用户名: 密码: 验证码:
钙钛矿氧化物微纳结构的水热合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构氧化物材料因其具有压电性、铁电性、高温超导等物理性质被广泛的应用于各个领域。开展钙钛矿结构氧化物微纳结构可控制备的研究,探索其微结构与性能之间的关联,为其实际应用提供理论指导,具有重要的科学价值。
     本文首先简要概述了钙钛矿结构氧化物的晶体结构特点及其性能,并分别对BiFeO3、BaTiO3、CaTiO3三种材料的特征进行了概述,总结和评述了其微纳结构的制备方法。针对BiFeO3难以获得纯相的科学问题,本文采用水热法成功制备了纯相BiFeO3;针对二维单分散单晶钙钛矿铁电材料难以合成等难题,本文首次采用水热法成功制备了单分散的二维单晶BiFeO3微米片,首次采用溶胶—凝胶水热法成功制备了单分散的中空状单晶BaTiO3纳米颗粒;针对高介电纳米陶瓷难以获得等问题,本文采用放电等离子烧结技术成功获得了高介电BaTiO3纳米陶瓷。利用X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、傅里叶变换红外光谱(FT-IR)等手段系统研究了这些材料的物相、微结构及生长过程,揭示了其生长机制;获得了制备这些材料的工艺条件,并对其性能进行了研究。本文主要研究内容和结果如下:
     (1)采用水热法,通过对实验条件的优化,获得了制备纯相BiFeO3的工艺参数。并对BiFeO3进行了A位Ca掺杂。研究表明,产物为纯相BiFeO3多面体结构,尺寸为150-800nm。通过Ca的掺杂,有利于提高产物的光催化性能和磁学性能。其中,Ca设计掺杂量为20%的产物降解率相对最高,光照4.5h对RhB的降解率达到100%。同时,该产物在室温下具有明显的铁磁性,其剩余磁化强度Mr为3.8×10-3emu/g,矫顽场H。为2880e。
     (2)设计并选用C6H10BiNO8在水热反应中不仅作为反应原料还作为表面改性剂,首次采用水热法成功制备了单分散的单晶BiFeO3微米片,其形成的最佳条件为Bi/Fe比为1:1,KOH浓度为0.4M,反应前驱物搅拌时间为12h,反应前驱物的超声波分散时间为20min,水热反应温度为200℃,水热反应时间为12h。所制备的微米片为钙钛矿型斜方相BiFeO3(JCPDS86-1518)结构,具有规则的矩形形貌,其暴露面为{012}面,横向尺寸约为8μm,厚度为510-550nm。通过水热时间系列实验研究结果表明,在形成过程中,由原料C6H10BiNO8引入的有机配体在Bi25FeO40纳米颗粒的表面和BiFeO3片状结构上的选择性吸附,导致了二维取向聚集过程和自组装过程发生。Bi25FeO40纳米颗粒在碱溶液中快速形成并二维取向聚集形成BiFeO3纳米片,BiFeO3纳米片沿薄片的垂直方向自组装,形成表面粗糙的圆形BiFeO3微米片,经过表面重构和Ostwald熟化过程,最终形成表面光滑的BiFeO3微米片。
     (3)光学带隙的测试结果显示BiFeO3微米片的带隙宽度为1.88eV,该值小于其它文献的报道值(2.2-2.8eV)。测试了产物的磁学性能,结果表明BiFeO3微米片显示出弱铁磁性。以BiFeO3微米片和聚偏氟乙烯(PVDF)为原料,BiFeO3与PVDF的质量百分比为30%,以ITO玻璃为基板,通过旋涂法获得复合薄膜,其介电性能结果显示,在频率范围在1000Hz~1MHz内,复合薄膜的介电常数-210,这个值大于其它文献报道的纯相BiFeO3的介电常数值(BiFeO3陶瓷εr<130,BiFeO3薄膜εr<1-10)。
     (4)采用溶胶—凝胶水热法,制备了单分散的BaTiO3纳米颗粒。以晶粒尺寸为10-40nm的BaTiO3纳米颗粒为烧结原料,采用放电等离子烧结技术获得了BaTiO3纳米陶瓷,其物相为立方相BaTiO3(JCPDF31-0174)和四方相BaTiO3(JCPDF05-0626)共存。陶瓷的致密度均大于90%,其颗粒粒径范围在10-500nm。介电性能研究表明,陶瓷的低频介电常数均达到105数量级,弛豫频率则大于105Hz。其介电损耗最小值均小于0.06。随着样品致密度的增大,弛豫频率和相应的介电损耗峰往高频移动。样品的介电温谱显示,同一温度下,随着频率的增加,样品介电常数整体呈下降的趋势。
     (5)以Ti02溶胶为钛源,Ba(CH3COO)2为钡源,钡钛摩尔比选用3:1,KOH浓度为4M时,200℃水热反应6h时制备了单分散的中空状单晶BaTiO3纳米颗粒,颗粒分散性好,尺寸为50-90nm。产物的N2吸附—脱附的实验结果显示,粉体的BET比表面积为27.01m2g-1。系统研究了BaTiO3纳米颗粒的微结构和生长过程,研究结果表明,中空状BaTiO3纳米颗粒的形成可能经历了一个梯度晶化的过程。
     (6)采用溶胶—凝胶法成功合成了介孔CaTiO3材料,产物为小颗粒自组装而形成,其主相为钙钛矿型正交相CaTiO3(JCPDS22-0153)。样品比表面积的范围在2-40m2/g之间,平均孔径的大小在18-34nm之间。介孔CaTiO3材料的形成机理可能是:高分子P123起到了包裹在晶核表面并使其规则排布的作用,而反应原料中过量的CaCO3的残余,与后处理酸洗过程中的HN03反应,生成Ca(NO3)2和C02,原先CaCO3占有的位置形成孔洞,从而获得介孔CaTiO3材料。
Perovskite oxides have found wide applications in various fields because of the piezoelectric, ferroelectric and high-temperature superconductive properties. Therefore, exporing the controllable synthesis of perovskite oxides and the correlation between their microstructure and their property is of significant importance for providing theoretic guidance to practical applications, which is fundamental scientific values.
     In this dissertation, the crystal structure characteristics and the property of the perovskite oxides were reviewed in brief firstly. And then the characteristics of BiFeO3, BaTiO3and CaTiO3and their preparation methods have been summarized and commented in detail. However, the difficulty in obtaining pure phase BiFeO3remains a challenge in scientific research. Focusing on this problem, we report on the successfully synthesis of pure phased BiFeO3by a hydrothermal method. Moreover, the preparation of monodispersed anisotropic single-crystal perovskite ferroelectric materials remains a problem. Focusing on this problem, it was reported that for the first time, we successfully synthesized monodispersed2D single-crystal BiFeO3microplates and monodispersed hollow-structured single-crystal BaTiO3nanoparticles. Thirdly, the difficulty in the preparation of nanoceramics with high dielectric constant inspired us to successfully prepare nanoceramics with high dielectric constant by using spark plasma sintering method. By employing a variety of characterization approaches, such as XRD, SEM, HRTEM and FT-IR, comprehensive and in-depth investigations on the phase, microstructure, growing process and the formation mechanism of crystal growth has been performed. The main contents and results are listed as follows:
     (1) The optimal hydrothermal experimental parameters to synthesized pure phase BiFeO3have been achieved. Ca-doped BiFeO3has been successfully synthesized by the hydrothermal method. The resultant product is pure-phased BiFeO3polyhedrons with a size distribution in a range of150~180nm. The Ca doping is favorable for the improved photocatalytic and magnetic property of the product. In particular, the most efficient photocatalytic activity was discovered when the Ca doping concentration was20%, which100%degradation of RhB can be achieved after4.5h of illumination. Moreover, the product exhibited a remarkable ferromagnetic property at ambient temperature, which the remnant magnetization was determined to be Mr=3.8×10-3emu/g, and the coercive field was288Oe.
     (2) Monodispersed single-crystal BiFeO3microplates have been successfully synthesized by using C6H10BiNO8as both starting material and surfactant. The optimal condition was determined to be Bi/Fe molar ratio of1:1, the concentration of KOH of0.4M, the stirring time for precursor of12h, ultra sonic dispersion time of20min, the hydrothermal time and temperature of12h and200℃. The as-synthesized BiFeO3microplates adopt perovskite orthorhombic structure (JCPDS86-1518) with a regular rectangle shape. The exposed facet of the as-synthesized BiFeO3microplates was determined to be{012} with a lateral size of about8μm and a thickness of510-550nm. Investigations on time serial hydrothermal experiments reveal that the organic ligand in the starting material of CeH10BiNO8was selectively absorbed on the surface of Bi25FeO40nanoparticles as well as BiFeO3nanoplates, resulting in the2D oriented aggregation procedure and a subsequent self-assembly process.The BiFeO3nanoplates were firstly formed by the fast formation of Bi25FeO40nanoparticles and their2D oriented aggregation. Secondly, a self-assembly process occurred in the direction vertical to the BiFeO3thin plates, leading to the formation of the sphereical-shaped BiFeO3microplates with a coarse surface. Thus in the final process, BiFeO3microplates with smooth surface were obtained by a surface structure reconstruction and Ostawald ripening process of the above as-synthesized BiFeO3microplates with coarse surface.
     (3) The measurement on the optical adsorption reveals that the BiFeO3microplates have a band gap value of1.88eV, smaller than that of the reported value (2.2-2.8eV). The magnetic measurement shows that the as-synthesized BiFeO3microplates have weak ferromagnetism. Then, BiFeO3microplate/PVDF composited film (the mass load of BiFeO3microplates was set as30%) on ITO substrate was prepared by a spin-coating method. The as-prepared BiFeO3microplates/PVDF composite film exhibited a permittivity of~210in the frequency range of1000Hz~1MHz, which is far larger than that of pure phase BiFeO3(BiFeO3ceramics, εr<130; BiFeO3thin films, εr<1~10) in the previous reports.
     (4) Monodispersed BaTiO3nanoparticles have been synthesized via a sol-gel combined with a hydrothermal method. And then BaTiO3nanoceramics were prepared by using the above BaTiO3nanoparticles with a size of10~40nm as feedstock via a spark plasma sintering method. The as-sintered BaTiO3nanoceramics consists of both cubic and tetragonal perovskite BaTiO3(JCPDF31-0174and05-0626, respectively). The density of the BaTiO3nanoceramics is above90%and the particle size distribution is in the range of10~500nm. The results from the dielectric measurement reveal that the dielectric constant of BaTiO3nanoceramics in the low frequency range is up to105, and the relaxation frequency was above105Hz with a dielectric loss lower than0.06. Furthermore, the relaxation frequency and corresponding peak dielectric loss both shift towards high frequency as the density of the BaTiO3nanoceramics increased. The temperature-dependence of dielectric measurement reveals that the dielectric permittivity of the BaTiO3nanoceramics decreased as the frequency increased at the same testing temperature.
     (5) Monodispersed and hollow-structured single-crystal BaTiO3nanoparticles have been synthesized via a hydrothermal treatment at200℃for6h when the molar ratio of starting materials of TiO2and Ba(CH3COO)2was set as1:3and the concentration of KOH was4M. The particle size of the as-synthesized BaTiO3nanoparticles was in the range of50-90nm and are well dispersed. the BET surface area of the powder BaTiO3nanoparticles has been deteremined to be27.01m2g-1on the basis of N2adsorption-desorption measurement. Comprehensive investigations on the microstructure and growing process of the BaTiO3nanoparticles have been performed, indicating that the hollow-structured BaTiO3nanoparticles should experience a gradient crystallization process.
     (6) Mesoporous orthorhombic perovskite CaTiO3(JCPDS22-0153) has been successfully synthesized via a sol-gel method by the self-assembly of nanoparticles. The BET surface area was anlysized to be in the range of2-40m2/g with the average pore size of18~34nm. The formation mechanism of the as-synthesized CaTiO3was proposed. Firstly, the molecules of P123were coated on the surface of the nucleates that enabled a regular alignment of these nucleates; then the excess CaCO3reacted with HNO3solution to form Ca(NO3)2and CO2, thus leading to the pore formation within the previous sites occupied by CaCO3to form porous CaTiO3.
引文
[1]M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials, Oxford University Press,1977.
    [2]J.G. Bednorz, K.A. M ii Her, Perovskite-type oxides — the new approach to high-Tc superconductivity, Angew. Chem.,1988,100 (5):757-770.
    [3]Y. Tokura, Colossal magnetoresistive oxides. New York:Gordon and Breach Science,2000.
    [4]钞春英.钙钛矿铁电氧化物纳米结构的生长调控、微结构与性能研究[博士学位论文].杭州:浙江大学材料系,2012:2.
    [5]G. Fiquet, A. Dewaele, D. Andrault, M. Kunz, T. Le Bihan, Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions, Geophys. Res. Lett.,2000,27 (1):21-24.
    [6]B. Magyari-Kope, L. Vitos, G. Grimvall, B. Johansson, J. Kollar, Low-temperature crystal structure of CaSiO3 perovskite:An ab initio total energy study, Phys. Rev. B,2002,65 (19): 193107-1-193107-4.
    [7]X. Liu, R.C. Liebermann, X-ray powder diffraction study of CaTiO3 perovskite at high temperatures, Phys. Chem. Miner.,1993,20 (3):171-175.
    [8]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, Nature,2003,426 (6962):55-58.
    [9]Y. Duan, H. Shi, L. Qin, Studies of tetragonal PbTiO3 subjected to uniaxial stress along the c-axis, J. Phys.:Condens. Matter,2008,20 (17):175210-1-175210-5.
    [10]宋鹏.纳米晶钙钛矿型La(Pb)Fe(Co, Ni)O3的制备及气敏特性研究[博士学位论文].济南:山东大学,2006:10.
    [11]王中林,康振川,孙家枢,材料,功能与智能材料.北京:结构演化与结构分析,科学出版社,2002.
    [12]L.G. Tejuca, J.L.G. Fierro, J. Tascon, Addendum to structure and reactivity of perovskite-type oxides, Advances in Catalysis,1989,36:385-386.
    [13]李大光,章弘毅,张鹤丰,郭清泉,曹明澈,钙钛矿型复合氧化物的研究与应用进展,材料导报,2006,20(6):296-299.
    [14]F.S. Galasso, Perovskites and high Tc superconductors, New York:Gordon and Breach Science Publishers,1990:18-48.
    [15]J.J. Burton, R.L. Garten, Advanced materials in catalysis, Academic Press,1977.
    [16]胡婕.纳米钙钛矿型氧化物的制备及性能研究[博士学位论文].哈尔滨:燕山大学材料科学与工程学院,2009:3.
    [17]B. Viswanathan, CO oxidation and NO reduction on perovskite oxides, Catal. Rev.,1992,34 (4):337-354.
    [18]王斌.AB03型钙钛矿结构复合氧化物的制备及性能表征[硕士学位论文],江苏:江南大 学,2011:3.
    [19]J. Kirchnerova, D.B. Hibbert, Structures and properties of La1-xSrxCoO3-y prepared byfreeze drying, J. Mater. Sci.,1993,28 (21):5800-5808.
    [20]H. Xu, X. Hu, L. Zhang, Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3 (Ln= La, Pr, Nd, Sm, Eu, Gd), Cryst. Growth Des.,2008,8 (7):2061-2065.
    [21]A.R. Oganov, S. Ono, Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D "layer, Nature,2004,430 (6998):445-448.
    [22]Z. Ren, G. Xu, Y. Liu, X. Wei, Y. Zhu, X. Zhang, G. Lv, Y. Wang, Y. Zeng, P. Du, W. Weng, G. Shen, J.Z. Jiang, G. Han, PbTiO3 nanofibers with edge-shared TiO6 octahedra, J. Am. Chem. Soc., 2010,132 (16):5572-5573.
    [23]Z. Liu, Z. Ren, Z. Xiao, C. Chao, X. Wei, Y. Liu, X. Li, G. Xu, G. Shen, G. Han, Size-controlled single-crystal perovskite PbTiO3 nanofibers from edge-shared TiO6 octahedron columns, Small,2012,8 (19):2959-2963.
    [24]V.I. Levitas, Z.H. Ren, Y.W. Zeng, Z. Zhang, G.R. Han, Crystal-crystal phase transformation via surface-induced virtual premelting, Phys. Rev. B,2012,85 (22):220104-1-220104-5.
    [25]杨小勤.钙钛矿型复合氧化物—维纳米材料的水热合成与表征[硕士学位论文].天津:天津工业大学,2007:4.
    [26]田莳,材料物理性能.北京:北京航空航天大学出版社,2001:117-117.
    [27]殷江,袁国亮,刘治国.铁电材料的研究进展.中国材料进展.2012:31(No.363(03)):26-38+43.
    [28]F.R. Baxter, C.R. Bowen, I.G. Turner, A.C.E. Dent, Electrically active bioceramics:a review of interfacial responses, Ann. Biomed. Eng.,2010,38 (6):2079-2092.
    [29]郑朝丹.铁酸铋系列多铁材料的制备及电性能研究[博士学位论文].武汉:华中科技大学,2009:1.
    [30]M.M. Vijatovic, J.D. Bobic, B.A. Stojanovic, History and challenges of barium titanate:Part I, Sci.Sinter,2008,40 (2):155-165.
    [31]M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential, J. Am. Chem. Soc.,1976,98 (10):2774-2779.
    [32]M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev.,2001,101(7):1981-2018.
    [33]K. Domen, S. Naito, T. Onishi, K. Tamaru, Study of the photocatalytic decomposition of water-vapor over a NiO-SrTiO3 catalyst, J. Phys. Chem.,1982,86 (18):3657-3661.
    [34]X. Wei, G. Xu, Z. Ren, C. Xu, G. Shen, G. Han, PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB, J. Am. Ceram. Soc.,2008,91 (11):3795-3799.
    [35]X. Wei, G. Xu, Z. Ren, C. Xu, W. Weng, G. Shen, G. Han, Single-crystal-like mesoporous SrTiO3 spheres with enhanced photocatalytic performance, J. Am. Ceram. Soc.,2010,93 (5): 1297-1305.
    [36]H. van Damme, W.K. Hall, Photocatalytic properties of perovskites for H2 and CO oxidation-Influence of ferroelectric properties, J. Catal.,1981,69 (2):371-383.
    [37]T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light, Appl. Catal. A:Gen.,2005,288 (1-2):74-79.
    [38]H. Kato, A. Kudo, Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium, J. Phys. Chem. B,2002,106 (19): 5029-5034.
    [39]A. Jia, Z. Su, L.L. Lou, S. Liu, Synthesis and characterization of highly-active nickel and lanthanum Co-doped SrTiO3, Solid State Sci.,2010,12 (7):1140-1145.
    [40]D. Arney, T. Watkins, P.A. Maggard, Effects of particle surface areas and microstructures on photocatalytic H2 and O2 production over PbTiO3, J. Am. Ceram. Soc.,2011,94 (5):1483-1489.
    [41]L. Li, Y. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Visible light photochemical activity of heterostructured PbTiO3-TiO2 core-shell particles, Catal. Sci. Technol., 2012,2(9):1945-1952.
    [42]H. Mizoguchi, K. Ueda, M. Orita, S.C. Moon, K. Kajihara, M. Hirano, H. Hosono, Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation, Mater. Res. Bull., 2002,37 (15):2401-2406.
    [43]S.S. Arbuj, R.R. Hawaldar, S. Varma, S.B. Waghmode, B.N. Wani, Synthesis and characterization of ATiO3 (A=Ca, Sr and Ba) perovskites and their photocatalytic activity under solar irradiation, Sci. Adv. Mater.,2012,4 (5-6):568-572.
    [44]K. Shimura, H. Yoshida, Hydrogen production from water and methane over Pt-loaded calcium titanate photocatalyst, Energy Environ. Sci.,2010,3 (5):615-617.
    [45]J. Tang, Z. Zou, J. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett.,2004,92 (1-2):53-56.
    [46]J. Yu, J. Xiong, B. Cheng, Y. Yu, J. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders, J. Solid State Chem.,2005,178 (6):1968-1972.
    [47]H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B,2005,109 (47):22432-22439.
    [48]C. Xu, X. Wei, Z. Ren, Y. Wang, G. Xu, G. Shen, G. Han, Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity, Mater. Lett.,2009,63 (26):2194-2197.
    [49]W.F. Yao, H. Wang, X.H. Xu, S.X. Shang, Y. Hou, Y. Zhang, M. Wang, Synthesis and photocatalytic property of bismuth titanate Bi4Ti3012, Mater. Lett.,2003,57 (13-14):1899-1902.
    [50]W. F. Yao, H. Wang, X. Hong Xu, X. Feng Cheng, J. Huang, S. Xia Shang, X. Na Yang, M. Wang, Photocatalytic property of bismuth titanate Bi12TiO20 crystals, Appl. Catal. A:Gen.,2003, 243 (1):185-190.
    [51]W.F. Yao, X.H. Xu, H. Wang, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, B.B. Huang, Photocatalytic property of perovskite bismuth titanate, Appl. Catal. B:Environ,2004,52 (2): 109-116.
    [52]W.F. Yao, H. Wang, X.H. Xu, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, Photocatalytic property of bismuth titanate Bi2Ti207, Appl. Catal. A:Gen.,2004,259 (1):29-33.
    [53]B.H. Kim, T.H. Lim, J.W. Roh, S.G. Lee, C. Ju, S. Park, S. Hong, G. Lee, Effect of Cr doping on the properties and photocatalytic activity of Bi12TiO20, Reac. Kinet. Mech. Cat.,2010,99 (1): 217-224.
    [54]J. Hou, S. Jiao, H. Zhu, R. Kumar, Facile synthesis and visible-light photocatalytic activity of bismuth titanate nanorods, J. Nanopart. Res.,2011,13 (10):5557-5564.
    [55]J. Hou, R. Cao, S. Jiao, H. Zhu, R.V. Kumar, PANI/Bi12TiO20 complex architectures: Controllable synthesis and enhanced visible-light photocatalytic activities, Appl. Catal. B:Environ, 2011,104 (3-4):399-406.
    [56]T. Cao, Y. Li, C. Wang, Z. Zhang, M. Zhang, C. Shao, Y. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures:in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem.,2011,21 (19):6922-6927.
    [57]J. Hou, Y. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, Hierarchical assemblies of bismuth titanate complex architectures and their visible-light photocatalytic activities, J. Mater. Chem.,2010,20 (12):2418-2423.
    [58]J. Hou, S. Jiao, H. Zhu, R.V. Kumar, Carbon-modified bismuth titanate nanorods with enhanced visible-light-driven photocatalytic property, Crystengcomm,2011,13 (14):4735-4740.
    [59]Y. Guo, X. Yang, F. Ma, K. Li, L. Xu, X. Yuan, Y. Guo, Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation, Appl. Surf. Sci., 2010,256 (7):2215-2222.
    [60]W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation, J. Hazard. Mater.,2010,173 (1-3):194-199.
    [61]Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation, J. Alloys Compd.,2010,496 (1-2): 287-292.
    [62]H.H. Li, K.W. Li, H. Wang, Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials, Mater. Chem. Phys.,2009,116 (1):134-142.
    [63]H. Li, C. Liu, K. Li, H. Wang, Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts, J. Mater. Sci.,2008,43 (22):7026-7034.
    [64]U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications, Appl. Phys. Lett., 2008,92 (24):242106-242103.
    [65]Q.J. Ruan, W.D. Zhang, Tunable Morphology of Bi2Fe409 crystals for photocatalytic oxidation, J. Phys. Chem. C,2009,113 (10):4168-4173.
    [66]J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic activity for water decomposition of RuO2-dispersed Zn2Ge04 with d10 configuration, J. Phys. Chem. B, 2004,108 (14):4369-4375.
    [67]V. Kumar, Govind, S. Uma, Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10, J. Hazard. Mater.,2011,189 (1-2):502-508.
    [68]J. Yin, Z. Zou, J. Ye, Photophysical and photocatalytic properties of MIno.5Nb0.5O3 (M=Ca, Sr, and Ba), J. Phys. Chem. B,2002,107 (1):61-65.
    [69]J. Yin, Z. Zou, J. Ye, A novel series of the new visible-light-driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with special electronic structures, J. Phys. Chem. B,2003, 107 (21):4936-4941.
    [70]T. Takata, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, Recent progress of photocatalysts for overall water splitting, Catal. Today,1998,44 (1-4):17-26.
    [71]K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, The relationship between photocatalytic activity and crystal structure in strontium tantalates, J. Catal.,2005,232 (1): 102-107.
    [72]T. Kida, G. Guan, A. Yoshida, LaMnO3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation, Chem. Phys. Lett.,2003,371 (5-6): 563-567.
    [73]Z. Zou, J. Ye, H. Arakawa, Preparation, structural and photophysical properties of Bi2InNbO7 compound, J. Mater. Sci. Lett.,2000,19 (21):1909-1911.
    [74]Z. Zou, J. Ye, R. Abe, H. Arakawa, Photocatalytic decomposition of water with Bi2InNbO7, Catal. Lett.,2000,68 (3-4):235-239.
    [75]Y. Li, S. Yao, W. Wen, L. Xue, Y. Yan, Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3, J. Alloys Compd.,2010,491 (1-2):560-564.
    [76]P. Royen, K. Swars, Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55 mol% eisenoxyd, Angew. Chem.,1957,69 (24):779-779.
    [77]F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B:Struct. Sci.,1990,46 (6):698-702.
    [78]S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction, Sov. Phys. Dokl.,1963,7:742.
    [79]J.R. Teague, R. Gerson, W.J, James, Dielectric hysteresis in single crystal BiFeO3, Solid State Commun.,1970,8 (13):1073-1074.
    [80]C. Michel, J.M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, The atomic structure of BiFeO3, Solid State Commun.,1969,7 (9):701-704.
    [81]J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study, J. Phys. Chem. Solids,1971,32 (6):1315-1320.
    [82]C. Tabares-Mu-nos, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3, Jpn. J. Appl. Phys.,1985,104(S 24-2):1051.
    [83]F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom, R. Ramesh, Multiferroic BiFeO3 films:domain structure and polarization dynamics, Phase Transitions,2006,79 (12): 991-1017.
    [84]L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics:thin?films and nanostructures, J. Phys.: Condens. Matter,2008,20 (43):434220.
    [85]P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C:Solid State Phys.,1980,13 (10): 1931-1940.
    [86]I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite, J. Phys. C:Solid State Phys.,1982,15 (23):4835-4846.
    [87]L.W. Martin, Engineering functionality in the multiferroic BiFeO3-controlling chemistry to enable advanced applications, Dalton T.,2010,39 (45):10813-10826.
    [88]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science,2003,299 (5613):1719-1722.
    [89]S. El Shawish, J. Bonca, C.D. Batista, I. Sega, Electron spin resonance of at high magnetic fields, Phys. Rev. B,2005,71 (1):014413.
    [90]M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Specific features of BiFeO3 formation in a mixture of bismuth(Ⅲ) and iron(Ⅲ) oxides, Russ. J. Gen. Chem.,2003,73 (11):1676-1680.
    [91]R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott,β phase and γ-β metal-insulator transition in multiferroic, Phys. Rev. B, 2008,77(1):014110-1-11.
    [92]R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A,1976,32:751-753.
    [93]R.D.Shannon, C.TPrewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. A, 1969, B25:925-929.
    [94]I. Sosnowska, W. Schafer, W. Kockelmann, K. Andersen, I. Troyanchuk, Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese, Appl. Phys. A,2002,74 (1): s1040-s1042.
    [95]C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W. James, The atomic structure of BiFeO3, Solid State Commun.,1969,7 (9):701-704.
    [96]张行泉.铁酸铋基多铁性材料的制备与物性研究[博士学位论文].哈尔滨:哈尔滨工业大学物理系,2011:8-10.
    [97]J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3, Phys. Rev. B,2005,71 (1):014113-1-014113-8.
    [98]B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance:Cycloidal to homogeneous spin order, Phys. Rev. B,2004,69 (6):064114-064117.
    [99]C. Ederer, N.A. Spaldin, Effect of epitaxial strain on the spontaneous polarization of thin film Ferroelectrics, Phys. Rev. Lett.,2005,95 (25):257601-257604.
    [100]G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics, Appl. Phys. Lett.,2006,89 (5): 052905-052903.
    [101]J.S. Kim, C.I. Cheon, Y.N. Choi, P.-W. Jang, Ferroelectric and ferromagnetic properties of BiFeO3-PrFeO3-PbTiO3 solid solutions, J. Appl. Phys.,2003,93 (11):9263-9270.
    [102]夏峰.钛酸钡和钛酸锶钡纳米颗粒的制备、晶体结构及微波吸收性能的研究[硕士学位论文].上海:复旦大学材料科学系,2012:7-15.
    [103]蔡苇.钛酸钡基陶瓷的制备、微结构及介电性能研究[博士学位论文].重庆:重庆大学材料科学与工程学院,2011:5,17.
    [104]M.M. Vijatovic, J.D. Bobic, B.D. Stojanovic, History and challenges of barium titanate:Part Ⅱ, Sci. Sinter.,2008,40 (3):235-244.
    [105]C.C. Chou, C.S. Chen, Banded domain structures and polarization arrangements in PbTiO3 single crystals, Ceram. Int.,2000,26 (7):693-697.
    [106]C. Randall, A. Bhalla, T. Shrout, L. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order, J. Mater. Res,1990,5 (4):829-834.
    [107]T. Egami, S. Teslic, W. Dmowski, P. Davies, I. Chen, H. Chen, Microscopic origin of relaxor ferroelectricity in PMN and PLZT, J.Korean Phys. Soc.,1998,32:S935-S938.
    [108]曲远方.功能陶瓷及应用.北京:化学工业出版社,2003.
    [109]G. Arlt, D. Hennings, Dielectric properties of fine-grained barium titanate ceramics, J. Appl. Phys.,1985,58 (4):1619-1625.
    [110]李标荣,莫以豪,王筱珍.无机介电材料.北京:国防工业出版社,1980.
    [111]莫雪魁.钛酸钡粉体的水热合成及性能研究[碩士学位论文].济南:济南大学,2008:1.
    [112]王子潮,唐卢俊一郎.CaTiO3-钙钛矿的晶体结构相變,高温流变及其下地幔地球动力学意义,地球物理学报,1995,38(6):718-728.
    [113]L. Cavalcante, V. Marques, J. Sczancoski, M. Escote, M. Joya, J. Varela, M. Santos, P. Pizani, E. Longo, Synthesis, structural refinement and optical behavior of CaTiO3 powders:A comparative study of processing in different furnaces, Chem. Eng. J.,2008,143 (1):299-307.
    [114]K.L. Smith, N.J. Zaluzec, The displacement energies of cations in perovskite (CaTiO3), J. Nucl. Mater.,2005,336 (2):261-266.
    [115]M. Inoue, A.P. Rodriguez, T. Takagi, N. Katase, M. Kubota, N. Nagai, H. Nagatsuka, M. Inoue, N. Nagaoka, S. Takagi, Effect of a new titanium coating material (CaTiO3-aC) prepared by thermal decomposition method on osteoblastic cell response, J. Biomater. Appl.,2010,24 (7): 657-672.
    [116]S.F. Wang, C.Y. Huang, Y.-L. Liu, Effects of CaTiO3 and SrTiO3 additions on the microstructure and microwave dielectric properties of ultra-low-fire TeO2 ceramics, J. Am. Ceram. Soc.,2010,93 (10):3272-3277.
    [117]C.J. Eklund, C.J. Fennie, K.M. Rabe, Strain-induced ferroelectricity in orthorhombic CaTiO3 from first principles, Phys. Rev. B,2009,79 (22):220101-1-220101-4.
    [118]A. Chandra, R. Ranjan, D.P. Singh, N. Khare, D. Pandey, The effect of Pb2+substitution on the quantum paraelectric behaviour of CaTiO3, J. Phys.:Condens. Matter,2006,18 (11): 2977-2994.
    [119]R. Ranjan, N. Singh, D. Pandey, V. Siruguri, P.S.R. Krishna, S.K.. Paranjpe, A. Banerjee, Room temperature crystal structure and relaxor ferroelectric behavior of Pb0.5Ca0.5TiO3, Appl. Phys. Lett.,1997,70 (24):3221-3223.
    [120]H. Mizoguchi, K. Ueda, M. Orita, S.C. Moon, K. Kajihara, M. Hirano, H. Hosono, Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation, Mater. Res. Bull., 2002,37 (15):2401-2406.
    [121]王桂赟,王延吉,赵新强,张海涛,CoO/CaTiO3的制备及其光催化分解水的性能,催化学报,2005,56(02):138-142.
    [122]王桂赟,王延吉,秦娅,宋宝俊,光催化分解水制氢用CoO/CaTiO3催化剂——制备方法及光催化作用机理探讨,化工学报,2005,26(09):1660-1665.
    [123]S. Nishimoto, M. Matsuda, M. Miyake, Photocatalytic activities of Rh-doped CaTiO3 under visible light irradiation, Chem. Lett.,2006,35 (3):308-309.
    [124]W. Sun, S. Zhang, C. Wang, Z. Liu, Z. Mao, Enhanced photocatalytic hydrogen evolution over CaTi1-xZrxO3 composites synthesized by polymerized complex method, Catal. Lett.,2007, 119(1-2):148-153.
    [125]M. Alexe, D. Hesse, V. Schmidt, S. Senz, H.J. Fan, M. Zacharias, U.Gosele, Ferroelectric nanotubes fabricated using nanowires as positive templates, Appl. Phys. Lett.,2006,89 (17): 172907-172903.
    [126]S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao, Template-based growth of various oxide nanorods by sol-gel electrophoresis, Adv. Funct. Mater.,2002,12 (1):59-64.
    [127]S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao, Electrophoretic growth of lead zirconate titanate nanorods, Adv. Mater.,2001,13 (16):1269-1272.
    [128]Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate, Appl. Phys. Lett.,2003,83 (3):440-442.
    [129]B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Sol-Gel Template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater.,2002,14 (2):480-482.
    [130]D. Chen, H. Zhang, R. Chen, X. Deng, J. Li, G. Zhang, L. Wang, Well-ordered arrays of ferroelectric single-crystalline BaTiO3 nanostructures, Phys. Status. Solidi. A.,2012,209 (4): 714-717.
    [131]M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun, Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires, Appl. Phys. Lett.,2007,90 (15):152501-152503.
    [132]Y.Y. Chen, B.Y. Yu, J.H. Wang, R.E. Cochran, J.J. Shyue, Template-Based Fabrication of SrTiO3 and BaTiO3 Nanotube, Inorg. Chem.,2009,48 (2):681-686.
    [133]Z. Yang, Y. Huang, B. Dong, H. Li. Li, S. Q. Shi, Densely packed single-crystal Bi2Fe409 nanowires fabricated from a template-induced sol-gel route, J. Solid State Chem.,2006,179 (11): 3324-3329.
    [134]Q. Wu, M. Sadakane, H. Ogihara, W. Ueda, Immobilization of nanofibrous A-or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates, Mater. Res. Bull.,2010,45 (9):1330-1333.
    [135]W. Zhao, H. Zhou, Y. Yan, D. Liu, Topochemical Synthesis of Plate-Like Na0.5Bi0.5TiO3 from Aurivillius Precursor, J. Am. Ceram. Soc.,2008,91 (4):1322-1325.
    [136]J. Qi, L. Sun, P. Du, L. Li, Slurry Synthesis of bismuth sodium titanate with a transient aurivillius-type structure, J. Am. Ceram. Soc.,2010,93 (4):1044-1048.
    [137]S.F. Poterala, Y. Chang, T. Clark, R.J. Meyer, G.L. Messing, Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process, Chem. Mater.,2010, 22 (6):2061-2068.
    [138]S.F. Poterala, J.R.J. Meyer, G.L. Messing, Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets, J. Am. Ceram. Soc.,2011,94 (8): 2323-2329.
    [139]M. Takiguchi, K. Igarashi, M. Azuma, H. Ooshima, Flowerlike agglomerates of calcium carbonate crystals formed on an eggshell membrane, Cryst. Growth Des.,2006,6 (12): 2754-2757.
    [140]Z. Liu, Z. Ren, X. Wei, Z. Xiao, X. Hou, G. Shen, G. Xu, G. Han, Improved room-temperature ferromagnetism in self-assembled disk-like superstructures of Fe-doped PbTiO3 nanocrystals, J. Am. Ceram. Soc.,2010,93 (11):3610-3613.
    [141]B.F. W., Polyacrylamide characteristics related to soil applications, Soil Sci.,1994,158 (4): 235-243.
    [142]Y. Kim, H. Han, Y. Kim, W. Lee, M. Alexe, S. Baik, J.K. Kim, Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates, Nano Lett.,2010,10 (6):2141-2146.
    [143]N. Nuraje, K. Su, A. Haboosheh, J. Samson, E.P. Manning, N.L. Yang, H. Matsui, Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates, Adv. Mater.,2006,18 (6):807-811.
    [144]G.F. Teixeira, G. Gasparotto, E.C. Paris, M.A. Zaghete, E. Longo, J.A. Varela, Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template, J. Lumin.,2012,132 (1):46-50.
    [145]Y. Liu, H. Dai, Y. Du, J. Deng, L. Zhang, Z. Zhao, Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene, Appl. Catal. B:Environ.,2012,119-120 (0):20-31.
    [146]J. Liu, Q. Wu, Y. Ding, Controlled synthesis of different morphologies of BaWO4 crystals through biomembrane/organic-addition supramolecule templates, Cryst. Growth Des.,2004,5 (2): 445-449.
    [147]T.V. Anuradha, Template-sssisted sol-gel synthesis of nanocrystalline BaTiO3, E-J Chem., 2010,7 (3):894-898.
    [148]T.J. Park, Y. Mao, S.S. Wong, Synthesis and characterization of multiferroic BiFeO3 nanotubes, Chem. Commun.,2004,0 (23):2708-2709.
    [149]C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles, J. Am. Chem. Soc.,2001,123 (18):4344-4345.
    [150]S. O'Brien, L. Brus, C.B. Murray, Synthesis of monodisperse nanoparticles of barium titanate:toward a generalized strategy of oxide nanoparticle synthesis, J. Am. Chem. Soc.,2001, 123 (48):12085-12086.
    [151]G. Garnweitner, M. Niederberger, Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc.,2006,89 (6):1801-1808.
    [152]H. Zhu, Z. Guo, W.D. Yang, W.F. Chang, C.C. Wang, Preparation and characterization of nanometer-sized (Pb1-x,Bax)TiO3 powders using acetylacetone as a chelating agent in a non-aqueous sol-gel process, Ceram. Int.,2011,37 (8):3203-3209.
    [153]Y. Deng, L. Liu, Y. Cheng, C.W. Nan, S.J. Zhao, Hydrothermal synthesis and characterization of nanocrystalline PZT powders, Mater. Lett.,2003,57 (11):1675-1678.
    [154]X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, Synthesis of highly dispersed barium titanate nanoparticles by a novel solvothermal method, J. Am. Ceram. Soc.,2008,91 (1):315-318.
    [155]H. Zhang, X. Wang, Z. Tian, C. Zhong, Y. Zhang, C. Sun, L. Li, Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route, J. Am. Ceram. Soc.,2011,94 (10):3220-3222.
    [156]Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Mineralizer-assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles, J. Am. Ceram. Soc.,2007, 90 (8):2615-2617.
    [157]G. Xu, Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen, G.R. Han, Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires, Adv. Mater.,2005, 17 (7):907-910.
    [158]G.A. Smolenski, I.E. Chupis, Ferroelectromagnets, Sov. Phys. Usp.,1982,25 (7):475-493.
    [159]W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials, Nature, 2006,442 (7104):759-765.
    [160]G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mater.,2009,21 (24): 2463-2485.
    [161]A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Bismuth ferrites:New materials for semiconductor gas sensors, Sens. Actuators B:Chem.,1991,4 (3-4): 545-549.
    [162]T.J. Park, G.C. Papaefthymiou, A.R. Moodenbaugh, Y. Mao, S.S. Wong, Synthesis and characterization of submicron single-crystalline Bi2Fe4O9 cubes, J. Mater. Chem.,2005,15 (21): 2099-2105.
    [163]N.I. Zakharchenko, Catalytic Properties of the Fe2O3-Bi2O3 system in ammonia oxidation to nitrogen oxides, Kinet. Catal.,2002,43 (1):95-98.
    [164]Y. Xiong, M. Wu, Z. Peng, N. Jiang, Q. Chen, Hydrothermal synthesis and characterization of Bi2Fe4O9 nanoparticles, Chem. Lett.,2004,33 (5):502-503.
    [165]J. Lu, L.J. Qiao, P.Z. Fu, Y.C. Wu, Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal, J. Cryst. Growth,2011,318 (1):936-941.
    [166]T.T. Carvalho, P.B. Tavares, Synthesis and thermodynamic stability of multiferroic BiFeO3, Mater. Lett.,2008,62 (24):3984-3986.
    [167]Z. Yang, Y. Huang, B. Dong, H.L. Li, S.Q. Shi, Densely packed single-crystal Bi2Fe409 nanowires fabricated from a template-induced sol-gel route, J. Solid State Chem.,2006,179 (11): 3324-3329.
    [168]S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route, J. Am. Ceram. Soc.,2005,88 (5):1349-1352.
    [169]N. Das, R. Majumdar, A. Sen, H.S. Maiti, Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques, Mater. Lett.,2007,61 (10):2100-2104.
    [170]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures:synthesis, characterization, and applications, Adv. Mater.,2003, 15 (5):353-389.
    [171]E.M. Patterson, C.E. Shelden, B.H. Stockton, Kubelka-Munk optical properties of a barium sulfate white reflectance standard, Appl. Opt.,1977,16 (3):729-732.
    [172]S.H. Kim, S. Park, C.W. Lee, B.S. Han, S.W. Seo, J.S. Kim, I.S. Cho, K.S. Hong, Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M=Nb, Ta), Int. J. Hydrogen Energy,2012,37 (22):16895-16902.
    [173]Y. Li, Y. Zhang, W. Ye, J. Yu, C. Lu, L. Xia, Photo-to-current response of Bi2Fe4O9 nanocrystals synthesized through a chemical co-precipitation process, New J. Chem.,2012,36 (6): 1297-1300.
    [174]S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C,2010,114 (7): 2903-2908.
    [175]S.Y. Yang, SeidelJ, S.J. Byrnes, ShaferP, C.H. Yang, M.D. Rossell, YuP, Y.H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, RameshR, Above-bandgap voltages from ferroelectric photovoltaic devices, Nat Nano,2010,5 (2):143-147.
    [176]K.V. Baiju, S. Shukla, K.S. Sandhya, J. James, K.G.K. Warrier, Photocatalytic activity of sol-gel-derived nanocrystalline titania, J. Phys. Chem. C,2007,111 (21):7612-7622.
    [177]Y.F. Popov, A.M. Kadomtseva, S.S. Krotov, D.V. Belov, G.P. Vorob' ev, P.N. Makhov, A.K. Zvezdin, Features of the magnetoelectric properties of BiFeO3 in high magnetic fields, Low Temp. Phys.,2001,27 (6):478-479.
    [178]S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3, Chem. Mater,2009,21 (1):169-173.
    [179]A. Hardy, S. Gielis, H. Van den Rul, J. D'Haen, M.K. Van Bael, J. Mullens, Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors, J. Eur. Ceram. Soc.,2009,29 (14):3007-3013.
    [180]X. Zhang, L. Bourgeois, J. Yao, H. Wang, P.A. Webley, Tuning the morphology of bismuth ferrite nano- and microcrystals:from sheets to fibers, Small,2007,3 (9):1523-1528.
    [181]M.A. Gulgun, M.H. Nguyen, W.M. Kriven, Polymerized organic-inorganic synthesis of mixed oxides, J. Am. Ceram. Soc.,1999,82 (3):556-560.
    [182]T. Liu, Y. Xu, J. Zhao, Low-temperature synthesis of BiFeO3 via PVA sol-gel route, J. Am. Ceram. Soc.,2010,93 (11):3637-3641.
    [183]G. Xu, W. He, Y. Zhao, Y. Liu, Z. Ren, G. Shen, G. Han, Hydrothermal synthesis, characterization and growth mechanism of single crystal lead titanatc pyrochlore dendrites, CrystEngComm,2011,13 (5):1498-1503.
    [184]X. Xiao, R. Liu, F. Liu, X. Zheng, D. Zhu, Effect of poly(sodium 4-styrene-sulfonate) on the crystal growth of hydroxyapatite prepared by hydrothermal method, Mater. Chem. Phys.,2010, 120 (2-3):603-607.
    [185]Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Low-temperature synthesis of Bi2Fe4O9 nanoparticles via a hydrothermal method, Ceram. Int., 2009,35(1):51-53.
    [186]M. Cazayous, D. Malka, D. Lebeugle, D. Colson, Electric field effect on BiFeO3 single crystal investigated by Raman spectroscopy, Appl. Phys. Lett.,2007,91 (7):071910.
    [187]D. Rout, K.S. Moon, S.J.L. Kang, Temperature-dependent Raman scattering studies of polycrystalline BiFeO3 bulk ceramics, J. Raman Spectros.,2009,40 (6):618-626.
    [188]V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite, J. Appl. Phys.,2008,103 (2): 024105-1-024105-5.
    [189]V.A. Khomchenko, D.A. Kiselev, M. Kopcewicz, M. Maglione, V.V. Shvartsman, P. Borisov, W. Kleemann, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, R.M. Rubinger, N.A. Sobolev, J.M. Vieira, A.L. Kholkin, Doping strategies for increased performance in BiFeO3, J. Magn. Magn. Mater.,2009,321 (11):1692-1698.
    [190]D. Kothari, V.R. Reddy, A. Gupta, V. Sathe, A. Banerjee, S.M. Gupta, A.M. Awasthi, Multiferroic properties of polycrystalline Bi1-xCaxFeO3, Appl. Phys. Lett.,2007,91 (20): 202505-1-202505-3.
    [191]U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications, Appl. Phys. Lett., 2008,92 (24):242106-1-242106-3.
    [192]T.X. Wu, G.M. Liu, J.C. Zhao, H. Hidaka, N. Serpone, Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B,1998,102 (30):5845-5851.
    [193]K. Sardar, J.W. Hong, G. Catalan, P.K. Biswas, M.R. Lees, R.I. Walton, J.F. Scott, S.A.T. Redfern, Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1-xCaxFeO3-x/2 (x<=0.1), J. Phys.Condens. Mat.,2012,24 (4): 045905.
    [194]C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale:local polarization in oxide thin films and heterostructures, Science,2004,303 (5657):488-491.
    [195]J.J. Urban, W.S. Yun, Q. Gu, H. Park, Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate, J. Am. Chem. Soc.,2002,124 (7):1186-1187.
    [196]X. Zhu, Z. Liu, N. Ming, Perovskite oxide nanotubes:synthesis, structural characterization, properties and applications, J. Mater. Chem.,2010,20 (20):4015-4030.
    [197]I.I. Naumov, L. Bellaiche, H. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature,2004,432 (7018):737-740.
    [198]J.F. Scott, Applications of modern ferroelectrics, Science,2007,315 (5814):954-959.
    [199]J.H. Zhang, Y.F. Li, X.M. Zhang, B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater.,2010,22 (38): 4249-4269.
    [200]K. Yoon, D. Lee, H. Jung, S. Yoon, Molten salt synthesis of anisotropic BaFe12O19 powders, J. Mater. Sci.,1992,27 (11):2941-2945.
    [201]L. Ren, L.L. Ma, L. Jin, J.B. Wang, M.Q. Qiu, Y. Yu, Template-free synthesis of BiVO4 nanostructures:II. Relationship between various microstructures for monoclinic BiVO4 and their photocatalytic activity for the degradation of rhodamine B under visible light, Nanotechnology, 2009,20 (40):405602-405611.
    [202]Q. Feng, M. Hirasawa, K. Yanagisawa, Synthesis of crystal-axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process, Chem. Mater.,2001,13 (2): 290-296.
    [203]C. Chao, Z. Ren, Y. Zhu, Z. Xiao, Z. Liu, G. Xu, J. Mai, X. Li, G. Shen, G. Han, Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates, Angew. Chem. Int. Ed.,2012,51 (37):9283-9287.
    [204]J. Prado-Gonjal, M.E. Villafuerte-Castrejon, L. Fuentes, E. Moran, Microwave-hydrothermal synthesis of the multiferroic BiFeO3, Mater. Res. Bull,2009,44 (8): 1734-1737.
    [205]M. Sugiyama, G. Sigesato, A review of focused ion beam technology and its applications in transmission electron microscopy, J. Electron Microsc.,2004,53 (5):527-536.
    [206]M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat, Overview of support effects in hydrotreating catalysts, Catal. Today,2003,86 (1-4):5-16.
    [207]S. Dong, Y. Yao, Y. Hou, Y. Liu, Y. Tang, X. Li, Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals, Nanotechnology,2011,22 (38):385701.
    [208]F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater.,2007, 19 (19):2889-2892.
    [209]B. Liu, B. Hu, Z. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires, Chem. Commun.,2011,47 (28):8166-8168.
    [210]S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, Y. Qiao, Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning, Appl. Phys. Lett.,2008,93 (22):222904-1-222904-3.
    [211]I. Pribosic, D. Makovec, M. Drofenik, Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel, Chem. Mater.,2005,17 (11):2953-2958.
    [212]Z. Ren, G. Xu, X. Wei, Z. Liu, Y. Wang, Z. Xiao, G. Shen, G. Han, Ring-and single-crystal-like superstructures of Fe-doped PbTiO3 nanocrystals, J. Cryst. Growth,2009,311 (21):4593-4597.
    [213]G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Infrared and electronic spectra of rare earth perovskites:ortho-chromites,-manganites and -Ferrites, Appl. Spectrosc.,1970,24 (4):436-445.
    [214]J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures, Adv. Mater.,2004,16 (5): 436-439.
    [215]A. Gajovic, S. Sturm, B. Jancar, A. Santic, K. Zagar, M. Ceh, The synthesis of pure-phase bismuth ferrite in the Bi-Fe-O system under hydrothermal conditions without a mineralizer, J. Am. Ceram. Soc.,2010,93 (10):3173-3179.
    [216]G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Preparation and multi-properties of insulated single-phase BiFeO3 ceramics, Solid State Commun.,2006,138 (2):76-81.
    [217]J.K. Kim, S.S. Kim, W.-J. Kim, Sol-gel synthesis and properties of multiferroic BiFeO3, Mater. Lett.,2005,59 (29-30):4006-4009.
    [218]A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3, J. Appl. Phys.,2005,97 (9):093903-01-093903-04.
    [219]V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films, Appl. Phys. Lett.,2002,80 (9):1628-1630.
    [220]J. Chen, X. Xing, A. Watson, W. Wang, R. Yu, J. Deng, L. Yan, C. Sun, X. Chen, Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures, Chem. Mater.,2007,19 (15): 3598-3600.
    [221]N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science,2005, 309 (5733):391-392.
    [222]L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Visible light responsive perovskite BiFeO3 pills and rods with dominant{111}c facets, Cryst. Growth Des.,2011,11 (4):1049-1053.
    [223]S. Li, Y.-H. Lin, B.P. Zhang, C.W. Nan, Y. Wang, Photocatalytic and magnetic behaviors observed in nanostructured BiFeO3 particles, J. Appl. Phys.,2009,105 (5):056105.
    [224]Y. Zheng, F. Duan, M. Chen, Y. Xie, Synthetic Bi2O2CO3 nanostructures:Novel photocatalyst with controlled special surface exposed, Journal of Molecular Catalysis a-Chemical, 2010,317 (1-2):34-40.
    [225]S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure, Appl. Phys. Lett.,2005,87 (26):262907-1-262907-3.
    [226]C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B,2005,71 (6):060401-1-060401-4.
    [227]S.O. Kang, B.H. Park, Y.I. Kim, Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction, Cryst. Growth Des.,2008,8 (9):3180-3186.
    [228]R. Asiaie, W.D. Zhu, S.A. Akbar, P.K. Dutta, Characterization of submicron particles of tetragonal BaTiO3, Chem. Mater.,1996,8 (1):226-234.
    [229]M. Randall, D. Skamser, T. Kinard, J. Qazi, A. Tajuddin, S. Trolier-McKinstry, C. Randall, S.W. Ko, T. Dechakupt, Thin film MLCC, in:Carts-conference, Components Technology Institute Inc.,2007, pp.403.
    [230]T.T. Lee, C.Y. Huang, C.Y. Chang, I.K. Cheng, C.L. Hu, C.T. Lee, M. Fujimoto, Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2, J. Mater. Res., 2012,27 (19):2495-2502.
    [231]C.Y. Chang, C.Y. Huang, Y.C. Wu, C.Y. Su, C.L. Huang, Synthesis of submicron BaTiO3 particles by modified solid-state reaction method, J. Alloys Compd.,2010,495 (1):108-112.
    [232]M.T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, P. Nanni, Ferroelectric BaTiO3 nanowires by a topochemical solid-state reaction, Chem. Mater.,2009,21 (21):5058-5065.
    [233]M.T. Buscaglia, M. Bassoli, V. Buscaglia, Solid-state synthesis of nanocrystalline BaTiO3: Reaction kinetics and powder properties, J. Am. Ceram. Soc.,2008,91 (9):2862-2869.
    [234]L. Simon-Seveyrat, A. Hajjaji, Y. Emiane, B. Guiffard, D. Guyomar, Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications, Ceram. Int.,2007,33 (1):35-40.
    [235]S.K. Lee, T.J. Park, G.J. Choi, K.K. Koo, S.W. Kim, Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction, Mater. Chem. Phys., 2003,82 (3):742-749.
    [236]C. Beck, W. Hartl, R. Hempelmann, Size-controlled synthesis of nanocrystalline BaTiO3 by a sol-gel type hydrolysis in microemulsion-provided nanoreactors, J. Mater. Res.,1998,13 (11): 3174-3180.
    [237]Y. Yang, X. Wang, C. Sun, L. Li, Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method, Nanotechnology,2009,20 (5):55709.
    [238]F. Maxim, P. Ferreira, P.M. Vilarinho, I. Reaney, Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors, Cryst. Growth Des.,2008,8 (9):3309-3315.
    [239]M. Oledzka, N.E. Brese, R.E. Riman, Hydrothermal synthesis of BaTiO3 on a titanium-loaded polymer support, Chem. Mater.,1999,11 (7):1931-1935.
    [240]T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama, Preparation of dense BaTiO3 ceramics with submicrometer grains by spark plasma sintering, J. Am. Ceram. Soc.,1999,82 (4):939-943.
    [241]V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R:Rep,2006,54 (5-6):121-285.
    [242]Z. Shen, H. Peng, J. Liu, M. Nygren, Conversion from nano-to micron-sized structures: experimental observations, J. Eur. Ceram. Soc.,2004,24 (12):3447-3452.
    [243]J. Liu, Z.J. Shen, M. Nygren, B. Su, T.W. Button, Spark plasma sintering behavior of nano-sized (Ba, Sr)TiO3 powders:Determination of sintering parameters yielding nanostructured ceramics, J. Am. Ceram. Soc.,2006,89 (9):2689-2694.
    [244]X.Y. Deng, X.H. Wang, H. Wen, A.G. Kang, Z.L. Gui, L.T. Li, Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc., 2006,89 (3):1059-1064.
    [245]X. Deng, X. Wang, H. Wen, L. Chen, L. Chen, L. Li, Ferroelectric properties of nanocrystalline barium titanate ceramics, Appl. Phys. Lett.,2006,88 (25):252905-252905-03.
    [246]I.J. Clark, T. Takeuchi, N. Ohtori, D.C. Sinclair, Hydrothermal synthesis and characterisation of BaTiO3 fine powders:precursors, polymorphism and properties, J. Mater. Chem.,1999,9(1):83-91.
    [247]C.H. Perry, D.B. Hall, Temperature dependence of the raman spectrum of BaTiO3, Phys. Rev. Lett.,1965,15 (17):700-702.
    [248]Y. Ma, E. Vileno, S.L. Suib, P.K. Dutta, Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating, Chem. Mater.,1997,9 (12):3023-3031.
    [249]V. Bansal, P. Poddar, A. Ahmad, M. Sastry, Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles, J. Am. Chem. Soc.,2006,128 (36):11958-11963.
    [250]W.D. Kingery, H.K. Bowen, D.R. Uhlmann,陶瓷导论,北京,高等教育出版社,2010.
    [251]T. Takeuchi, C. Capiglia, N. Balakrishnan, Y. Takeda, H. Kageyama, Preparation of Fine-grained BaTiO3 ceramics by spark plasma sintering, J. Mater. Res.,2002,17 (03):575-581.
    [252]M.T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao, M. Nygren, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics, Nanotechnology,2004,15 (9):1113-1117.
    [253]B. Li, X. Wang, M. Cai, L. Hao, L. Li, Densification of uniformly small-grained BaTiO3 using spark-plasma-sintering, Mater. Chem. Phys.,2003,82 (1):173-180.
    [254]W. Luan, L. Gao, H. Kawaoka, T. Sekino, K. Niihara, Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering, Ceram. Int.,2004,30 (3):405-410.
    [255]B.R. Li, X.H. Wang, L.T. Li, H. Zhou, X.T. Liu, X.Q. Han, Y.C. Zhang, X.W. Qi, X.Y. Deng, Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering, Mater. Chem. Phys.,2004,83 (1):23-28.
    [256]S. Yoon, J. Dornseiffer, Y. Xiong, D. Gruner, Z. Shen, S. Iwaya, C. Pithan, R. Waser, Spark plasma sintering of nanocrystalline BaTiO3-powders:Consolidation behavior and dielectric characteristics, J. Eur. Ceram. Soc.,2011,31 (9):1723-1731.
    [257]H. Yu, Z.-G. Ye, Dielectric properties and relaxor behavior of a new (1-x)BaTiO3-xBiAlO3 solid solution, J. Appl. Phys.,2008,103 (3):034114-034115.
    [258]X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics, Solid State Commun., 2004,131 (3-4):163-168.
    [259]W.H. Tzing, W.H. Tuan, H.L. Lin, The effect of microstructure on the electrical properties of NiO-doped BaTiO3, Ceram. Int.,1999,25 (5):425-430.
    [260]R. Boucher, P. Renz, C. Li, T. Fuhrlich, J. Bauch, K.H. Yoon, D.C. Lupascu, Large coercivity and polarization of sol-gel derived BaTiO3 nanowires, J. Appl. Phys.,2011,110 (6): 064112-064115.
    [261]F. Maxim, P. Ferreira, P.M. Vilarinho, Morphology Control of BaTiO3 Nanoparticles Prepared by Sol-gel Hydrothermal Method, Microsc. Microanal.,2012,18 (SupplementS5): 111-112.
    [262]N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, A. Gupta, Shape-controlled monocrystalline ferroelectric barium titanate nanostructures:From nanotubes and nanowires to ordered nanostructures, Journal of Physical Chemistry C,2008,112 (23):8634-8642.
    [263]J. Hu, M. Chen, X. Fang, L. Wu, Fabrication and application of inorganic hollow spheres, Chem. Soc. Rev.,2011,40 (11):5472-5491.
    [264]J.Y. Lee, J.H. Lee, S.H. Hong, Y.K. Lee, J.Y. Choi, Coating BaTiO3 Nanolayers on Spherical Ni Powders for Multilayer Ceramic Capacitors, Adv. Mater.,2003,15 (19):1655-1658.
    [265]X.H. Zhu, P.R. Evans, D. Byrne, A. Schilling, C. Douglas, R.J. Pollard, R.M. Bowman, J.M. Gregg, F.D. Morrison, J.F. Scott, Perovskite lead zirconium titanate nanorings:Towards nanoscale ferroelectric "solenoids"?, Appl. Phys. Lett.,2006,89 (12):122913-1-122913-3.
    [266]H. Nakano, H. Nakamura, Preparation of hollow BaTiO3 and anatase spheres by the layer-by-layer colloidal templating method, J. Am. Ceram. Soc.,2006,89 (4):1455-1457.
    [267]M.T. Buscaglia, V. Buscaglia, M. Viviani, G. Dondero, S. Rohrig, A. R ii diger, P. Nanni, Ferroelectric hollow particles obtained by solid-state reaction, Nanotechnology,2008,19 (22): 225602-07.
    [268]M. DiDomenico, Jr., S.H. Wemple, S.P.S. Porto, R.P. Bauman, Raman Spectrum of Single-Domain BaTiO3, Physical Review,1968,174 (2):522-530.
    [269]J. Fang, B. Ding, X. Song, Y. Han, How a silver dendritic mesocrystal converts to a single crystal, Appl. Phys. Lett.,2008,92 (17):173120-173123.
    [270]D. Yu, X. Sun, J. Zou, Z. Wang, F. Wang, K. Tang, Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres, J. Phys. Chem. B,2006,110 (43):21667-21671.
    [271]R.L. Penn, G. Oskam, T.J. Strathmann, P.C. Searson, A.T. Stone, D.R. Veblen, Epitaxial assembly in aged colloids, J. Phys. Chem. B,2001,105 (11):2177-2182.
    [272]Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets, Nanoscale,2011,3 (9):3670-3678.
    [273]M.F. Zhou, T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, E.R. Vance, Defect chemistry and semiconducting properties of calcium titanate, J. Mater. Sci.:Mater. Electron.,2002,13 (12): 697-704.
    [274]N. Masaki, S. Uchida, T. Sato, Moderate hydrothermal synthesis of layered caesium titanate, J. Mater. Chem.,2002,12 (2):305-308.
    [275]S. Lin, C. Ionescu, K.J. Pike, M.E. Smith, J.R. Jones, Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, J. Mater. Chem.,2009,19 (9):1276-1282.
    [276]I.R. Evans, J.A.K. Howard, T. Sreckovic, M.M. Ristic, Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate, CaTiO3, Mater. Res. Bull.,2003,38 (7):1203-1213.
    [277]R. Ali, M. Yashima, Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720K, J. Solid State Chem.,2005,178 (9):2867-2872.
    [278]G. Brankovic, V. Vukotic, Z. Brankovic, J.A. Varela, Investigation on possibility of mechanochemical synthesis of CaTiO3 from different precursors, J. Eur. Ceram. Soc.,2007,27 (2-3):729-732.
    [279]P. Ctibor, J. Sedlacek, K. Neufuss, P. Chraska, Dielectric relaxation in calcium titanate-containing ceramics prepared by plasma spraying, Ceram. Int.,2003,29 (8):955-960.
    [280]B.M. Patil, R.S. Srinivasa, S.R. Dharwadkar, Synthesis of CaTiO3 from calcium titanyl oxalate hexahydrate (CTO) as precursor employing microwave heating technique, Bull. Mater. Sci.,2007,30 (3):225-229.
    [281]G. Pfaff, Synthesis of calcium titanate powders by the sol-gel process, Chem. Mater.,1994, 6 (1):58-62.
    [282]J.R. Bartlett, J.L. Woolfrey, Preparation of Multicomponent Powders by Alkoxide Hydrolysis.1. Chemical Processing, Chem. Mater.,1996,8 (6):1167-1174.
    [283]P.E. Gustavsson, P.O. Larsson, Continuous superporous agarose beds in radial flow columns, J. Chromatogr. A,2001,925 (1-2):69-78.
    [284]K.F. Du, D. Yang, Y. Sun, Fabrication of high-permeability and high-capacity monolith for protein chromatography, J. Chromatogr. A,2007,1163 (1-2):212-218.
    [285]S.B. Rathod, T.L. Ward, Hierarchical porous and composite particle architectures based on self assembly and phase separation in droplets, J. Mater. Chem.,2007,17 (22):2329-2335.
    [286]K.F. Du, X.Y. Dong, Y. Sun, Fabrication of Bimodal Porous CaTiO3 Microspheres Using Composite Agarose/CaCO3 Beads as Template, Ind. Eng. Chem. Res.,2010,49 (24): 12560-12566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700