用户名: 密码: 验证码:
恶劣环境下混凝土用有机功能材料及其防护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构作为土木工程领域最常用的结构形式,其施工与服役环境极其复杂,恶劣环境中混凝土的耐久性问题尤其突出,已成为国内外研究热点。目前恶劣环境下混凝土耐久性的研究主要着重在混凝土结构的破坏机理,对其防护技术的研究则主要集中从无机材料方面改善混凝土的密实度或仅利用其中一种外加剂进行改善,缺乏能对混凝土耐久性改善的有机功能材料的设计研发及有机无机协同防护机理研究。鉴于此,本文设计研发了一系列有机功能材料,并分析了其对混凝土的防护作用机理。本文的主要工作及结论如下:
     (1)合成了一种新型酯类外加剂,并对其掺入后混凝土的流动性、强度及抗腐蚀性能进行研究。研究表明,该外加剂在促进混凝土材料低温下强度发展的同时,改善了混凝土的孔结构,提高了基体密实度,可有效解决低温环境下混凝土硬化缓慢,早期强度低而引起的耐久性问题。
     (2)对内掺硅烷防水剂水泥基材料的吸水性、表面特性及耐酸侵蚀性能的研究结果表明,掺入硅烷后水泥基材料的吸水率及毛细吸水系数降低,润湿角呈现钝角,抗硫酸侵蚀性能显著提高;SEM、XRD等微观试验结果显示,硅烷延缓了侵蚀产物的生成,表明硅烷可降低H+和S042-进入水泥基材料内部的速率,提高材料耐酸侵蚀的性能。
     (3)依据气相液相扩散机理优选了迁移速率与阻锈性能相匹配的苯甲酸单乙醇胺作为迁移型阻锈剂。UV-vis、SEM、EDX等微观试验分析表明,苯甲酸单乙醇胺可通过扩散迁移并富集在钢筋表面形成保护膜,防止氯离子引起钢筋(钢纤维)锈蚀。苯甲酸单乙醇胺对混凝土的抗压强度、含气量和凝结时间等基本性能无影响,但可减少混凝土的收缩,提高其抗海水侵蚀能力,同时可改善钢筋(钢纤维)与混凝土界面,有效阻止外界离子侵入到钢筋或钢纤维表面,提高钢筋混凝土或钢纤维混凝土的耐久性。
     (4)通过合理的分子结构设计,引入羟氨基聚醚和潜伏性固化剂,制备了可手工涂覆的新型聚氨酯-脲有机涂层,并对涂层进行了表征。进一步研究了聚氨酯-脲的力学性能、抗老化性能及涂覆后混凝土的抗硫酸侵蚀能力。结果表明,该涂层性能优异,与混凝土具有良好的粘结性,粘结强度高达3.2MPa;热氧、紫外光照经过一段时间处理后涂层得到进一步熟化,拉伸强度有较大提高;相对于环氧涂覆混凝土试件,聚氨酯-脲涂覆试件在H2S04溶液中浸泡28d后的质量损失率降低32.6%,抗压强度提高22.7%,能够显著提高混凝土的抗酸侵蚀能力。
As the most commonly used structure in civil engineering, reinforced concrete structure and its construction process is suffering extreme complex environment, which causes severe durability problem. The durability of reinforced concrete structure in harsh environment has become a research hotspot at home and abroad. Present study mainly focused on the failure mechanism of concrete. The protective technology researches are mainly focus on improving the compactness or enhancing the durability of concrete by using only one admixture. The designing of organic functional materials and improving the durability of concrete by development of organic functional materials and organic and inorganic coordination are relatively infrequent. In this thesis, a series of organic functional materials were designed and the mechanism of its protection was homologous clarified. The main work and conclusions are as follows:
     (1) A novel esters admixture (SE) was synthesized. The fluidity, strength and corrosion resistance of concrete with SE was studied. The results showed that, compared with the common early strength agent such as TEA, inorganic salts etc., SE was able to promote the strength development of concrete at low temperatures. The pore structure and compactness of concrete were improved by SE correspondingly, which was able to solve the durability problem of concrete caused by low temperature.
     (2) The water absorption, surface characteristic and acid resistance of cementitious composite modified by silane-based admixture were studied. The results showed that the water absorption and capillary water absorption index of cementitious composite were lowered by silane-based admixture. The wetting angle was observed as obtuse angle, which indicated that the surface turned to be hydropHobic. The results of SEM、 XRD tests showed that the formation of corrosion products was restrained by silane. The permeability of H+and SO42-was prevented, which improved the corrosion resistance of cementitious composite material.
     (3) Based on the diffusion mechanism in gas and liquid pHase, benzoic acid monoethanolamine was selected as migrating corrosion inhibitor. The results of UV-vis, SEM and XPS showed that benzoic acid monoethanolamine formed protection film by diffusing and gathering onto the surface of reinforcing steel, which prevented the corrosion of steel bar and steel fiber. Benzoic acid monoethanolamine did not have negative effect on the compressive strength, air content or setting time of concrete. The shrinkage of concrete was reduced, and the formation hydration products were promoted by benzoic acid monoethanolamine, which prevent outside intrusion ions effectively and improve the durability of concrete.
     (4) A novel polyurethane urea organic coating that can be coated manual was synthesized by proper molecular structure design. Hydroxyl amino polyether and latent curing agent was induced, and the newly synthesized coating was analyzed. The mechanical properties, aging properties of the coating and sulfate erosion resistance of concrete with the coating were studied, respectively. The results showed that, polyurethane urea organic coating had satisfactory performance. The bonding strength of coating and concrete reachesd3.2MPa, which indicated remarkable bonding performance. The tensile strength of coating was further enhanced by thermal aging and UV light processing. After immersed in2%sulfuric acid solution for28d, the mass loss rate of specimens with polyurethane urea coating declined32.6%, the residual compressive strength increased22.7%compared with the concrete specimens with epoxy coating. The acid erosion resistance of concrete was obviously enhanced by polyurethane urea coating.
引文
[1]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [2]尹正凤.宁夏地区混凝土腐蚀机理与治理研究[D].沈阳:东北大学,2005.
    [3]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004.
    [4]宋立元.海洋钢筋混凝土结构氯离子腐蚀耐久性研究[D].大连:大连理工大学,2009.
    [5]王胜年等.港江港一区南码头调查报告[R].中交四航局科研所,1999.
    [6]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [7]Henriksen CF. Prediction of service life and choice of repair strategy[A].6th International conference durability of building materials and components [C]. 1993:1100-1106.
    [8]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,9(2):5-11.
    [9]谢友均等.沿海铁路桥梁混凝土耐久性研究,铁道部重大科研计划研究报告.2009.
    [10]洪乃丰.混凝土中钢筋腐蚀与结构物的耐久性[J].公路,2001(2):66-69.
    [11]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社,1998.
    [12]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [13]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [14]龚洛书,柳春圃.混凝土的耐久性及其防护修补[J].北京:中国建筑工业出版社,1990.
    [15]卢木.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1984.
    [16]Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review[J]. Cement and Concrete Composites,2003,25 (4-5):459-471.
    [17]赵冰.表面有涂覆层的钢筋在混凝土中腐蚀与防护的研究[D].厦门:厦门大学,2007.
    [18]JIN WL, ZHAO Y. Effect of corrosion on bond behavior and bending strength of reinforced concrete beams[J]. Journal of Zhejiang University(Science),2001,2(3): 47-50.
    [19]徐港,卫军,王青.锈蚀钢筋与混凝土粘结性能的梁式试验[J].应用基础与工程科学学报,2009,17(4):549-557.
    [20]David RS. Bond strength of corrosion-resistant reinforcing bars [D].Queen's University, Canada,2003.
    [21]余海龙.阻锈剂对碳化引起的钢筋腐蚀的阻锈效果研究[D].北京:中国建筑材料科学研究院,2003.
    [22]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [23]赵宏沿.一般大气条件下钢筋混凝土构件剩余寿命预测[D].北京:清华大学,1993.
    [24]Novokshehenov V. Deterioration of reinforced concrete in the marine industrial environment of the Arabian Gulf-A ease study[J].Materials and Struetures,1995, 28:392-400.
    [25]Balabanic G, Bicanie N, Durekovie A. The influence of W/C ratio, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete[J]. Cement and Conerete Researeh,1996,26(5):761-769.
    [26]Tuutti K.Corrosion of steel in concrete[M]. Switzerland:Swedish Cement and Concrete Research Institute,1982.
    [27]冯乃谦,蔡军旺,牛全林,张树河.山东沿海钢筋混凝土公路桥的劣化破坏及其对策的研究[J].混凝土,2003(1):3-6.
    [28]ZHANG J, Li VC. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics [J].Cement and Concrete Research,2004,34(2):333-339.
    [29]Paulo BC, Joaquim AF, Paulo AA. Fatigue behavior of fiber-reinforced concrete in compression[J] Cement and Concrete Composites,2002,24(2):211-217.
    [30]李建辉,邓宗才.粗合成纤维混凝土抗氯离子腐蚀性试验研究[A].第十一届全国纤维混凝土学术会议论文集.
    [31]王海超.钢纤维混凝土腐蚀前后的弯曲韧性研究[J].山东科技大学学报,2007,26(5):30-35.
    [32]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2002.
    [33]王立久,王丹红.混凝土的冻融破坏研究现状[A].第五届全国高性能混凝土学术交流会,2004.
    [34]Powers TC. A Working hypothesis for further studies of frost resistance of concrete[J]. ACI Journal Proceedings,1945,16(4):245-272.
    [35]Powers TC,Helmuth RA.Theory of volume changes in hardened Portland cement paste during freezing[J]. Proceedings, Highway Research Board,1953,32: 285-297.
    [36]肖前慧.冻融环境多因素耦合作用混凝土结构耐久性研究[D].西安建筑科技大学,2010.
    [37]高丹盈,朱海堂等.冻融后钢纤维混凝土力学性能的试验研究[J].郑州大学学报(工学版),2005,26(1):1-4.
    [38]余红发,孙伟等.膨胀剂和纤维及其复合对混凝土抗冻性能的影响[J].南京航空航天大学学报,2006,38(2):245-250.
    [39]姚武.纤维混凝土的低温性能和冻融损伤机理研究[J].冰川冻土,2005,27(4):545-549.
    [40]张燕,刘立进.我国酸雨分布特征及控制对策[J].陕西环境,1998,5(4):39-40.
    [41]鲁军凯.酸雨和冻融环境对再生及钢管再生混凝土性能影响的研究[D].哈尔滨工业大学,2011.
    [42]Belie ND, Debruyckere M, Nieuwenburg DV,et al. Attack of concrete floors in pig houses by feed acids influence of fly ash addition and cement-bound surface layers[J] Journal of Agricultural Engineering Research,1997,68 (2):101-108.
    [43]Durning TA, Hicks MC. Using microsilica to increase concrete's resistance to aggressive chemicals [J]. Concrete International,1991,14(3):42-48.
    [44]Kazuyuk T, Mitsunor K.Effects of fly ash and silica fume on the resistance of mortar to sulphuric acid and sulphate attack [J]. Cement and Concrete Research, 1994,24 (2):361-370.
    [45]Belie ND, Verschoore R, Nieuwenburg DV. Resistance of concrete with limestone sand or polymer additions to feed acids [J]. Transaction of the ASAE,1998,41 (1):227-233.
    [46]Gruyaert E, Heede PV, Maes M, et al. Investigation of the influence of blast-furnace slag on the resistance of concrete [J]. Cement and Concrete Research, 2012,42(1):173-185.
    [47]Hughes BP, Guest JE. Limestone and siliceous aggregate concrete subjected to sulphuric acid attack [J]. Magazine of Concrete Research,1978,30(102):11-18.
    [48]Harrison WH. Durability of concrete in acidic soils and waters [J].Concrete, 1987,21(2):18-23.
    [49]Hiroshi O. Deterioration of concrete structure by acid deposition Zairyo to Kankyo[J].Corrosion Engineering,1995,44(12):690-697.
    [50]Kanazu T, Matsumura T, et al. Effect of simulated acid rain on deterioration of concrete[J].Water, Air and Soil Pollution,2001,130(1-4):1481-1486.
    [51]刘惠玲,周定,等.我国西南地区酸雨对混凝土性能影响的研究[J].哈尔滨工业大学学报,1997,29(6):101-104.
    [52]张倩,赵洁,成华.酸雨对水泥混凝土强度影响的模拟及其腐蚀的化学机理分析[A].沿海地区混凝土结构耐久性及其设计方法科技论坛与全国第六届混凝土耐久性学术交流会论文集,2004.
    [53]陈梦成,王凯,谢力.酸雨侵蚀下水泥材料的腐蚀损伤与评价-酸雨介质成分的影响[J].建筑科学,2012,28(3):20-24.
    [54]Neville A. Chloride attack of reinfored concrete:an overview[J]. Materials and Structures.1993,28(6):63-70.
    [55]Hope BB, Page JA, Poland JS. The determination of chloride content of concrete [J]. Cement and Concrete Research,1985,15:863-870.
    [56]Martin PB, Zibara H, Hooton RD, Thomas MD. A study of the effect of chloride binding on service life predictions [J].Cement and Concrete Research,2000, (30): 1215-1223,
    [57]Ueli A, Bernhard E, Claus KL,(?)ystein V. Critical chloride content in reinforced concrete-Areview[J]. Cement and Concrete Research,2009,39 (12):1122-1138.
    [58]Hausmann DA. Steel corrosion in concrete-How does it occur[J]. Materials Protection,1967,6(11):19-23.
    [59]Vassie P. Reinforcement corrosion and the durability of concrete bridges[J]. Proceeding of Institution of Civil Engineers,1984,76(3):713-723.
    [60]British Standard 8110:Part 1.Structural use of concrete-code of practice for design and construction[J]. UK London:British Standards Institute,1985.
    [61]金雁南,周双喜.混凝土硫酸盐侵蚀的类型及作用机理[J].华东交通大学学
    报,2006,23(5):4-8.
    [62]Biczok I.Concrete Corrosion Concrete Protection [M].New York:Chemical Publishing,1967.
    [63]Santhanam M, Cohen MD, Olek J.Sulfate attack research-whither now [J]. Cement Concrete Research,2001,31 (6):845-851.
    [64]薛君歼.钙矾石相的形成、稳定和膨胀-记钙矾石学术讨论会[J].硅酸盐学报,1983(2):247-251.
    [65]屈文俊.侵蚀性环境下混凝土结构耐久寿命预测方法探讨[J].工业建筑,1999(4):38-41.
    [66]John B. Thaumasite-background and nature in deterioration of cements, mortars and concretes[J]. Cement and Concrete Composites,1999,21(2):117-121.
    [67]Erlin B, Stark DC. Identification and occurrence of thaumasite in concrete [J]. Highway Research Record.1966, (113):108-113.
    [68]张小冬,周庆,陈烈.钢筋阻锈剂的应用发展概况[J].施工技术,2004(6):52-53.
    [69]Mater K. Concrete weathering at treat island marine, performance of concrete in marine environmen[J]. ACI SP-65.
    [70]Maher AB.Performance of concrete in a coastal environment [J]. Cement and Concrete Composites,2003,25(4-5):539-548.
    [71]Michael DA. Thomas AS, Ted B, et al. Performance of Slag Concrete in Marine Environment [J]. Materials Journal,2008,105(6):628-634.
    [72]Huseyin Y, Halit Y, Serdar A. Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete [J]. Building and Environment, 2007,42(4):1770-1776.
    [73]Halit Y. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete [J]. Construction and Building Materials,2008,22 (4):456-462.
    [74]赵庆辉.海工高性能混凝土在跨海大桥中的工程应用[D].济南:山东大学,2010.
    [75]赵冰.表面有涂覆层的钢筋在混凝土中腐蚀与防护的研究[D].厦门:厦门大学,2007.
    [76]任七华.海洋环境下抗腐蚀材料开发与性能研究[D].杭州:浙江大学,2006.
    [77]吕平.海洋混凝土防护用新型聚天冬氨酸酯聚脲涂层的研究[D].青岛:中国海洋大学,2007.
    [78]康莉萍,孙丛涛,牛荻涛.海洋环境混凝土防腐涂料研究及发展趋势[J].混凝土,2013,(4):52-55.
    [79]Lu X, Li C, Zhang H. Relationship between the free and total chloride diffusivity in concrete [J]. Cement and Concrete Research,2002,32(2):323-326.
    [80]Thomas MDA, Bamforth PB. Modeling chloride diffusion in concrete:effect of fly ash and slag [J]. Cement and Concrete Research,1999,29(4):487-495.
    [81]马昆林,谢友均,龙广成.粉煤灰掺量对砂浆固化氯离子性能的研究[J].粉煤灰,2004,(4):5-6.
    [82]Thomas M. Chloride thresholds in marine concrete [J]. Cement and Concrete Research,1996,26(4):513-519.
    [83]杨崇豪.建筑材料的腐蚀及控制设计[M].北京:水利电力出版社,1990.
    [84]Bonakdar A. Mobasher B. Multi-parameter study of external sulfate attack in blended cement materials [J]. Construction and Building Materials,2010,24 (1): 61-70.
    [85]Lee ST, Moon HY, Swamy R N.Sulfate attack and role of silica fume in resisting strength loss [J].Cement and Concrete Composites,2005,26(1):65-76..
    [86]Sezer GI, Ramyar K, Karasu B, Goktepe B.et al.Image analysis of sulfate attack on hardened cement paste [J]. Materials and Design,2008,29 (1):224-231.
    [87]Torii K, Taniguchi K, Kawamura M. Sulfate resistance of high fly ash content concrete [J]. Cement and Concrete Research,1995,25(4):759-768.
    [88]范沈抚.高强硅粉混凝土的抗冻性及气泡结构的试验研究[J].水利学报,1990(7):20-26.
    [89]程云虹,闫俊等.粉煤灰混凝土抗冻性能试验研究[J].低温建筑技术,2008(1):1-3.
    [90]Quan LN, Nai QF. Effect of Mineral Admixtures on Durability of Concrete Structure Subjected to Alkaline Saline Corrosions [J]. Key Engineering Materials, 2006, (302-303):68-72
    [91]Gruber KA, Ramlochan T, Boddy A,et al. Increasing concrete durability with high-reactivity metakaolin [J]. Cement and Concrete Composites,2001,23(6): 479-484.
    [92]Choi YS, Kim JG, Lee KM. Corrosion behavior of steel bar embedded in fly ash concrete [J]. Corrosion Science,2006,48(7):1733-1745.
    [93]周履.高性能混凝土(HPC)发展的综合评述[J].建筑结构,2004,34(6):65-72.
    [94]索默H.高性能混凝土[M].北京:中国铁道出版社,1999.
    [95]王培铭,黄兆龙,姚武.新世纪海峡两岸高性能混凝土研究与应用学术会议论文集[A].上海:同济大学出版社,2002.
    [96]Dugat J, Roux N, Bernier G. Mechanical properties of reactive powder concretes [J]. Materials and Structures,1996,29(4):233-240.
    [97]Bonneau O, Lachemi M, Dallaire E. Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes [J].Materials Journal,1997,94(4):286-290.
    [98]Shaheen E, Shrive NG. Optimization of mechanical properties and durability of reactive powder concrete [J]. ACI Materials Journal,2006,103(6):444-451.
    [99]刘斯凤,孙伟等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085.
    [100]Lee MG, Wang YC, Chiu CT. A preliminary study of reactive powder concrete as a new repair material [J]. Construction and Building Materials,2007(21): 182-189.
    [101]Cwirzen A, Penttala V, Vornanen C. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC [J]. Cement and Concrete Research,2008(38):1217-1226.
    [102]叶青,朱劲松.活性粉末混凝土的耐久性研究[J].新型建筑材料,2006,(6):33-36.
    [103]曹小霞,郑居焕.钢纤维和聚丙烯粗纤维对活性粉末混凝土强度和延性的影响[J].安徽建筑工业学院学报(自然科学版),2011,19(2):58-61.
    [104]罗百福,郑文忠,李海艳.高温下掺PPF的RPC立方体抗压性能[J].哈尔滨工业大学学报,2012,44(12):1-7.
    [105]柯开展,周瑞忠.掺短切碳纤维活性粉末混凝土的力学性能研究[J].水力发电学报,2007,26(1):90-96.
    [106]柯开展,周瑞忠.掺短切碳纤维活性粉末混凝土的受压力学性能研究[J].福州大学学报(自然科学版),2006,34(5):739-744.
    [107]He K, Hui Yang, Jia FF, etc. Experimental study on mechanical properties of synthetic macro-fiber reinforced reactive powder concrete [J]. Applied mechanics and materials,2014,496-505:2402-2406.
    [108]侯宪军.低温早强耐久性混凝土施工质量控制[J].山西建筑,2008,6(17):231-232.
    [109]阿布杜拉.赛达力木,等.谈谈混凝土冬期施工和低温早强砼[J].科技信息,2010(23):297.
    [110]王玉锁,叶跃中,钟新樵.新型混凝土早强剂的应用研究现状[J].四川建筑,2005,8(25):105-106.
    [111]徐印玲,关贵林.混凝土早强应用技术探讨[J].一重技术,2005(2):50-51;
    [112]方坤河等.路用超早强混凝土配制新技术及其优化设计的试验研究[J].混凝土,2004(5):37-39.
    [113]赵铁军,Wittmann FH.高强与高性能混凝土及其应用[M],北京:中国建材工业出版社,2004:191-194.
    [114]Hall C. Barrier performance of concrete-a review of fluid transport theory [J]. Materials and Structures,1994,27(5):291-306.
    [115]Wittmann FH, ZHAO TJ, ZHAN HY. Establishment of an effective chloride barrier by water repellent impregnation[A].Proceedings of an International Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads[C].Qingdao, Aedificatio Publisher,2005:161-168.
    [116]王坤方.催化合成法生产硬脂酸盐类产品[J].上海化工,2001(12):19-20.
    [117]Gerdes A, Meier S, Wittmann FH. A new application technology for water repellent surface treatment[A].Proceedings of 2nd International Conference on Water Repellent Treatment of Building Materials[C].Zurich, Aedificatio Publishers,1998:217-230.
    [118]Gerdes A. and Wittmann FH.Quality Control of Surface Treatments with Water Repellent Agents[A].Proceedings of the First International Symposium on Surface Treatment of Building Materials with Water Repellent Agents[C].Delft University of Technology, Faculty of Architecture, Delft,1995:15/1-15/7
    [119]幸松民,王一璐.有机硅合成及产品应用[M].北京:化学工业出版社,2000.
    [120]张鹏,戴建国,赵铁军,Folker H. Wittmann, S. Hartmann.海水暴露环境下带裂缝混凝土的表面防水处理[J].建筑材料学报,2009(2):214-218.
    [121]咸永珍.内掺有机硅防水处理对混凝土性能的影响[D].青岛:青岛理工大学,2006.
    [122]王丽静,张鹏,赵铁军,王龙军.掺硅烷后应变硬化水泥基复合材料的吸 水性能[J].新型建筑材料,2010(11):72-74.
    [123]马志鸣,赵铁军,朱方之,刘志强.掺硅烷乳液制备整体防水混凝土的抗冻性试验研究[J].新型建筑材料,2012(7):53-55.
    [124]Ramboll Consulting Engineers. Pier in Progreso Mexico inspection Report-evaluation of stainless steel reinforcement[R]. Vyborg Denmark,1999.
    [125]Cramer SD, Covino BS, Bullard SJ, Holcomb GR, et al., Corrosion prevention and remediation strategies for reinforced concrete coastal bridges [J]. Cement and Concrete Composites,2002,24(1):101-117.
    [126]Weyers RR, Pyc W, Sprinkel MM. Estimating the service life of epoxy-coated reinforcing steel [J]. ACI Materials Journal,1998,95(5):546-557.
    [127]Venkatesan P, Palaniswamy N, Rajagopal K. Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment [J]. Progress in Organic Coatings,2006,56(1):8-12.
    [128]Erdogdu S, Bremner TW, Kondratova IL. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions [J]. Cement and Concrete Research,2001,31(6):861-867.
    [129]Elleithy WM, Shafif AM, Al-Amoudi OSB, Maslehuddin M, Azad AK. Effect of holidays and surface damage to FBEC on reinforcement corrosion [J].Construction and Building Materials,1998,12(4):185-193.
    [130]Kobayashi K, Takewaka K, Experimental studies on epoxy coated reinforcing steel for corrosion protection [J]. International Journal of Cement Composites and Lightweight Concrete,1984,6(2):99-116.
    [131]赵冰.表面有涂覆层的钢筋在混凝土中腐蚀与防护的研究[D].厦门:厦门大学,2007.
    [132]Hamad BS, Jumaa G. Bond strength of hot-dip galvanized hooked bars in high strength concrete structures[J].Construction and Building Materials,2008,22 (10):2042-2052.
    [133]Hamad BS, Jumaa G. Bond strength of hot-dip galvanized hooked bars in normal strength concrete structures[J].Construction and Building Materials,2008, 22(6):1166-1177..
    [134]International Lead Zinc Research Organisation.Galvanized reinforcement for concrte-II [Z].Research Triangle Park NC, USA,1981.
    [135]Vijay PV, Gangarao HVS, Kalluri R. Hygrothermal Response of GFRP Bars under Different Conditioning Schemes [A], In the Proceedings of the 1 stlnternational Conference on Durability of fiber Reinforced Polymer for Construction [C]. Canada:Sherbrooke,1998:243-252.
    [136]Malvar LJ. Durability of Fiber-Reinforced Polymer (FRP) Composite for Construction [A]. Proceedings of the First International Conference on Durability of Composites[C]. Sherbrooke, Canada,1998:361-372.
    [137]Uomoto T.Durability of FRP as Reinforcement for Concrete Structures [A] Proceedings of the 3rd International Conference on Advanced Composite Materials in Bridges and Structures [C]. Canadian Society for Civil Engineering,Ottawa, Canada,2000:3-17.
    [138]Sen R, Marsical D, Issa M, Shahawy M.Durability and Ductility of Advanced Composites[A]. Structural Engineering in Natural Hazards Mitigation [C]. Structures Congress, ASCE, Irvine, CA,1993.1373-1378.
    [139]Sen R, Mullins G, Salem T. Durability of E-Glass/Vinylester Reinforcement in Alkaline Solution[J]. ACI Structural Journal,2002,99(3):369-375.
    [140]Bertolini L, Bolzoni F, Pedeferri P, Lazzari L, Pastore T. Cathodic protection and cathodic preventionin concrete:principles and applications [J]. Journal of Applied Electrochemistry,1998,28 (12):1321-1331.
    [141]Bertolini L, Gastaldi M, Pedeferri M,et al. Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes[J].Corrosion Science,2002,44(7):1497-1513.
    [142]Khaled K F. Guanidine derivative as a new corrosion inhibitor for copper in 3% NaCl solution [J]. Mater. Chem. PHys.2008,112(1):104-111.
    [143]Chu C, Lee C, Wang Y, et.al. The role of cuprous ion as corrosion inhibitor for copper in a chloride medium [J]. J. Chin. Inst. Chem. Eng.2007,38(5-6):361-364.
    [144]Craig RJ,Wood LE.Effectiveness of corrosion inhibitors and their influence on the physical properties of portland cement mortars[J].Highway Research Record,1970,(328):77-88.
    [145]Griffin D F.Corrosion inhibitors for reinforced concrete[A].Corrosion of Metals in Concrete[C].Detroit:American Concrete Institute,SP-49,1975:95-102.
    [146]Slater J E.Corrosion of Metals in Association with Concrete,ASTM [R]. PHiladepHia,USA:American Society for Testing and Materials,1983.53-55.
    [147]Rosenberg AM,Gaidis JM,Kossivas TG,et al.Corrosion inhibitor formulated with calcium nitrite for use in reinforced concrete[A]. Chloride Corrosion of Steel in Concrete[C].ASTM,STP-629.USA:ASTM,1997:89-99.
    [148]BerkNS.Areviewof corrosion inhibitorsin concrete[J]. Mater Perform,1989,28 (10):41-44.
    [149]Lewis J M, Mason C E, Brereton D. Sodium benzoate in concrete[J].Civil Engineering and Public Works Review,1956,51(602):881-882.
    [150]Arber MG, Vivian HE. Inhibition of the corrosion of steel embedded in mortar [J].Aus J Appl Sci,1961(12):339-347.
    [151]Page C L,Ngala VT,PageMM.Corrosion inhibitorsin concrete repair systems [J].Mag Concr Res,2000,52(1):25-37.
    [152]Uhlig HH,Vevie RW.腐蚀与腐蚀控制:腐蚀科学和腐蚀工程导论[M].李相怡,梁翕章译.北京:石油工业出版社,1994.
    [153]Gece G. Drugs. A review of promising novel corrosion inhibitors [J]. Corrosion. Science.2011,53(12):3873-3898.
    [154]徐永模.迁移性阻锈剂-钢筋混凝土阻锈剂的新发展[J].硅酸盐学报,2002,30(1):94-100.
    [155]蒋正武,孙振平,王培铭.硅烷对海工高性能混凝土防腐蚀性能的影响[J].中国港湾建设,2005(1):26-30.
    [156]Narayan Swamy R. Protective Ability of an Acrylic-Based Surface Coating System against Chloride and Carbonation Penetration [J]. ACI Materials Journal, 1998,95(2):125-131.
    [157]黄君哲,周欲晓.海洋混凝土结构表面涂层暴露试验及应用效果[J].中国 港湾建设,2002,(6):17-21.
    [158]Almusallam AA, Khan FM, Dulaijan SU, Al-Amoudi OSB. Effectiveness of surface coatings in improving concrete durability [J]. Cement and Concrete Composites,2003,25(4-5):473-481.
    [159]黄微波,马红亮,李志高.聚氨酯和聚脲涂层对混凝土氯离子渗透性的研究[J].混凝土,2011(6):94-96.
    [160]黄微波,李志高,吕平.海工混凝土聚脲涂层防护研究进展[J].腐蚀与防护,2010,31(1):82-84.
    [161]Sanjay L,Terry DW, et al. Applications of Polyaspartic Esters in Polyurea Coatings [A].21st Higher Solids and Waterborne Coatings Symposium[C].New Orleans:SSPC,1994.
    [162]李志高,马红亮,黄微波.聚脲提高海工和水工混凝土抗冻性研究[J].大坝与安全,2010,(5):1-5.
    [163]张中锋.严寒地区斜拉桥基础及索塔施工技术研究[D].重庆:重庆交通大学,2011.
    [164]Christian B S, Franz W J, Andre PE. Additive for hydraulic binding agent with long processing time and high early strength [P]. US8092592,2012
    [165]Yves C, Guicquero JP, Pierre LP, Martin M. Thinners for aqueous suspensions of mineral particles and hydraulic binder pastes [P]. US5879445,1999
    [166]Martin M,Yves C,Sylvain B,Jean PG, Pierre LP. Polyoxyethylene diphosphonates as efficient dispersing polymers for aqueous suspensions [J]. Journal of Applied Polymer Science,1997,65 (12):2545-2555.
    [167]Mehta PK, Monteiro PJM.Concrete:Microstructure,Properties and Materials[M]. McGraw-Hill Professional,2006.
    [168]马志鸣,陈际洲,赵铁军,黄巍林.内掺硅烷乳液防水混凝土的耐久性试验研究[J].中国建筑防水,2012(20):1-4.
    [169]Kelham SAA. Water absorption test for concrete [J]. Magazine of Concrete Research,1988,40(143):106-110.
    [170]肖衍繁,李文斌.物理和化学[M].天津:天津大学出版社,2004.
    [171]Pavlik V, Uncik S. The rate of corrosion of hardened cement pastes and mortars with additive of Silica Fume in acids [J]. Cement and Concrete Research,1997, 27:1731-1745.
    [172]Kaempfer W, Berndt M. Polymer modified mortar with high resistance to acid and to corrosion by biogenous sulfuric acid[A]. Proceedings of the IXth ICPIC Congress[C], Bolo-gna (Italy),1998:681-687.
    [173]GB8076-1997.混凝土外加剂[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700