsiue GH. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery. Advanced Functional Materials.2007;17:2291-7.
    [54]Zhu S, Qian L, Hong M, Zhang L, Pei Y, Jiang Y. RGD-Modified PEG-PAMAM-DOX Conjugate:In Vitro and In Vivo Targeting to Both Tumor Neovascular Endothelial Cells and Tumor Cells. Advanced Materials. 2011;23:H84-H9.
    [55]Kaminskas LM, McLeod VM, H. Porter CJ, Boyd BJ. Differences in colloidal structure of PEGylated nanomaterials dictate the likelihood of accelerated blood clearance. Journal of Pharmaceutical Sciences.2011;100:5069-77.
    [56]Xu H, Wang KQ, Deng YH, Chen DW. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials. 2010;31:4757-63.
    [57]Ishihara T, Maeda T, Sakamoto H, Takasaki N, Shigyo M, Ishida T, et al. Evasion of the Accelerated Blood Clearance Phenomenon by Coating of Nanoparticles with Various Hydrophilic Polymers. Biomacromolecules.2010;11:2700-6.
    [58]Yang W, Zhang L, Wang S, White AD, Jiang S. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials.2009;30:5617-21.
    [59]Xu JP, Ji J, Chen WD, Shen JC. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. Journal of Controlled Release.2005;107:502-12.
    [60]Licciardi M, Giammona G, Du J, Armes SP, Tang Y, Lewis AL. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer.2006;47:2946-55.
    [61]Salvage JP, Rose SF, Phillips GJ, Hanlon GW, Lloyd AW, Ma IY, et al. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. Journal of Controlled Release.2005;104:259-70.
    [62]Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, et al. Phosphorylcholine-Based pH-Responsive Diblock Copolymer Micelles as Drug Delivery Vehicles:Light Scattering, Electron Microscopy, and Fluorescence Experiments. Biomacromolecules.2006;7:817-28.
    [63]Soma D, Kitayama J, Konno T, Ishihara K, Yamada J, Kamei T, et al. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) for peritoneal dissemination of gastric cancer. Cancer Science.2009;100:1979-85.
    [64]Kamei T, Kitayama J, Yamaguchi H, Soma D, Emoto S, Konno T, et al. Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) in peritoneal metastatic nodules. Cancer Science.2010;102:200-5.
    [65]Wada M, Jinno H, Ueda M, Ikeda T, Kitajima M, Konno T, et al. Efficacy of an MPC-BMA Co-polymer as a Nanotransporter for Paclitaxel. Anticancer Res.2007; 27:1431-5.
    [66]Kano T, Kakinuma C, Wada S, Morimoto K, Ogihara T. Enhancement of Drug Solubility and Absorption by Copolymers of 2-Methacryloyloxyethyl Phosphorylcholine and n-Butyl Methacrylate. Drug Metabolism and Pharmacokinetics.2011;26:79-86.
    [67]Yusa SI, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences. Biomacromolecules.2005;6:663-70.
    [68]Chu H, Liu N, Wang X, Jiao Z, Chen Z. Morphology and in vitro release kinetics of drug-loaded micelles based on well-defined PMPC-b-PBMA copolymer. International Journal of Pharmaceutics.2009;371:190-6.
    [69]Coombes AGA, Tasker S, Lindblad M, Holmgren J, Hoste K, Toncheva V, et al. Biodegradable polymeric microparticles for drug delivery and vaccine formulation: the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments. Biomaterials.1997;18:1153-61.
    [70]Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release. 1998;50:31-40.
    [71]Konno T, Kurita K, Iwasaki Y, Nakabayashi N, Ishihara K. Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer. Biomaterials.2001;22:1883-9.
    [72]Hsiue G-H, Lo C-L, Cheng C-H, Lin C-P, Huang C-K, Chen H-H. Preparation and characterization of poly(2-methacryloyloxyethyl phosphorylcholine)-block-poly(D,L-lactide) polymer nanoparticles. Journal of Polymer Science Part A:Polymer Chemistry.2007;45:688-98.
    [73]Liu G-Y, Lv L-P, Chen C-J, Hu X-F, Ji J. Biocompatible Poly(D,L-lactide)-block-Poly(2-methacryloyloxyethylphosphorylcholine) Micelles for Drug Delivery. Macromolecular Chemistry and Physics.2011;212:643-51.
    [74]Cooper BM, Chan-Seng D, Samanta D, Zhang X, Parelkar S, Emrick T. Polyester-graft-phosphorylcholine prepared by ring-opening polymerization and click chemistry. Chemical Communications.2009:815-7.
    [75]Tu S, Chen Y-W, Qiu Y-B, Zhu K, Luo X-L. Enhancement of Cellular Uptake and Antitumor Efficiencies of Micelles with Phosphorylcholine. Macromolecular Bioscience.2011;11:1416-25.
    [76]Hu Q-D, Fan H, Ping Y, Liang W-Q, Tang G-P, Li J. Cationic supramolecular nanoparticles for co-delivery of gene and anticancer drug. Chemical Communications. 2012;47:5572-4.
    [77]Won Y-W, Yoon S-M, Lim KS, Kim Y-H. Self-Assembled Nanoparticles with Dual Effects of Passive Tumor Targeting and Cancer-Selective Anticancer Effects. Advanced Functional Materials.2012;22:1199-208.
    [78]Zhang CY, Yang YQ, Huang TX, Zhao B, Guo XD, Wang JF, et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials.2012;33:6273-83.
    [79]Chen XJ, McRae S, Parelkar S, Emrick T. Polymeric Phosphorylcholine-Camptothecin Conjugates Prepared by Controlled Free Radical Polymerization and Click Chemistry. Bioconjugate Chemistry.2009;20:2331-41.
    [80]Du J, Tang Y, Lewis AL, Armes SP. pH-Sensitive Vesicles Based on a Biocompatible Zwitterionic Diblock Copolymer. Journal of the American Chemical Society.2005;127:17982-3.
    [81]Lv L-P, Xu J-P, Liu X-S, Liu G-Y, Yang X, Ji J. Disulfide-Crosslinked Biomimetic Micelles:Formation, Thiol Reactivity and Cytotoxicity Behavior. Macromolecular Chemistry and Physics.2010;211:2292-300.
    [82]Miyata R, Ueda M, Jinno H, Konno T, Ishihara K, Ando N, et al. Selective targeting by preSl domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel. International Journal of Cancer.2009;124:2460-7.
    [83]Shimada T, Ueda M, Jinno H, Chiba N, Wada M, Watanabe J, et al. Development of Targeted Therapy with Paclitaxel Incorporated into EGF-conjugated Nanoparticles. Anticancer Research.2009;29:1009-14.
    [84]Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, et al. Functionalizable and Ultrastable Zwitterionic Nanogels. Langmuir.2010;26:6883-6.
    [85]Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, et al. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials. 2010;31:6582-8.
    [86]Cao ZQ, Yu QM, Xue H, Cheng G, Jiang SY. Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. Angewandte Chemie-International Edition. 2010;49:3771-6.
    [87]Zhang L, Xue H, Cao Z, Keefe A, Wang J, Jiang S. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials.2011;32:4604-8.
    [88]Lynn DM, Langer R. Degradable poly(beta-amino esters):Synthesis, characterization, and self-assembly with plasmid DNA. Journal of the American Chemical Society.2000;122:10761-8.
    [89]Lynn DM, Anderson DG, Putnam D, Langer R. Accelerated discovery of synthetic transfection vectors:Parallel synthesis and screening of degradable polymer library. Journal of the American Chemical Society.2001;123:8155-6.
    [90]Hannah Lomas IC, Sheila MacNeil, Jianzhong Du, Steven P. Armes, Anthony J. Ryan,Andrew L. Lewis, and Giuseppe Battaglia. Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery. Adv Mater 2007; 19:4238-43.
    [91]Ahmed M, Jawanda M, Ishihara K, Narain R. Impact of the nature, size and chain topologies of carbohydrate-phosphorylcholine polymeric gene delivery systems. Biomaterials.2012;33:7858-70.
    [92]He Y, Cheng G, Xie L, Nie Y, He B, Gu Z. Polyethleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials.2013;34:1235-45.
    [93]Pun SH, Bellocq NC, Liu AJ, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chemistry.2004; 15:831-40.
    [94]Xianghui Liu JWY, and David M. Lynn. Addition of "Charge-Shifting" Side Chains to Linear Poly(ethyleneimine) Enhances Cell Transfection Efficiency. Biomacromolecules.2008;9:2063-71.
    [95]Liu J, Jiang XL, Xu L, Wang XM, Hennink WE, Zhuo RX. Novel Reduction-Responsive Cross-Linked Polyethylenimine Derivatives by Click Chemistry for Nonviral Gene Delivery. Bioconjugate Chemistry.2010;21:1827-35.
    [96]Dai F, Liu W. Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Biomaterials.2011;32:628-38.
    [97]Zhang JT, Lynn DM. Ultrathin multilayered films assembled from "Charge-Shifting" cationic polymers:Extended, long-term release of plasmid DNA from surfaces. Advanced Materials.2007;19:4218-+.
    [98]Lin S, Du FS, Wang Y, Ji SP, Liang DH, Yu L, et al. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules.2008;9:109-15.
    [99]Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. Journal of the American Chemical Society.2008;130:6001-9.
    [100]Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, et al. Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules.2009;10:119-27.
    [101]Liu W. Redox-cleavable star cationic PDMAEMA by arm-first approach of ATRP as a nonviral vector for gene delivery. Biomaterials.2010;31.
    [102]Zhu C, Zheng M, Meng F, Mickler FM, Ruthardt N, Zhu X, et al. Reversibly Shielded DNA Polyplexes Based on Bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA Triblock Copolymers Mediate Markedly Enhanced Nonviral Gene Transfection. Biomacromolecules.2012;13:769-78.
    [103]Carr LR, Jiang SY. Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials.2010;31:4186-93.
    [104]Sinclair A, Bai T, Carr LR, Ella-Menye J-R, Zhang L, Jiang S. Engineering Buffering and Hydrolytic or Photolabile Charge Shifting in a Polycarboxybetaine Ester Gene Delivery Platform. Biomacromolecules.2013.
    [105]Lewis AL, Cumming ZL, Goreish HH, Kirkwood LC, Tolhurst LA, Stratford PW. Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials. 2001;22:99-111.
    [106]Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, et al. Grafting of Zwitterion from Cellulose Membranes via ATRP for Improving Blood Compatibility. Biomacromolecules.2009;10:2809-16.
    [107]Tada S, Inaba C, Mizukami K, Fujishita S, Gemmei-Ide M, Kitano H, et al. Anti-Biofouling Properties of Polymers with a Carboxybetaine Moiety. Macromolecular Bioscience.2009;9:63-70.
    [108]Yang C, Sun K, Liu J, Wang H, Cao Y. Zwitterionic sulfobetaine-modified non-woven fabric for blood filtration. Polymer International.2010;59:1296-302.
    [109]Cao J, Chen Y-W, Wang X, Luo X-L. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. Journal of Biomedical Materials Research Part A.2011;97A:472-9.
    [110]Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, et al. Improvement of Hemocompatibility of Polycaprolactone Film Surfaces with Zwitterionic Polymer Brushes. Langmuir.2011;27:11575-81.
    [111]Li L, Wang J-H, Xin Z. Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. European Polymer Journal. 2011;47:1795-803.
    [112]Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials.2010;31:3274-80.
    [113]Seo JH, Matsuno R, Konno T, Takai M, Ishihara K. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling-deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials.2008;29:1367-76.
    [114]Chang Y, Chen S, Zhang Z, Jiang S. Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir. 2006;22:2222-6.
    [115]Goda T, Konno T, Takai M, Moro T, Ishihara K. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials.2006;27:5151-60.
    [116]Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S. Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. The Journal of Physical Chemistry B. 2008;112:15269-74.
    [1]Eheman C, Henley SJ, Ballard-Barbash R, Jacobs EJ, Schymura MJ, Noone A-M, et al. Annual Report to the Nation on the status of cancer,1975-2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer. 2012;118:2338-66.
    [2]Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents:An overview. Advanced Drug Delivery Reviews.2009;61:1177-88.
    [3]Maeda H. Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chemistry.2010;21:797-802.
    [4]Mitragotri S, Lahann J. Materials for Drug Delivery:Innovative Solutions to Address Complex Biological Hurdles. Advanced Materials.2012;24:3717-23.
    [5]Cheng CJ, Saltzman WM. Nanomedicine:Downsizing tumour therapeutics. Nat Nano.2012;7:346-7.
    [6]Kopecek J, Kopeckova P. HPMA copolymers:Origins, early developments, present, and future. Advanced Drug Delivery Reviews.2010;62:122-49.
    [7]Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Advanced Drug Delivery Reviews.2010;62:231-9.
    [8]Hoffman AS. The origins and evolution of "controlled" drug delivery systems. Journal of Controlled Release.2008; 132:153-63.
    [9]Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in Drug Delivery:Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition.2010;49:6288-308.
    [10]Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjugate Chemistry.2003;14:412-9.
    [11]Huang CK, Lo CL, Chen HH, Hsiue GH. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery. Advanced Functional Materials.2007;17:2291-7.
    [12]Zhu S, Qian L, Hong M, Zhang L, Pei Y, Jiang Y. RGD-Modified PEG-PAMAM-DOX Conjugate:In Vitro and In Vivo Targeting to Both Tumor Neovascular Endothelial Cells and Tumor Cells. Advanced Materials. 2011;23:H84-H9.
    [13]Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, et al. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials.2011;32:6595-605.
    [14]Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A Survey of Structure-property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir.2001;17:5605-20.
    [15]Wang N, Dong A, Radosz M, Shen YQ. Thermoresponsive degradable poly(ethylene glycol) analogues. Journal of Biomedical Materials Research Part A. 2008;84A:148-57.
    [16]Xia J, Dubin PL, Kokufuta E. Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol. Macromolecules.1993;26:6688-90.
    [17]Kim S, Shi Y, Kim JY, Park K, Cheng J-X. Overcoming the barriers in micellar drug delivery:loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opinion on Drug Delivery.2010;7:49-62.
    [18]Cheng T-L, Wu P-Y, Wu M-F, Chern J-W, Roffler SR. Accelerated Clearance of Polyethylene Glycol-Modified Proteins by Anti-Polyethylene Glycol IgM. Bioconjugate Chemistry.1999; 10:520-8.
    [19]Xu H, Wang KQ, Deng YH, Chen DW. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials. 2010;31:4757-63.
    [20]Ishihara T, Maeda T, Sakamoto H, Takasaki N, Shigyo M, Ishida T, et al. Evasion of the Accelerated Blood Clearance Phenomenon by Coating of Nanoparticles with Various Hydrophilic Polymers. Biomacromolecules.2010; 11:2700-6.
    [21]Chen S, Zheng J, Li L, Jiang S. Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society. 2005;127:14473-8.
    [22]Jiang SY, Cao ZQ. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials.2010;22:920-32.
    [23]Jon Ladd ZZ, Shengfu Chen, Jason C. Hower, and Shaoyi Jiang. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules.2008;9:1357-61.
    [24]Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang SY. Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces:Structural and Environmental Effects. Biomacromolecules.2008;9:2686-92.
    [25]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009;30:5892-6.
    [26]Zheng Zhang SC, and Shaoyi Jiang. Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules.2006;7:3311-5.
    [1]Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews. 2009;61:768-84.
    [2]Vladimir P T. Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release.2001;73:137-72.
    [3]Tyrrell ZL, Shen YQ, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science. 2010;35:1128-43.
    [4]Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release.2004;98:415-26.
    [5]Read ES, Armes SP. Recent advances in shell cross-linked micelles. Chemical Communications.2007:3021-35.
    [6]O'Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews. 2006;35:1068-83.
    [7]Bronich TK, Keifer PA, Shlyakhtenko LS, Kabanov AV. Polymer micelle with cross-linked ionic core. Journal of the American Chemical Society.2005;127:8236-7.
    [8]Li YT, Lokitz BS, Armes SP, McCormick CL. Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules. 2006;39:2726-8.
    [9]Fujimori J, Yoshihashi Y, Yonemochi E, Terada K. Application of Eudragit RS to thermo-sensitive drug delivery systems:Ⅱ. Effect of temperature on drug permeability through membrane consisting of Eudragit RS/PEG 400 blend polymers. Journal of Controlled Release.2005;102:49-57.
    [10]Chan Y, Wong T, Byrne F, Kavallaris M, Bulmus V. Acid-labile core cross-linked micelles for pH-triggered release of antitumor drugs. Biomacromolecules. 2008;9:1826-36.
    [11]Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC. Photoregulation of drug release in azo-dextran nanogels. International Journal of Pharmaceutics. 2007;342:184-93.
    [12]Dai J, Lin S, Cheng D, Zou S, Shuai X. Interlayer-Crosslinked Micelle with Partially Hydrated Core Showing Reduction and pH Dual Sensitivity for Pinpointed Intracellular Drug Release. Angewandte Chemie International Edition. 2011;50:9404-8.
    [13]Li Y, Xiao K, Luo J, Xiao W, Lee JS, Gonik AM, et al. Well-defined, reversible disulfi.de cross-linked micelles for on-demand paclitaxel delivery. Biomaterials. 2011;32:6633-45.
    [14]Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials.2009.
    [15]Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release.2011;152:2-12.
    [16]Li YL, Zhu L, Liu ZZ, Cheng R, Meng FH, Cui JH, et al. Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the Nuclei of Cancer Cells. Angewandte Chemie-International Edition.2009;48:9914-8.
    [17]Ryu JH, Jiwpanich S, Chacko R, Bickerton S, Thayumanavan S. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. Journal of the American Chemical Society. 2010;132:8246-+.
    [18]Cheng T-L, Wu P-Y, Wu M-F, Chern J-W, Roffler SR. Accelerated Clearance of Polyethylene Glycol-Modified Proteins by Anti-Polyethylene Glycol IgM. Bioconjugate Chemistry.1999;10:520-8.
    [19]Xia J, Dubin PL, Kokufuta E. Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol. Macromolecules.1993;26:6688-90.
    [20]Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010;51:5283-93.
    [21]Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, et al. Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release.2001;74:295-302.
    [22]Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental Relationships Between the Composition of Pluronic Block Copolymers and Their Hypersensitization Effect in MDR Cancer Cells. Pharmaceutical Research. 1999;16:1373-9.
    [1]Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, et al. Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release.2001;74:295-302.
    [2]Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental Relationships Between the Composition of Pluronic Block Copolymers and Their Hypersensitization Effect in MDR Cancer Cells. Pharmaceutical Research. 1999;16:1373-9.
    [3]Etrych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage:synthesis and preliminary in vitro and in vivo biological properties. Journal of Controlled Release.2001;73:89-102.
    [4]Bronich TK, Keifer PA, Shlyakhtenko LS, Kabanov AV. Polymer micelle with cross-linked ionic core. Journal of the American Chemical Society.2005; 127:8236-7.
    [5]Li YT, Lokitz BS, Armes SP, McCormick CL. Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules. 2006;39:2726-8.
    [6]O'Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews. 2006;35:1068-83.
    [7]Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials.2009.
    [8]Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release.2011;152:2-12.
    [9]Kim SH, Jeong JH, Chun KW, Park TG. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir.2005;21:8852-7.
    [10]Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. Journal of Biomedical Materials Research Part A.2007;82A:92-103.
    [11]De P, Gondi SR, Sumerlin BS. Folate-Conjugated Thermoresponsive Block Copolymers:Highly Efficient Conjugation and Solution Self-Assembly. Biomacromolecules.2008;9:1064-70.
    [12]Mikhail AS, Allen C. Poly(ethylene glycol)-b-poly(caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel:Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules.2010;11:1273-80.
    [13]Dash TK, Konkimalla VB. Polymeric Modification and Its Implication in Drug Delivery:Poly-ε-caprolactone (PCL) as a Model Polymer. Molecular Pharmaceutics. 2012;9:2365-79.
    [14]Zhu Y, Mao Z, Gao C. Aminolysis-based surface modification of polyesters for biomedical applications. RSC Advances.2013;3:2509-19.
    [15]de Luca AC, Stevens JS, Schroeder SLM, Guilbaud JB, Saiani A, Downes S, et al. Immobilization of cell-binding peptides on poly-ε-caprolactone film surface to biomimic the peripheral nervous system. Journal of Biomedical Materials Research Part A.2013;101A:491-501.
    [16]Yang W, Xue H, Li W, Zhang JL, Jiang SY. Pursuing "Zero" Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir. 2009;25:11911-6.
    [17]Chen SF, Cao ZQ, Jiang SY. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials.2009;30:5892-6.
    [18]Chen SF, Li LY, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010;51:5283-93.
    [19]Zheng Zhang SC, and Shaoyi Jiang. Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules.2006;7:3311-5.
    [20]Cao ZQ, Yu QM, Xue H, Cheng G, Jiang SY. Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. Angewandte Chemie-International Edition. 2010;49:3771-6.
    [1]Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, et al. Microfluidic diagnostic technologies for global public health. Nature.2006;442:412-8.
    [2]El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature.2006;442:403-11.
    [3]Chen H, Brook MA, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials.2004;25:2273-82.
    [4]Spiera H. Scleroderma after silicon augmentation mammoplasty. Jama-Journal of the American Medical Association.1988;260:236-8.
    [5]Kumagai Y, Shiokawa Y, Medsger TA, Rodnan GP. Clinical spectrum of connective tissue disease after cosmetic surgery.Observations on 18 patients and a review of the Japanese liferature. Arthritis and Rheumatism.1984;27:1-12.
    [6]Bridges AJ, Conley C, Wang G, Burns DE, Vasey FB. A clinical and immunlogical evaluation of women with silicon breast implants and symptoms fo rheumatic desease. Annals of Internal Medicine.1993;118:929-36.
    [7]Martin L, Edworthy SM, Barr S, Wall W, Fritzler MJ. Autoantibody profiles in patients with breast implants-the Alberta experience. Arthritis and Rheumatism. 1995;38:664-.
    [8]Blackburn WDJ, Everson MP. Silicone-Associated Rheumatic Disease:An Unsupported Myth. Plastic and Reconstructive Surgery.1997;99:1362-7.
    [9]Yavuzgil O, Ozerkan F, Erturk U, Islekel S, Atay Y, Buket S. A rare cause of right atrial mass:Thrombus formation and infection complicating a ventriculoatrial shunt for hydrocephalus. Surgical Neurology.1999;52:54-5.
    [10]Cagavi F, Akalan N, Celik H, Gur D, Guciz B. Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochirurgica. 2004;146:603-10.
    [11]Levy ML, Luu T, Meltzer HS, Bennett R, Bruce DA. Bacterial adhesion to surfactant-modified silicone surfaces. Neurosurgery.2004;54:488-90.
    [12]Li VT. Methods and complications in surgical cerebrospinal fluid shunting. Neurosurgery Clinics of North America.2001;12:685-+.
    [13]Quigley MR, Reigel DH, Kortyna R. Report of 41 cases and a critical review of the literature. Pediatric Neuroscience.1989;15:111-20.
    [14]Nicolson PC, Vogt J. Soft contact lens polymers:an evolution. Biomaterials. 2001;22:3273-83.
    [15]Hsiue GH, Lee SD, Chang PCT, Kao CY. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. Journal of Biomedical Materials Research.1998;42:134-47.
    [16]K. Ishihara, B. Ando, Takai M. Phosphorylcholine group-immobilized surface prepared on polydimethylsiloxane membrane by in situ reaction for its reduced biofouling. Nanobiotechnol 2007;3:83-8.
    [17]Iwasaki Y, Takamiya M, Iwata R, Yusa S, Akiyoshi K. Surface modification with well-defined biocompatible triblock copolymers-Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface. Colloids and Surfaces B-Biointerfaces.2007;57:226-36.
    [18]Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B-Biointerfaces.2007;54:88-93.
    [19]Seo JH, Matsuno R, Konno T, Takai M, Ishihara K. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling-deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials.2008;29:1367-76.
    [20]Wu YZ, Huang YY, Ma HW. A facile method for permanent and functional surface modification of poly(dimethylsiloxane). Journal of the American Chemical Society.2007;129:7226-+.
    [21]Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials.2008;29:2259-69.
    [22]Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials.2010;31:3274-80.
    [23]Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science.2009;323-.1698-701.
    [24]Chen S, Li L, Zhao C, Zheng J. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer.2010;51:5283-93.
    [25]Chen SF, Zheng J, Li LY, Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society. 2005;127:14473-8.
    [26]Konno T, Hasuda H, Ishihara K, Ito Y. Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials.2005;26:1381-8.
    [27]Goda T, Konno T, Takai M, Moro T, Ishihara K. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials.2006;27:5151-60.
    [28]Zhang Z, Chao T, Chen SF, Jiang SY. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir.2006;22:10072-7.
    [29]Chang Y, Chen SF, Zhang Z, Jiang SY. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir. 2006;22:2222-6.
    [30]Zhang Z, Chen SF, Chang Y, Jiang SY. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B.2006; 110:10799-804.
    [31]Zhang Z, Cheng G, Carr LR, Vaisocherova H, Chen SF, Jiang SY. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials.2008;29:4719-25.
    [32]Yang W, Xue H, Li W, Zhang JL, Jiang SY. Pursuing "Zero" Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir. 2009;25:11911-6.
    [33]Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules.2008;9:1357-61.
    [34]Cheng G, Xite H, Zhang Z, Chen SF, Jiang SY. A Switchable Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities. Angewandte Chemie-International Edition.2008;47:8831-4.
    [35]Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. Journal of Physical Chemistry B.1998; 102:426-36.
    [36]Chen SF, Jiang SY. A new avenue to nonfouling materials. Advanced Materials. 2008;20:335-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700