用户名: 密码: 验证码:
基于FRET的嵌段共聚物胶束输送药物的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性嵌段共聚物通过在水溶液中的自组装行为,形成具有核壳结构的聚合物胶束,可将疏水性药物包裹入核内作为药物载体,具有增大药物利用率、提高靶向性、降低毒副作用等优点,展现出广泛的应用前景。但是,目前纳米药物面临的困境是:纳米药物在一定程度上可减轻毒副作用,但疗效较原药并没有明显提高。因此如何显著提高胶束的靶向性和在肿瘤处的蓄积,是提高其疗效的关键。而提高胶束在肿瘤内蓄积的关键是其能够在血液循环系统中在较长时间内能够以胶束的形式存在。因此,阐明聚合物纳米胶束在血液中的解离过程、解离动力学及其影响因素,是进一步设计制备物理稳定的聚合物胶束、获得高效胶束型纳米药物的基础。
     本课题利用一对近红外双荧光分子Cy5和Cy5.5,基于荧光共振能量转移(FRET)技术,通过将其共价键合在共聚物胶束核内,来研究在不同生理条件下聚合物胶束的动态变化情况。
     首先考察共聚物胶束在体外稳定性的影响因素。我们发现血浆蛋白、球蛋白以及血液中的剪切应力均会对PEG-b-PCL-FRET自组装胶束的稳定性产生一定的影响。而浓度稀释较前几者来说,影响最大。聚合物和其单分子链在溶液中呈现动态平衡的过程。当浓度降到胶束的CMC值以下时,其平衡向着解离方向移动,FRET效率即溶液中以胶束形态存在的聚合物仅有60%左右。新鲜提取的小鼠血液、血浆均对PEG-b-PCL-FRET自组装胶束的稳定性没有影响。将共聚物胶束与肿瘤细胞共同孵育,FRET光谱曲线证明胶束在细胞膜上时依然是以完整的胶束形态存在,一旦进入胞浆内,则解离开来,释放出核内药物。
     在体内稳定性研究中,我们利用多种不同的条件来探索共聚物胶束在血液中的解离和清除动态过程。当PEG-b-PCL-FRET胶束通过尾静脉注射至小鼠体内后,通过活体成像仪和FRET光谱曲线实时监控其动态。胶束在血液中的快速解离(24h时仅剩20%的以胶束形态存在)及快速清除(24h时仅剩3.7%的聚合物残留)证明其还未到达靶向组织之前,核内物质便释放出来。我们通过用不同方法如利用疏水链端PLLA代替PCL的方法、增加胶束给药剂量、利用混合胶束以改变胶束形貌、预注射致哑剂量的PEG-b-PCL胶束以及利用氯化钆,地塞米松等巨噬细胞抑制剂来探索PEG-b-PCL-FRET自组装胶束在体内快速解离以及快速清除的基本机理。结果证明,增加给药剂量,预注射致哑剂量的PEG-b-PCL胶束以及利用氯化钆,地塞米松等巨噬细胞抑制剂均可以显著延长胶束在体内的循环时间,但是对其稳定性没有影响。由此说明饱和血浆中血浆蛋白对自组装胶束的吸附以及抑制其被吞噬细胞识别均可以减缓血液循环中聚合物胶束的清除速率,但不影响胶束稳定性。包裹了抗癌药物PTX的PEG-b-PCL-FRET胶束因其疏水核之间的作用增强,在血液中可以长时间维持其胶束形态,并且血浆清除慢。这证明增加共聚物胶束本身结构中的疏水核作用对清除和解离都有较大影响。肿瘤切片的FRET光谱图证明,尽管只有很少数的共聚物胶束可以通过EPR效应最终到达肿瘤部位,但在肿瘤组织中,大部分共聚物仍保留其胶束完整性,直到将药物输送至靶点。综上所述,我们的研究结果揭示了聚合物胶束通过静脉注射后在体内的解离动力学以及清除的机理,认清了一些关键的基本问题。希望本课题工作能为进一步设计制备物理稳定的聚合物胶束、获得高效胶束型纳米药物打下坚实的基础。
     本论文的第二部分内容诣在解决传统阳离子聚合物基因载体不可降解,合成繁琐,毒性较高等缺点。通过双环氧化合物与胺进行类点击反应,合成一种制作方便简单,低毒并且高效的阳离子聚合物。其聚合反应时间段,后处理纯化易操作,极大的提高了反应效率。根据筛选,挑取的两种聚合物细胞毒性明显低于PEI25Kda的细胞毒性,并可以成功转染质粒DNA,其转染效率高于PEI-25Kda的转染效率,是一种潜在的有利的阳离子基因载体。
Understanding the in vivo behavior of polymeric micelles is critical for the translation of nanomedicine from laboratory research to clinical trials. It is generally assumed that polymeric micelles, upon administration into the blood stream, carry drug molecules until they are taken up into cells followed by intracellular release. The current work revisits this conventional wisdom. The study used dual-labeled polymeric micelles containing a pair of near-infrared fluorescent probes Cy5and Cy5.5, which were conjugated in the polymeric micelle core via fluorescence resonance energy transfer (FRET) to provide insights into the dynamics of the polymeric micelles in different biological conditions. We find that the serum albumins, immunoglobulin (including alpha and beta) and shear stress have moderate effects on the integrity of self-assembled polymeric micelles of poly (ethylene glycol)-b-poly (caprolactone)(PEG-b-PCL) copolymers whereas dilution of the concentration lead the main reason for disassembly of the micelles. During the incubation with cancer cells, FRET spectroscopy showed that micelles stayed intact while extracellular or on the cell membrane and dissembled once inside cells. When the micelles were administrated into the blood stream, FRET imaging and spectroscopy were used to monitor this process in real time. A decrease of FRET efficiency was observed indicating a fast release of core-loaded molecules from micelles in blood circulation due to the loss of micelle integrity. Increasing the micelles dose, pre-treated with micelles and pre-injection with GdCl3could prolong the micelles'blood retention time, but have minor effects on the micelles integrity. The drug-loaded polymeric micelles are able to retain their assembly structure and have a slower decreased of FRET ratio. Moreover, although only a few micelles could finally reach to tumor sites via EPR effect, but the FRET spectroscopy showed micelles in tumor still retain intact and may release the loaded drug at the target site. Taken together, our results reveal that the fate of the injected micelles in vivo and the mechanism of micelle clearance. It may contribute to discovering the pharmacokinetic properties and improving the therapeutic outcome of polymeric micelles.
引文
1. Reddy, L.H., Drug delivery to tumours:recent strategies. Journal of Pharmacy and Pharmacology,2005.57(10):p.1231-1242.
    2. Biedler, J.L. and H. Riehm, Cellular resistance to actinomycin D in Chinese hamster cells in vitro:cross-resistance, radioautographic, and cytogenetic studies. Cancer Research,1970.30(4):p.1174-1184.
    3. Litman, T., et al., From MDR to MXR:new understanding of multidrug resistance systems, their properties and clinical significance. Cellular and Molecular Life Sciences CMLS,2001.58(7):p.931-959.
    4. Higgins, C.F., Multiple molecular mechanisms for multidrug resistance transporters. Nature,2007.446(7137):p.749-757.
    5. Zhou, P.H., et al., In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature,2014.506(7486):p.52-+.
    6. Kiparissides, C. and O. Kammona, Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. Canadian Journal of Chemical Engineering,2013.91(4):p.638-651.
    7. Sultana, S., et al., Nanoparticles-mediated drug delivery approaches for cancer targeting:a review. Journal of Drug Targeting,2013.21(2):p. 107-125.
    8. Allen, T.M. and P.R. Cullis, Liposomal drug delivery systems:From concept to clinical applications. Advanced Drug Delivery Reviews,2013.65(1):p. 36-48.
    9. Couvreur, P., Nanoparticles in drug delivery:Past, present and future. Advanced Drug Delivery Reviews,2013.65(1):p.21-23.
    10. Zhang, Y., H.F. Chan, and K.W. Leong, Advanced materials and processing for drug delivery:The past and the future. Advanced Drug Delivery Reviews, 2013.65(1):p.104-120.
    11. Du, C.L., et al., A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials,2013. 34(12):p.3087-3097.
    12. Yu, Y, et al., Well-defined degradable brush polymer-drug conjugates for sustained delivery of paclitaxel. Molecular Pharmaceutics,2013.10(3):p. 867-874.
    13. Ganta, S., et al., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release,2008.126(3):p.187-204.
    14. Paciotti, G.F., et al., Colloidal gold:A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery,2004.11(3):p.169-183.
    15. Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release,2001.70(1-2):p.1-20.
    16. Park, K., Polysaccharide-based near-infrared fluorescence nanoprobes for cancer diagnosis. Quantitative imaging in medicine and surgery,2012.2(2):p. 106-113.
    17. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles:Theory to practice. Pharmacological Reviews, 2001.53(2):p.283-318.
    18. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanop articles for therapeutic applications. Nature Reviews Drug Discovery,2010.9(8):p. 615-627.
    19. Kingsley, J.D., et al., Nanotechnology:A focus on nanoparticles as a drug delivery system. Journal of Neuroimmune Pharmacology,2006.1(3):p. 340-350.
    20. Maeda, H., Tumor-selective delivery of macromolecular drugs via the EPR effect:Background and future prospects. Bioconjugate chemistry,2010.21(5): p.797-802.
    21. Maruyama, K., Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Advanced Drug Delivery Reviews,2011.63(3): p.161-169.
    22. Modi, S., et al., Exploiting EPR in polymer drug conjugate delivery for tumor targeting. Current Pharmaceutical Design,2006.12(36):p.4785-4796.
    23. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews,2011.63(3):p.131-135.
    24. Gullotti, E. and Y. Yeo, Extracellularly activated nanocarriers:a new paradigm of tumor targeted drug delivery. Molecular Pharmaceutics,2009. 6(4):p.1041-1051.
    25. Mosqueira, V.C.F., et al., Biodistribution of long-circulating PEG-grafted nanocapsules in mice:effects of PEG chain length and density. Pharmaceutical Research,2001.18(10):p.1411-1419.
    26. Nakada, Y, et al., Evaluation of long-circulating nanoparticles using biodegradable ABA triblock copolymers containing of poly(L-lactic acid) A-blocks attached to central poly(oxyethylene) B-blocks in vivo. International Journal of Pharmaceutics,1998.175(1):p.109-117.
    27. Calvo, P., et al., Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharmaceutical Research,2001.18(8): p.1157-1166.
    28. Jain, R.K. and T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology,2010.7(11):p.653-664.
    29. Danhier, F., O. Feron, and V. Preat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release,2010.148(2):p.135-146.
    30. Sun, Q., M. Radosz, and Y. Shen, Challenges in design of translational nanocarriers. Journal of Controlled Release,2012.164(2):p.156-169.
    31. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews,2012.46:p.149-168.
    32. Ruoslahti, E., S.N. Bhatia, and M.J. Sailor, Targeting of drugs and nanoparticles to tumors. Journal of Cell Biology,2010.188(6):p.759-768.
    33. Sugahara, K.N., et al., Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer cell,2009.16(6):p.510-520.
    34. Krieger, M.X., et al., Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. International Journal of Pharmaceutics,2010. 389(1):p.10-17.
    35. Ying, X., et al., Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. Journal of Controlled Release, 2010.141(2):p.183-192.
    36. Gabizon, A., et al., In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clinical Cancer Research,2003.9(17):p. 6551-6559.
    37. Park, J.W., et al., Anti-HER2 immunoliposomes enhanced efficacy attributable to targeted delivery. Clinical Cancer Research,2002.8(4):p.1172-1181.
    38. Allen, T.M., et al., Immunoliposome-mediated targeting of anti-cancer drugs in vivo. Biochemical Society Transactions,1995.23(4):p.1073-1079.
    39. Sudimack, J. and R.J. Lee, Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews,2000.41(2):p.147-162.
    40. Lee, E.S., K. Na, and Y.H. Bae, Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release,2003.91(1-2):p. 103-113.
    41. Li, C., et al., Tumor irradiation enhances the tumor-specific distribution of poly(L-glutamic acid)-conjugated paclitaxel and its antitumor efficacy. Clinical Cancer Research,2000.6(7):p.2829-2834.
    42. Zhu, C.L., et al., Conjugated polymer-coated bacteria for multimodal intracellular and extracellular anticancer activity. Advanced Materials,2013. 25(8):p.1203-1208.
    43. Jiao, Z., X. Wang, and Z.M. Chen, Advance of amphiphilic block copolymeric micelles as drug delivery. Asian Journal of Chemistry,2013.25(4):p. 1765-1769.
    44. Lu, W.F., et al., In vitro evaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(l-lactic acid) amphiphilic block copolymeric micelles. Journal of Applied Polymer Science,2013.128(5):p. 3084-3092.
    45. Yu, J.M., et al., Folic acid conjugated glycol chitosan micelles for targeted delivery of doxorubicin:preparation and preliminary evaluation in vitro. Journal of Biomaterials Science-Polymer Edition,2013.24(5):p.606-620.
    46. Joo, K.I., et al., Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials,2013.34(12):p.3098-3109.
    47. Kono, K., et al., Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy. Biomaterials,2011.32(5):p.1387-1395.
    48. Basel, M.T., et al., Protease-sensitive, polymer-caged Liposomes:A method for making highly targeted liposomes using triggered release. Acs Nano,2011. 5(3):p.2162-2175.
    49. Chang, Y.L., et al., Dendrimer functionalized water soluble magnetic iron oxide conjugates as dual imaging probe for tumor targeting and drug delivery. Polymer Chemistry,2013.4(3):p.789-794.
    50. Holden, C.A., et al., Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine-Nanotechnology Biology and Medicine,2012.8(5):p.776-783.
    51. Huang, H.C., et al., Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release,2011.155(3):p.344-357.
    52. Bhattacharyya, S., et al., Inorganic nanoparticles in cancer therapy. Pharmaceutical Research,2011.28(2):p.237-259.
    53. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology,2007.2(12):p.751-760.
    54. Ringsdorf, H., Stucture and properties of pharmacologically active polymers. Journal of Polymer Science Part C-Polymer Symposium,1975(51):p. 135-153.
    55. Molineux, G., The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Current Pharmaceutical Design,2004.10(11): p.1235-1244.
    56. Haag, R. and F. Kratz, Polymer therapeutics:concepts and applications. Angew Chem Int Ed Engl,2006.45(8):p.1198-215.
    57. Duncan, R., Drug-polymer conjugates:potential for improved chemotherapy. Anti-Cancer Drugs,1992.3(3):p.175-210.
    58. Vasey, P.A., et al., Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]:first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res,1999.5(1):p. 83-94.
    59. Loadman, P.M., et al., Pharmacokinetics of PK1 and doxorubicin in experimental colon tumor models with differing responses to PK1. Clinical cancer research,1999.5(11):p.3682-3688.
    60. Cohen, B.E. and A.D. Bangham, Diffusion of small nonelectrolytes across liposome membranes. Nature,1972.236(5343):p.173-174.
    61. Bochot, A. and E. Fattal, Liposomes for intravitreal drug delivery:A state of the art. Journal of Controlled Release,2012.161(2):p.628-634.
    62. Al-Jamal, W.T. and K. Kostarelos, Liposomes:From a clinically established drug delivery dystem to a nanoparticle platform for theranostic nanomedicine. Accounts of Chemical Research,2011.44(10):p.1094-1104.
    63. Kong, G., et al., Efficacy of liposomes and hyperthermia in a human tumor xenograft model:Importance of triggered drug release. Cancer Research, 2000.60(24):p.6950-6957.
    64. Zhang, J. and R. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer:core-shell nanoparticle carrier and drug release response. Acta Biomaterialia,2007.3(6):p.838-850.
    65. Polyak, B. and G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opinion on Drug Delivery,2009. 6(1):p.53-70.
    66. Veiseh, O., J.W. Gunn, and M.Q. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews,2010.62(3):p.284-304.
    67. Boisselier, E. and D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews,2009.38(6):p.1759-1782.
    68. Ghosh, P., et al., Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews,2008.60(11):p.1307-1315.
    69. Huang, X.H., et al., Gold nanoparticles:interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine,2007. 2(5):p.681-693.
    70. Paciotti, G.F., D.G.I. Kingston, and L. Tamarkin, Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research,2006.67(1):p.47-54.
    71. Tomalia, D.A., et al., A new class of polymers-starburst-dendritic macromolecules. Polymer Journal,1985.17(1):p.117-132.
    72. Hawker, C.J. and J.M.J. Frechet, Preparation of polymers with controlled molecular architecture-a new convergent approach to dendritic macromolecules. Journal of the American Chemical Society,1990.112(21):p. 7638-7647.
    73. Menjoge, A.R., R.M. Kannan, and D.A. Tomalia, Dendrimer-based drug and imaging conjugates:design considerations for nanomedical applications. Drug Discovery Today,2010.15(5-6):p.171-185.
    74. Esfand, R. and D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications. Drug Discovery Today,2001.6(8):p.427-436.
    75. Esfand, R. and D.A. Tomalia, Poly (amidoamine)(PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications. Drug discovery today,2001.6(8):p.427-436.
    76. Ding, H., et al., Applications of polymeric micelles with tumor targeted in chemotherapy. Journal of Nanoparticle Research,2012.14(11):p.1254-1267.
    77. Blanazs, A., S.P. Armes, and A.J. Ryan, Self-assembled block copolymer aggregates:From micelles to vesicles and their biological applications. Macromolecular Rapid Communications,2009.30(4-5):p.267-277.
    78. Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science,2007.32(8-9):p.962-990.
    79. Moffitt, M., K. Khougaz, and A. Eisenberg, Micellization of ionic block copolymers. Accounts of Chemical Research,1996.29(2):p.95-102.
    80. Torchilin, V.P., Micellar nanocarriers:Pharmaceutical perspectives. Pharmaceutical Research,2007.24(1):p.1-16.
    81. Kim, D.W., et al., Multicenter phase Ⅱ trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Annals of Oncology,2007. 18(12):p.2009-2014.
    82. Matsumura, Y., et al., Phase Ⅰ clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer,2004. 91(10):p.1775-1781.
    83. Ding, H., et al., Applications of polymeric micelles with tumor targeted in chemotherapy. Journal of Nanoparticle Research,2012.14(11).
    84. Batrakova, E.V., et al., Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles:In vivo evaluation of anti-cancer activity. British Journal of Cancer,1996.74(10):p.1545-1552.
    85. Sun, H.L., et al., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials,2009. 30(31):p.6358-6366.
    86. Tyrrell, Z.L., Y.Q. Shen, and M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science,2010.35(9):p.1128-1143.
    87. Bae, Y., et al., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie International Edition,2003. 42(38):p.4640-4643.
    88. Luo, L.B., et al., Cellular internalization of poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymer micelles. Bioconjugate Chemistry,2002.13(6):p.1259-1265.
    89. Hawker C., Wooley K., Science,2005.309,1200.
    90. Gomez-Guillen, M.C., et al., Fish gelatin:a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 2009.20(1):p.3-16.
    91. Gupta, M., G.P. Agrawal, and S.P. Vyas, Polymeric Nanomedicines as a Promising Vehicle for Solid Tumor Therapy and Targeting. Current Molecular Medicine,2013.13(1):p.179-204.
    92. Sethuraman, V.A., K. Na, and Y.H. Bae, pH-responsive sulfonamide/PEI system for tumor specific gene delivery:An in vitro study. Biomacromolecules, 2006.7(1):p.64-70.
    93. Chen, C.H., et al., Evaluation of multi-target and single-target liposomal drugs for the treatment of gastric cancer. Bioscience Biotechnology and Biochemistry,2008.72(6):p.1586-1594.
    94. Alexis, F., et al., Factors affecting the clearance and bio distribution of polymeric nanoparticles. Molecular Pharmaceutics,2008.5(4):p.505-515.
    95. Hume, D.A., The mononuclear phagocyte system. Current opinion in immunology,2006.18(1):p.49-53.
    96. Sadzuka, Y., S. Hirotsu, and S. Hirota, Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. Cancer letters, 1998.127(1):p.99-106.
    97. Gref, R., et al.,'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG):influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B:Biointerfaces,2000.18(3):p. 301-313.
    98. Fang, C., et al., In vivo tumor targeting of tumor necrosis factor-a-loaded stealth nanoparticles:effect of MePEG molecular weight and particle size. European journal of pharmaceutical sciences,2006.27(1):p.27-36.
    99. Nagayama, S., et al., Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. International Journal of Pharmaceutics,2007.342(1):p.215-221.
    100. Cabral, H., et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature nanotechnology,2011.6(12):p. 815-823.
    101. Levchenko, T.S., et al., Liposome clearance in mice:the effect of a separate and combined presence of surface charge and polymer coating. International Journal of Pharmaceutics,2002.240(1):p.95-102.
    102. Zhang, J.-S., F. Liu, and L. Huang, Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Advanced Drug Delivery Reviews, 2005.57(5):p.689-698.
    103. Geng, Y. and D.E. Discher, Hydrolytic degradation of poly (ethylene oxide)-block-polycaprolactone worm micelles. Journal of the American Chemical Society,2005.127(37):p.12780-12781.
    104. Cai, S., et al., Micelles of different morphologies-advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharmaceutical Research, 2007.24(11):p.2099-2109.
    105. Christian, D.A., et al., Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Molecular Pharmaceutics,2009.6(5):p.1343-1352.
    106. Hu, X., et al., Core crosslinking of biodegradable block copolymer micelles based on poly (ester carbonate). Macromolecular Bioscience,2009.9(5):p. 456-463.
    107. Li, Y., et al., Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. Acs Nano,2012.6(11): p.9485-9495.
    108. Chen, H., et al., Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir,2008.24(10):p.5213-5217.
    109. Savic, R., et al., Assessment of the integrity of poly (caprolactone)-b-poly (ethylene oxide) micelles under biological conditions:a fluorogenic-based approach. Langmuir,2006.22(8):p.3570-3578.
    110. Lu, J., S.C. Owen, and M.S. Shoichet, Stability of self-assembled polymeric micelles in serum. Macromolecules,2011.44(15):p.6002-6008.
    111. Diezi, T.A., Y. Bae, and G.S. Kwon, Enhanced stability of PEG-block-poly (N-hexyl stearate l-aspartamide) micelles in the presence of serum proteins. Molecular pharmaceutics,2010.7(4):p.1355-1360.
    112. Luo, L., et al., Cellular internalization of poly (ethylene oxide)-b-poly (ε-caprolactone) diblock copolymer micelles. Bioconjugate chemistry,2002. 13(6):p.1259-1265.
    113. Savic, R., et al., Micellar nanocontainers distribute to defined cytoplasmic organelles. Science,2003.300(5619):p.615-618.
    114. Chen, H., et al., Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proceedings of the National Academy of Sciences,2008.105(18):p. 6596-6601.
    115. Savic, R., A. Eisenberg, and D. Maysinger, Block copolymer micelles as delivery vehicles of hydrophobic drugs:micelle-cell interactions. Journal of drug targeting,2006.14(6):p.343-355.
    116. Zhao, Y., et al., Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice. ACS nano,2013.7(11):p.10362-10370.
    117. Zou, P., et al., Noninvasive Fluorescence Resonance Energy Transfer Imaging of in Vivo Premature Drug Release from Polymeric Nanoparticles. Molecular pharmaceutics,2013.10(11):p.4185-4194.
    118. Soga, O., et al., In vivo efficacy of paclitaxel-loaded thermosensitive biodegradable polymeric micelles2006:Utrecht University.87.
    119. Kim, S.C., et al., In vivo evaluation of polymeric micellar paclitaxel formulation:toxicity and efficacy. Journal of Controlled Release,2001.72(1): p.191-202.
    120. Kim, T.-Y., et al., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical cancer research,2004.10(11):p.3708-3716.
    121. Jones, CD., J.G. McGrath, and L.A. Lyon, Characterization of cyanine dye-labeled poly (N-isopropylaciylamide) core/shell microgels using fluorescence resonance energy transfer. The Journal of Physical Chemistry B, 2004.108(34):p.12652-12657.
    122. Ray, K., et al., Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging:colocalization of packaged phage T4 DNA ends within the capsid. Journal of molecular biology,2010. 395(5):p.1102-1113.
    123. Clegg, R.M., Fluorescence resonance energy transfer. Current opinion in biotechnology,1995.6(1):p.103-110.
    124. Jin, E.L., et al., Acid-active cell-penetrating peptides for in vivo tumor-targeted drug deliveiy. Journal of the American Chemical Society,2013. 135(2):p.933-940.
    125. Fleige, E., M.A. Quadir, and R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds:Concepts and applications. Advanced Drug Delivery Reviews,2012.64(9):p.866-884.
    126. Bae, Y.H. and H.Q. Yin, Stability issues of polymeric micelles. Journal of Controlled Release,2008.131(1):p.2-4.
    127. Rijcken, C.J., et al., Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies. Biomaterials,2007. 28(36):p.5581-5593.
    128. Wang, F., et al., Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chemistry,2005.16(2):p. 397-405.
    129. Kim, S.Y. and Y.M. Lee, Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials,2001.22(13):p.1697-1704.
    130. Jankova, K., et al., Synthesis of amphiphilic PS-b-PEG-b-PS by atom transfer radical polymerization. Macromolecules,1998.31(2):p.538-541.
    131. Cauda, V., et al., Multiple Core— Shell Functionalized Colloidal Mesoporous Silica Nanoparticles. Journal of the American Chemical Society,2009. 131(32):p.11361-11370.
    132. Jungnickel, C., et al., Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008.316(1-3):p.278-284.
    133. Whitmore, P., H. Robota, and C. Harris, Mechanisms for electronic energy transfer between molecules and metal surfaces:A comparison of silver and nickel. The Journal of Chemical Physics,1982.77(3):p.1560-1568.
    134. Parker, C., Photoluminescence of solutions,1968, Amsterdam:American Elsevier.
    135. Hathcock, J.J., Flow effects on coagulation and thrombosis. Arteriosclerosis, thrombosis, and vascular biology,2006.26(8):p.1729-1737.
    136. Tokarev, A., A. Butylin, and F. Ataullakhanov, Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal,2011.100(4):p.799-808.
    137. Chaudhury, M.K. and G.M. Whitesides, Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly (dimethylsiloxane) and their chemical derivatives. Langmuir,1991.7(5):p. 1013-1025.
    138. Curtis, J.J., et al., Centrifugal pumps:description of devices and surgical techniques. The Annals of thoracic surgery,1999.68(2):p.666-671.
    139. Paparella, D., et al., Blood damage related to cardiopulmonary bypass:in vivo and in vitro comparison of two different centrifugal pumps. ASAIO journal, 2004.50(5):p.473-478.
    140. Vita, J.A., et al., Control of Shear-Stress in the Epicardial Coronary-Arteries of Humans-Impairment by Atherosclerosis. Journal of the American College of Cardiology,1989.14(5):p.1193-1199.
    141. Korson, L., W. Drost-Hansen, and F.J. Millero, Viscosity of water at various temperatures. The Journal of Physical Chemistry,1969.73(1):p.34-39.
    142. Hubbell, J.A., Enhancing drug function. Science,2003.300(5619):p. 595-596.
    143. Venne, A., et al., Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer research,1996.56(16):p.3626-3629.
    144. Allen, C., et al., Cellular internalization of PCL< sub> 20-< i> b-PEO< sub> 44 block copolymer micelles. Biochimica et Biophysica Acta (BBA)-Biomembranes,1999.1421(1):p.32-38.
    145. Nalwa, H.S., Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set. Vol.3.1999:Academic Press.
    146. Ishida, T. and H. Kiwada, Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. International Journal of Pharmaceutics,2008.354(1-2):p.56-62.
    147. Ishida, T., et al., Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. Journal of Controlled Release,2006.112(1):p.15-25.
    148. Ishida, T., et al., Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. Journal of Controlled Release,2006. 115(3):p.243-250.
    149. Tagami, T., et al., CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes. Journal of Controlled Release,2010.142(2):p.160-166.
    150. Laskin, D.L. Nonparenchymal cells and hepatotoxicity. in Seminars in liver disease.1990.
    151. Hardonk, M., et al., Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. Journal of Leukocyte Biology,1992.52(3):p.296-302.
    152. Xu, D.-M., et al., Size-dependent properties of M-PEIs nanogels for gene delivery in cancer cells. International Journal of Pharmaceutics,2007.338(1): p.291-296.
    153. desai, M.p., et al., The mechanism of untake of biodegradable microparticles in caco-2 cells is size dependent. Pharmaceutical Research,1997.14:p. 1568-1573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700