用户名: 密码: 验证码:
氧化铈仿生遗态材料的能级设计及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去几年中,世界的能源结构依然停滞在利用如煤、石油、天然气等不可再生的化石燃料上。然而,大量化石燃料的燃烧导致了一系列大气和水污染及全球变暖问题。因此,利用阳光分解水制氢作为一种便于储存传输并化为电能的可再生清洁能源技术不断受到人们的关注。
     具有先进的分级微纳米结构的半导体材料(如TiO2,ZnO,CeO2和WO3等)因其特殊的禁带结构和能级分布而产生的氧化还原变换,常被用于光解水制氢领域。这类具有特殊微纳米结构的光功能材料的合成技术也得到迅速的发展。此外,这类功能材料也可以应用到如小型化纳米电子学,超快量子计算,高密度内存/数据存储介质,超灵敏化学传感/生物传感器和高效催化底物等纳米应用领域。然而,对于材料学家来说,这类材料的制备依然是个巨大难题。与此同时,自然界经过进化,可持续地创造出大量具有复杂的分级结构,多功能,小型化,环境适应性的纳米材料。忠实地复制这些大自然的设计也许是制备功能性分级微纳米材料的最直接途径。
     仿生遗态制备法是一种模仿自然生物的结构、功能、机制、乃至部分或整个活性系统为基础的纳米仿生材料技术,它的关键是通过调控,对生物组织结构所具有的多层分级微纳米多孔结构进行精密复制。本研究采用一系列新型具有分级多孔和功能性的生物结构作为模板,经过低成本且环境友好的仿生遗态法制备相应的仿生氧化铈材料,并将之应用于光解水制氢领域,本文主要研究结论如下:
     (1)本研究通过特定的工艺将荷花、月季、田园罂粟三种花瓣作为模板,合成仿花瓣形貌氧化铈,使用XRD、HRTEM、FESEM、ESEM、AFM和氮气吸附脱吸附等手段表征发现其是由厚度能达5nm以下的超薄纳米氧化铈层组成;通过特定工艺将硅藻、荷花花粉、细菌作为模板,合成仿生氧化铈微球,通过表征发现制得材料是由氧化铈纳米晶体堆积形成的微米级大孔嵌套纳米级小孔的分级多孔结构;将擦镜纸、鸡蛋膜、菌丝作为模板,合成仿生氧化铈微管,通过表征发现仿生遗态制备法将生物组织的形貌完整地保留在遗态功能材料之中,其中仿菌丝壁材料因复制细胞壁的层层结构也具有超薄纳米层结构。本研究提出了对制备多种仿生氧化铈材料的机理分析,从生物和化学两个角度说明了材料制备的原理。
     (2)在制备材料的基础上,进一步结合仿生氧化铈材料的XPS图谱,针对9种仿生氧化铈进行了表面元素价态分析。从分析结果来看,材料中的氧空位的浓度随三价铈比例、掺氮比例的提高而提高,仿生氧化铈中的超薄纳米层结构也有助于提高材料中氧空位的浓度,尤其是纳米层厚度小于4nm的材料,具有高含量的氧缺陷及催化活性位。通过H2-TPR分析,仿生氧化铈材料的颗粒分散性较好,其还原峰温的降低充分说明其催化活性的增强。同样,紫外-可见漫散射光谱也表明仿生氧化铈材料吸收边随着掺氮量、氧空位比例及超薄层结构的增加向可见光区红移。从计算得到的禁带宽度看,以菌丝作为模板的氧化铈仿生微管材料具有最小的禁带宽度2.85eV,这是因为它由3.57nm厚度的超薄纳米层组成,同时又具有具有高浓度的氧缺陷和氮掺杂量而造成的。在可见光下,这种新型材料催化降解亚甲基蓝溶液的效率最高。
     (3)基于光解水制氢系统对仿生氧化铈超薄纳米层、微球、微管进行了光催化性能的研究,分析结果表明随着氧化铈材料中氧空位的浓度、掺氮比例和超薄纳米层结构的增加,其在可见光下催化制取氢气的效率会得到提高。这可归因于氧空位在导带底和N2p在价带顶引入的梯度能级,使禁带宽度变窄,易化了电子的跃迁,增强了材料对可见光的吸收,促进可见光下氢气的产生。在制备得的多种仿生氧化铈材料中,以菌丝作为模板的氧化铈仿生微管材料光解水制氢效率最高,光照420min后产氢量达到378μmol/g。这是因为其既具有3.57nm厚度的超薄纳米层,又具有高浓度的氧缺陷和氮掺杂量。这与紫外、TPR、XPS等分析结果相一致。
During the past few years, our major energy resources still originate from limited and non-renewable fossil fuels, such as coal, oil and natural gas. However, the combustion of these fossil fuels has caused a series of critical environmental problems, ranging from air and water contamination to global warming. Therefore, water splitting under sunlight has received much attention for production of renewable hydrogen from water on a large scale. Solar hydrogen will play an important role in prospective sustainable-energy societies because it is storable, transportable and can be converted into electricity efficiently using fuel cells whenever it is necessary.
     The advanced hierarchically nanoarchitectures of semiconductors TiO2, ZnO, CeO2and WO3can all act as photoactive materials for redox/charge-transfer processes due to their electronic structures which are characterized by a filled valence band and an empty conduction band.The exploration of synthetic techniques for the fabrication of hierarchically nanostructured materials having controllable morphologies has emerged as a fast-growing subfield of nanotechnology research. Advanced functional materials incorporating well defined nanoarchitectures have shown great potential for nanotechnological applications, such as miniaturized nanoelectronics, ultrafast quantum computing, high-density memory/data storage media, ultrasensitive chemical sensing/biosensing, and generation of high-efficiency catalytic substrates. However, the production of such materials remains a great challenge for materials scientists. In the meanwhile, nature exploits sustainable methods for creation of materials with sophistication, hierarchical organizations, function hybridization, miniaturization, environment-resistance and adaptability on the nanoscale for a variety of applications. Replicating these nature's designs faithfully reproduced over millions of years presents perhaps the most straightforward route to success.
     Biomimicking including mimicking natural structures, functions, mechanisms, and/or the wholesystem rises as a bio-inspired strategy for the facile fabrication of materials with hierarchical biomorphic-structures. In this paper, we employed this low-cost and environmentally benign routed to prepare ceria with biomorphic structures for photocatalytic water splitting into hydrogen and oxygen, which has become a promising strategy for converting solar energy into clean and carbon-neutral H2fuel. A series of novel functional biological materials are designed to achieve some fantastic properties by introducing natural biomaterials with the certain components and special hierarchical structures into relevant bio-inspired synthesis. The main contents and conclusions are shown as follows:
     In this study, the petals of lotus, rose, and field poppy petals were used as templates to fabricate biomorphic cerium oxide. The products were characterized by XRD, HRTEM, FESEM, ESEM, AFM and Nitrogen adsorption-desorption measurement. The results reveal the biomorphic CeO2derived from petal was composed of ultrathin layers with the thickness less than5nm; The ceria microspheres was synthesized by using diatoms, lotus pollen, bacteria as templates. The characterizing results show the products were accumulated of cerium oxide nanocrystals, which formed hierarchical macro-meso porous structure; The CeO2microtubes were obtained by using lens cleaning paper, egg membrane, and fungal hypha as templates. From the characterization, we found that the morphology of biomorphic ceria faithfully replicated the original structure of the template. The ceria derived from fungal hypha contained considerable ultrathin films due to replication of cell wall. This study proposes a biomimetic synthetic mechanism of biomorphic ceria, both from the perspective of biology and chemistry.
     On the basis of the preparation of the material, the further investigation of XPS spectra of nine kinds of biomorphic ceria were analyzed. From the analysis results, the concentration of oxygen vacancies grows with the increase of Ce3+ratio and nitrogen-doped amount. Ultrathin CeO2films also improve the concentration of oxygen vacancies, especially the film with thickness of less than4nm. The H2-TPR analysis displays the CeO2nanoparticles are well dispersed. The shift of reduction peak temperature shows the enhancement of its catalytic activity. Similarly, UV visible diffuse spectra also show the red shift of absorption edge with the increase of the amount of doping nitrogen, oxygen vacancies and the structure of ultra-thin layers. Calculated from the UV curve, the bandgap of biomorphic CeO2derived from fungal hypha is2.85eV. The narrowing of the bandgap is attributed to the ultrathin film consisting of3.57nm, a high concentration oxygen vacancies and nitrogen doping amount. This new catalytic materials displays the best photocatalytic performance for degradation of methylene blue under visible light irradiation.
     Photolytic water splitting result of biomorphic CeO2ultrathin layers, microspheres, microtubes showed that the increase of oxygen vacancies and doping nitrogen would efficiently improve the performance of hydrogen production. This is attributable to multiple gradient energy levels which were introduced into CeO2band gap by oxygen vacancies and N2p. Consequently, the electron transition and generation of hydrogen become easy. Among obtained biomorphic CeO2, the ceria derived from fungal hypha achieve the best photolytic water performance, the hydrogen production reached378μmol/g after420min. It is not only because of its ultra-thin film structure with thickness of about3.57nm, but also a high concentration of oxygen defects and nitrogen doping. It's consistent with the results of the analysis of UV, TPR and XPS.
引文
[1]. Huang Huajie and Xin Wang, Graphene nanoplate-MnO2 composites for supercapacitors:a controllable oxidation approach. Nanoscale[J],2011.3(8):3185-3191.
    [2]. Centi Gabriele and Siglinda Perathoner, Towards Solar Fuels from Water and CO2. ChemSusChem[J],2010.3(2):195-208.
    [3]. Valdes Alvaro, Jeremie Brillet, Michael Gratzel, et al., Solar hydrogen production with semiconductor metal oxides:new directions in experiment and theory. Physical Chemistry Chemical Physics[J],2012.14(1):49-70.
    [4]. Xie Guancai, Kai Zhang, Beidou Guo, et al., Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Advanced Materials[J],2013. 25(28):3820-3839.
    [5]. Perez-Hernandez R., A. Gutierrez-Martinez, J. Palacios, et al., Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2-ZrO2 catalysts. International Journal of Hydrogen Energy[J],2011.36(11):6601-6608.
    [6]. Kudo Akihiko and Yugo Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews[J],2009.38(l):253-278.
    [7]. Fujishima Akira and Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature[J],1972.238(5358):37-38.
    [8]. Daskalaki Vasileia M., Maria Antoniadou, Gianluca Li Puma, et al., Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater. Environmental Science & Technology[J],2010.44(19):7200-7205.
    [9]. Osterloh Frank E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews[J],2013.42(6):2294-2320.
    [10]. Sakthivel Shanmugasundaram and Horst Kisch, Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition[J],2003. 42(40):4908-4911.
    [11]. Wang Tuo, Zhibin Luo, Chengcheng Li, et al., Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chemical Society Reviews[J],2014. Inpress.
    [12]. Zhang Guan, Gonu Kim, and Wonyong Choi, Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT):an alternative approach to solar activation of titania. Energy & Environmental Science[J],2014.7(3):954-966.
    [13]. Kubacka Anna, Marcos Fernandez-Garcia, and Gerardo Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews[J],2011.112(3):1555-1614.
    [14]. Raji Jeevitha R. and Kandasamy Palanivelu, Sunlight-Induced Photocatalytic Degradation of Organic Pollutants by Carbon-Modified Nanotitania with Vegetable Oil as Precursor. Industrial & Engineering Chemistry Research[J],2011.50(6):3130-3138.
    [15]. Youngblood W. Justin, Seung-Hyun Anna Lee, Kazuhiko Maeda, et al., Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Accounts of Chemical Research[J], 2009.42(12):1966-1973.
    [16]. Swierk John R. and Thomas E. Mallouk, Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chemical Society Reviews[J], 2013.42(6):2357-2387.
    [17]. Puga Alberto V., Amparo Forneli, Hermenegildo Garcia, et al., Production of H2 by Ethanol Photoreforming on Au/TiO2. Advanced Functional Materials[J],2013.24(2):241-248.
    [18]. Song-bai Qiu and et al., Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst. Chinese Journal of Chemical Physics[J],2011.24(2):211.
    [19]. Qi Xiaopeng, Guangwei She, Xing Huang, et al., High-performance n-Si/a-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Nanoscale[J], 2014.6(6):3182-3189.
    [20]. Qin Shiyue, Feng Xin, Yuande Liu, et al., Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. Journal of Colloid and Interface Science[J],2011.356(1):257-261.
    [21]. Asahi R., T. Morikawa, T. Ohwaki, et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science[J],2001.293(5528):269-271.
    [22]. Dunnill Charles W. and Ivan P. Parkin, Nitrogen-doped TiO2 thin films:photocatalytic applications for healthcare environments. Dalton Transactions[J],2011.40(8):1635-1640.
    [23]. Batzill M., E. H. Morales, and U. Diebold, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett[J],2006. 96(2):026103.
    [24]. Diwald Oliver, Tracy L. Thompson, Ed G. Goralski, et al., The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals. The Journal of Physical Chemistry B[J],2003.108(1):52-57.
    [25]. Jagadale Tushar C., Shrikant P. Takale, Ravindra S. Sonawane, et al., N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol-Gel Method. The Journal of Physical Chemistry C[J],2008.112(37):14595-14602.
    [26]. Sotiropoulou Sofia, Yajaira Sierra-Sastre, Sonny S. Mark, et al., Biotemplated Nanostructured Materials. Chemistry of Materials[J],2008.20(3):821-834.
    [27]. Bixler Gregory D. and Bharat Bhushan, Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Advanced Functional Materials[J],2013. 23(36):4507-4528.
    [28]. Xia Fan and Lei Jiang, Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials[J],2008.20(15):2842-2858.
    [29]. Jin Kejia, Joseph C. Cremaldi, Jeffrey S. Erickson, et al., Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko. Advanced Functional Materials[J],2014. 24(5):574-579.
    [30]. Roche Ellen T., Robert Wohlfarth, Johannes T. B. Overvelde, et al., A Bioinspired Soft Actuated Material. Advanced Materials[J],2014.26(8):1200-1206.
    [31]. Fan Tong-Xiang, Suk-Kwun Chow, and Di Zhang, Biomorphic mineralization:From biology to materials. Progress in Materials Science[J],2009.54(5):542-659.
    [32]. Galusha Jeremy W., Matthew R. Jorgensen, and Michael H. Bartl, Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates. Advanced Materials[J],2010. 22(1):107-110.
    [33]. Galusha Jeremy W., Lauren R. Richey, John S. Gardner, et al., Discovery of a diamond-based photonic crystal structure in beetle scales. Physical Review E[J],2008. 77(5):050904.
    [34]. Zhang Wang, Di Zhang, Tongxiang Fan, et al., Novel Photoanode Structure Templated from Butterfly Wing Scales. Chemistry of Materials[J],2008.21(1):33-40.
    [35]. Huang Jingyun, Xudong Wang, and Zhong Lin Wang, Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties. Nano Letters[J],2006.6(10):2325-2331.
    [36]. Potyrailo Radislav A., Helen Ghiradella, Alexei Vertiatchikh, et al., Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photon[J],2007.1(2):123-128.
    [37]. Guoyong Xie, Zhang Guoming, Lin Feng, et al., The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology[J],2008.19(9):095605.
    [38]. Kostovski G, D. J. White, A. Mitchell, et al., Nanoimprinted optical fibres:Biotemplated nanostructures for SERS sensing. Biosensors and Bioelectronics[J],2009.24(5):1531-1535.
    [39]. Martin-Palma R. J. and et al., Replication of fly eyes by the conformal evaporated film by rotation technique. Nanotechnology[J],2008.19(35):355704.
    [40]. Culverwell Emily, Stuart C. Wimbush, and Simon R. Hall, Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template. Chemical Communications[J],2008(9):1055-1057.
    [41]. Meldrum Fiona C. and Ram Seshadri, Porous gold structures through templating by echinoid skeletal plates. Chemical Communications[J],2000(1):29-30.
    [42]. Ha Y. H., R. A Vaia,W. F Lynn, et al., Three-Dimensional Network Photonic Crystals via Cyclic Size Reduction/Infiltration of Sea Urchin Exoskeleton. Advanced Materials[J],2004. 16(13):1091-1094.
    [43]. Dong Qun, Huilan Su, Di Zhang, et al., Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol-gel technique. Microporous and Mesoporous Materials[J],2007.98(1-3):344-351.
    [44]. Qun Dong and et al., Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol-gel technique. Nanotechnology[J],2006.17(15):3968.
    [45]. Maddocks A. R. and A. T. Harris, Biotemplated synthesis of novel porous SiC. Materials Letters[J],2009.63(9-10):748-750.
    [46]. Hall Simon R., Helen Bolger, and Stephen Mann, Morphosynthesis of Complex Inorganic Forms Using Pollen Grain Templates. ChemInform[J],2004.35(5):2784-2785.
    [47]. Hall Simon R., Victoria M. Swinerd, Francisco N. Newby, et al., Fabrication of Porous Titania (Brookite) Microparticles with Complex Morphology by Sol-Gel Replication of Pollen Grains. Chemistry of Materials[J],2006.18(3):598-600.
    [48]. Zhang Xiaoliang, Mei Yu, Jianhua Liu, et al., Bioinspired Synthesis of a Hollow Metallic Microspiral Based on a Spirulina Bioscaffold Langmuir[J],2012.28(8):3690-3694.
    [49]. Chow Sukkwun, Tongxiang Fan, Jian Ding, et al., Meso/Macroporous Ceria with Enhanced Surface Oxygen Activity via Plant-Leaf Mineralization. Journal of the American Ceramic Society[J],2010.93(1):40-43.
    [50]. Li Xufan, Tongxiang Fan, Han Zhou, et al., Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2from Green-Leaf Biotemplates. Advanced Functional Materials[J], 2009.19(1):45-56.
    [51]. Bhattacharya Anup and Jurgen Heinrich, Cellular SiC ceramic from stems of corn—processing and microstructure. Journal of Materials Science[J],2006. 41(8):2443-2448.
    [52]. Qian Jun-Min and Zhi-Hao Jin, Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure. Journal of the European Ceramic Society[J],2006. 26(8):1311-1316.
    [53]. Rambo C. R., J. Cao, and H. Sieber, Preparation and properties of highly porous, biomorphic YSZ ceramics. Materials Chemistry and Physics[J],2004.87(2-3):345-352.
    [54]. Cao J., C. R. Rambo, and H. Sieber, Manufacturing of microcellular, biomorphous oxide ceramics from native pine wood. Ceramics International [J],2004.30(7):1967-1970.
    [55]. Song Peng, Qi Wang, and Zhongxi Yang, Biomorphic synthesis of ZnSnO3 hollow fibers for gas sensing application. Sensors and Actuators B:Chemical[J],2011.156(2):983-989.
    [56]. Fan Tongxiang, Binghe Sun, Jiajun Gu, et al., Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scripta Materialia[J],2005.53(8):893-897.
    [57]. Li Li and et al., Living bio-membrane bi-template route for simultaneous synthesis of lead selenide nanorods and nanotubes. Nanotechnology[J],2004.15(12):1877.
    [58]. Chen Ping, Qing-Sheng Wu, and Ya-Ping Ding, Facile synthesis of monodisperse silver nanoparticles by bio-template of squama inner coat of onion. Journal of Nanoparticle Research[J],2008.10(1):207-213.
    [59]. Nair Binoj and T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Crystal Growth & Design[J],2002. 2(4):293-298.
    [60]. Zhou Han, Tongxiang Fan, and Di Zhang, Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Microporous and Mesoporous Materials[J],2007. 100(1-3):322-327.
    [61]. Singh Sanjay, Umananda M. Bhatta, P. V. Satyam, et al., Bacterial synthesis of silicon/silica nanocomposites. Journal of Materials Chemistry[J],2008.18(22):2601-2606.
    [62]. Bai Bo, Pengpeng Wang, Le Wu, et al., A novel yeast bio-template route to synthesize Cr2O3 hollow microspheres. Materials Chemistry and Physics[J],2009.114(1):26-29.
    [63]. He Wen, Weijia Zhou, Yingjun Wang, et al., Biomineralization of iron phosphate nanoparticles in yeast cells. Materials Science and Engineering:C[J],2009. 29(4):1348-1350.
    [64]. Sang-Yup Lee and et al., Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template. Nanotechnology[J],2005.16(7):S435.
    [65]. Shenton Wayne, Trevor Douglas, Mark Young, et al., Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Advanced Materials [J], 1999.11(3):253-256.
    [66]. Fowler C. E., W. Shenton, G. Stubbs, et al., Tobacco Mosaic Virus Liquid Crystals as Templates for the Interior Design of Silica Mesophases and Nanoparticles. Advanced Materials[J],2001.13(16):1266-1269.
    [67]. Balci S., A. M. Bittner, M. Schirra, et al., Catalytic coating of virus particles with zinc oxide. Electrochimica Acta[J],2009.54(22):5149-5154.
    [68]. Lee Youjin, Junhyung Kim, Dong Soo Yun, et al., Virus-templated Au and Au-Pt core-shell nanowires and their electrocatalytic activities for fuel cell applications. Energy & Environmental Science[J],2012.5(8):8328-8334.
    [69]. Radloff Corey, Richard A. Vaia, Jason Brunton, et al., Metal Nanoshell Assembly on a Virus Bioscaffold. Nano Letters[J],2005.5(6):1187-1191.
    [70]. Barrio Laura, Michael Estrella, Gong Zhou, et al., Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction:In Situ Characterization of an Inverse Powder CeO2-x/CuO-Cu Catalyst. The Journal of Physical Chemistry C[J],2010. 114(8):3580-3587.
    [71]. Mao Chuanbin, Daniel J. Solis, Brian D. Reiss, et al., Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science[J],2004. 303(5655):213-217.
    [72]. Sumper M. and E. Brunner, Learning from Diatoms:Nature's Tools for the Production of Nanostructured Silica. Advanced Functional Materials[J],2006.16(1):17-26.
    [73]. Rosi Nathaniel L., C. Shad Thaxton, and Chad A. Mirkin, Control ofNanoparticle Assembly by Using DNA-Modified Diatom Templates. Angewandte Chemie International Edition[J], 2004.43(41):5500-5503.
    [74]. Losic Dusan, Gerry Triani, Peter J. Evans, et al., Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. Journal of Materials Chemistry[J],2006. 16(41):4029-4034.
    [75]. Losic Dusan, James G Mitchell, and Nicolas H. Voelcker, Fabrication of gold nanostructures by templating from porous diatom frustules. New Journal of Chemistry[J], 2006.30(6):908-914.
    [76]. Perez-Cabero Monica, Victoria Puchol, Daniel Beltran, et al., Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon[J], 2008.46(2):297-304.
    [77]. Witoon Thongthai and Metta Chareonpanich, Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Materials Letters[J],2012.81(0):181-184.
    [78]. Ganesan Raman, Ilana Perelshtein, and Aharon Gedanken, Biotemplated Synthesis of Single-Crystalline W18O49@C Core-Shell Nanorod and Its Capacitance Properties. The Journal of Physical Chemistry C[J],2008.112(6):1913-1919.
    [79]. Rehman Asma, Zulfiqar Ali Raza, Rehman Saif ur, et al., Synthesis and use of self-assembled rhamnolipid microtubules as templates for gold nanoparticles assembly to form gold microstructures. Journal of Colloid and Interface Science[J],2010.347(2):332-335.
    [80]. Brott Lawrence L., Rajesh R. Naik, David J. Pikas, et al., Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature[J],2001.413(6853):291-293.
    [81]. Cha Jennifer N., Galen D. Stucky, Daniel E. Morse, et al., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature[J],2000.403(6767):289-292.
    [82]. Djalali Ramin, Yung-fou Chen, and Hiroshi Matsui, Au Nanowire Fabrication from Sequenced Histidine-Rich Peptide. Journal of the American Chemical Society[J],2002. 124(46):13660-13661.
    [83]. Kim Sung-Wook, Tae Hee Han, Jongsoon Kim, et al., Fabrication and Electrochemical Characterization of TiO2 Three-Dimensional Nanonetwork Based on Peptide Assembly. ACS Nano[J],2009.3(5):1085-1090.
    [84]. Song Yujiang, Sivakumar R. Challa, Craig J. Medforth, et al., Synthesis of peptide-nanotube platinum-nanoparticle composites. Chemical Communications[J],2004(9):1044-1045.
    [85]. Sierra-Sastre Yajaira, Sukgeun Choi, S. T. Picraux, et al., Vertical Growth of Ge Nanowires from Biotemplated Au Nanoparticle Catalysts. Journal of the American Chemical Society[J], 2008.130(32):10488-10489.
    [86]. Liu Jiurong, Yuanbing Mao, Esther Lan, et al., Generation of Oxide Nanopatterns by Combining Self-Assembly of S-Layer Proteins and Area-Selective Atomic Layer Deposition. Journal of the American Chemical Society[J],2008.130(50):16908-16913.
    [87]. Allen M., D. Willits, J. Mosolf, et al., Protein Cage Constrained Synthesis of Ferrimagnetic Iron Oxide Nanoparticles. Advanced Materials[J],2002.14(21):1562-1565.
    [88]. Douglas T., E. Strable, D. Willits, et al., Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis. Advanced Materials [J],2002.14(6):415-418.
    [89]. Keren Kinneret, Michael Krueger, Rachel Gilad, et al., Sequence-Specific Molecular Lithography on Single DNA Molecules. Science[J],2002.297(5578):72-75.
    [90]. Xu Shoujiang, Limiao Li, Zhifeng Du, et al., A netlike DNA-templated Au nanoconjugate as the matrix of the direct electrochemistry of horseradish peroxidase. Electrochemistry Communications[J],2009. 11(2):327-330.
    [91]. Yan Hao, Sung Ha Park, Gleb Finkelstein, et al., DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science[J],2003.301(5641):1882-1884.
    [92]. Briggs Beverly D. and Marc R. Knecht, Nanotechnology Meets Biology:Peptide-based Methods for the Fabrication of Functional Materials. The Journal of Physical Chemistry Letters[J],2012.3(3):405-418.
    [93]. Liu Huihui, QibinZhao, Han Zhou, et al., Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Physical Chemistry Chemical Physics[J],2011. 13(23):10872-10876.
    [94]. Schnepp Zoe, Wen Yang, Markus Antonietti, et al., Biotemplating of Metal Carbide Microstructures:The Magnetic Leaf. Angewandte Chemie[J],2010.122(37):6714-6716.
    [95]. Primo Ana, Tiziana Marino, Avelino Corma, et al., Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society[J],2011. 133(18):6930-6933.
    [96]. Zhang Dengsong, Xianjun Du, Liyi Shi, et al., Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Transactions[J],2012.41(48):14455-14475.
    [97]. Park Seungdoo, John M. Vohs, and Raymond J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature[J],2000.404(6775):265-267.
    [98]. Masson Sian, Peter Holliman, Maher Kalaji, et al., The production of nanoparticulate ceria using reverse micelle sol gel techniques. Journal of Materials Chemistry[J],2009. 19(21):3517-3522.
    [99]. Lin Hsin-Lung, Cheng-Yu Wu, and Ray-Kuang Chiang, Facile synthesis of CeO2 nanoplates and nanorods by [100] oriented growth. Journal of Colloid and Interface Science[J],2010. 341(1):12-17.
    [100]. Zhou Kebin, Zhiqiang Yang, and Sen Yang, Highly Reducible CeO2 Nanotubes. Chemistry of Materials[J],2007.19(6):1215-1217.
    [101]. Liu Xiufang, Hongxiao Yang, Lu Han, et al., Mesoporous-shelled CeO2 hollow nanospheres synthesized by a one-pot hydrothermal route and their catalytic performance. CrystEngComm[J],2013.15(38):7769-7775.
    [102]. Yang Songwang and Lian Gao, Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. Journal of the American Chemical Society[J],2006.128(29):9330-9331.
    [103]. Yan Lai, Xianran Xing, Ranbo Yu, et al., Facile alcohothermal synthesis of large-scale ceria nanowires with organic surfactant assistance. Physica B:Condensed Matter[J],2007. 390(1-2):59-64.
    [104]. Matolin V. and et al., A resonant photoemission applied to cerium oxide based nanocrystals. Nanotechnology[J],2009.20(21):215706.
    [105]. Dickerson Matthew B., Kenneth H. Sandhage, and Rajesh R. Naik, Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chemical Reviews[J],2008. 108(11):4935-4978.
    [106]. Yuan Qing, Zongfang Wu, Yuekang Jin, et al., Photocatalytic Cross-Coupling of Methanol and Formaldehyde on a Rutile TiO2(110) Surface. Journal of the American Chemical Society[J],2013.135(13):5212-5219.
    [107]. Sun Yongfu, Zhihu Sun, Shan Gao, et al., All-Surface-Atomic-Metal Chalcogenide Sheets for High-Efficiency Visible-Light Photoelectrochemical Water Splitting. Advanced Energy Materials[J],2014.4(1):1-11.
    [108]. Sticklen Mariam B., Plant genetic engineering for biofuel production:towards affordable cellulosic ethanol. Nat Rev Genet[J],2008.9(6):433-443.
    [109]. Zheng Mingtao, Yingliang Liu, Shuai Zhao, et al., Simple Shape-Controlled Synthesis of Carbon Hollow Structures. Inorganic Chemistry[J],2010.49(19):8674-8683.
    [110]. Wong Tak-Sing, Sung Hoon Kang, Sindy K. Y. Tang, et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature[J],2011.477(7365):443-447.
    [111]. Dong Qun, Huilan Su, Chunfu Zhang, et al., Fabrication of hierarchical ZnO films with interwoven porous conformations by a bioinspired templating technique. Chemical Engineering Journal[J],2008.137(2):428-435.
    [112]. Dao Van-Duong, Seong-Hoon Kim, Ho-Suk Choi, et al., Efficiency Enhancement of Dye-Sensitized Solar Cell Using Pt Hollow Sphere Counter Electrode. The Journal of Physical Chemistry C[J],2011.115(51):25529-25534.
    [113]. Zhu Yufang, Jianlin Shi, Weihua Shen, et al., Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie International Edition[J],2005.44(32):5083-5087.
    [114]. Gao Rui, Min Chen, Wei Li, et al., Facile fabrication and some specific properties of polymeric/inorganic bilayer hybrid hollow spheres. Journal of Materials Chemistry A[J], 2013.1(6):2183-2191.
    [115]. Xia Jiexiang, Sheng Yin, Huaming Li, et al., Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Transactions[J],2011.40(19):5249-5258.
    [116]. Su Zixue and Wuzong Zhou, Formation, morphology control and applications of anodic TiO2 nanotube arrays. Journal of Materials Chemistry[J],2011.21(25):8955-8970.
    [117]. Zhang Xing, Fang Wang, Hui Huang, et al., Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale[J],2013. 5(6):2274-2278.
    [118]. Zhu Guoyin, Zhi He, Jun Chen, et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale[J], 2014.6(2):1079-1085.
    [119]. Yang Zhao and et al., Super-long aligned TiO2/carbon nanotube arrays. Nanotechnology[J], 2010.21(50):505702.
    [120]. Qiu Jijun, Fuwei Zhuge, Xiaomin Li, et al., Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells. Journal of Materials Chemistry[J],2012.22(8):3549-3554.
    [121]. Feng Xiaomiao, Zhenzhen Yan, Ningna Chen, et al., The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. Journal of Materials Chemistry A[J],2013.1(41):12818-12825.
    [122]. Ajikumar Parayil Kumaran, Rajamani Lakshminarayanan, Boon Tee Ong, et al., Eggshell Matrix Protein Mimics:Designer Peptides to Induce the Nucleation of Calcite Crystal Aggregates in Solution. Biomacromolecules[J],2003.4(5):1321-1326.
    [123]. Sugunan A., P. Melin, J. Schnurer, et al., Nutrition-Driven Assembly of Colloidal Nanoparticles:Growing Fungi Assemble Gold Nanoparticles as Microwires. Advanced Materials[J],2007.19(1):77-81.
    [124]. Ou Hsin-Hung and Shang-Lien Lo, Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. Journal of Molecular Catalysis A:Chemical[J],2007. 275(1-2):200-205.
    [125]. Shahmoradi B., A. Maleki, and K. Byrappa, Photocatalytic degradation of Amaranth and Brilliant Blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles. Catalysis Science & Technology [J],2011.1(7):1216-1223.
    [126]. Suzuki Kenichirou and Anil Kumar Sinha, Monodisperse, bimodal mesoporous ceria catalysts and adsorbents for air purification. Journal of Materials Chemistry[J],2007. 17(24):2547-2551.
    [127]. Borker Pritam and A. V. Salker, Solar assisted photocatalytic degradation of Naphthol Blue Black dye using Ce,.xMnxO2. Materials Chemistry and Physics[J],2007.103(2-3):366-370.
    [128]. Karunakaran Chockalingam and Paramasivan Gomathisankar, Solvothermal Synthesis of CeO2-TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide. ACS Sustainable Chemistry & Engineering[J],2013.1(12):1555-1563.
    [129]. Khan Sher Bahadar, M. Faisal, Mohammed M. Rahman, et al., Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Science of The Total Environment[J],2011.409(15):2987-2992.
    [130]. Jorge A. Belen, Yoshiaki Sakatani, Cedric Boissiere, et al., Nanocrystalline N-doped ceria porous thin films as efficient visible-active photocatalysts. Journal of Materials Chemistry[J], 2012.22(7):3220-3226.
    [131]. Sun Chunwen, Hong Li, and Liquan Chen, Nanostructured ceria-based materials:synthesis, properties, and applications. Energy & Environmental Science[J],2012.5(9):8475-8505.
    [132]. Deshpande Sameer, Swanand Patil, Satyanarayana VNT Kuchibhatla, et al., Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Vol.87. 2005:AIP.133113.
    [133]. Shyu J. Z., W. H. Weber, and H. S. Gandhi, Surface characterization of alumina-supported ceria. The Journal of Physical Chemistry[J],1988.92(17):4964-4970.
    [134]. Han Xiaoyan, Feng Zhang, Qingfei Meng, et al., Preparation and Characterization of Highly Activated MnO2 Nanostructure. Journal of the American Ceramic Society[J],2010. 93(4):1183-1186.
    [135]. Zhang Feng, Peng Wang, J. Koberstein, et al., Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Science[J],2004.563(1-3):74-82.
    [136]. Pal Provas, Sandip Kumar Pahari, Apurba Sinhamahapatra, et al., CeO2 nanowires with high aspect ratio and excellent catalytic activity for selective oxidation of styrene by molecular oxygen. RSC Advances[J],2013.3(27):10837-10847.
    [137]. Xiao Haiyan, Zhihui Ai, and Lizhi Zhang, Nonaqueous Sol-Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment. The Journal of Physical Chemistry C[J],2009.113(38):16625-16630.
    [138]. Dupin Jean-Charles, Danielle Gonbeau, Philippe Vinatier, et al., Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics[J],2000. 2(6):1319-1324.
    [139]. Mullins D. R., S. H. Overbury, and D. R. Huntley, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surface Science[J],1998.409(2):307-319.
    [140]. Jiang Xudong, Yongqian Wang, and Chunxu Pan, High Concentration Substitutional N-Doped TiO2 Film:Preparation, Characterization, and Photocatalytic Property. Journal of the American Ceramic Society[J],2011.94(11):4078-4083.
    [141]. Yang Guidong, Zheng Jiang, Huahong Shi, et al., Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry[J],2010.20(25):5301-5309.
    [142]. Ho Chunman, Jimmy C. Yu, Tszyan Kwong, et al., Morphology-Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures. Chemistry of Materials[J],2005. 17(17):4514-4522.
    [143]. Karthick S. N., K. Prabakar, A. Subramania, et al., Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties. Powder Technology[J],2011. 205(1-3):36-41.
    [144]. Ren Wenjie, Zhihui Ai, Falong Jia, et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental[J],2007.69(3-4):138-144.
    [145]. Lu Xi-Hong, Shi-Lei Xie, Teng Zhai, et al., Monodisperse CeO2/CdS heterostructured spheres:one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Advances[J], 2011.1(7):1207-1210.
    [146]. Rumruangwong M. and S. Wongkasemjit, Anionic surfactant-aided preparation of high surface area and high thermal stability ceria/zirconia-mixed oxide from cerium and zirconium glycolates via sol-gel process and its reduction property. Applied Organometallic Chemistry[J],2008.22(3):167-170.
    [147]. Casaletto M. P., A. Longo, A. Martorana, et al., XPS study of supported gold catalysts:the role of AuO and Au+δ species as active sites. Surface and Interface Analysis[J],2006. 38(4):215-218.
    [148]. Cardenas-Lizana Fernando, Santiago Gomez-Quero, Noemie Perret, et al., Gold catalysis at the gas-solid interface:role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catalysis Science & Technology[J],2011.1(4):652-661.
    [149]. Watanabe Shingo, Xiaoliang Ma, and Chunshan Song, Characterization of Structural and Surface Properties of Nanocrystalline TiO2-CeO2 Mixed Oxides by XRD, XPS, TPR, and TPD. The Journal of Physical Chemistry C[J],2009.113(32):14249-14257.
    [150]. Rao G, Influence of metal particles on the reduction properties of ceria-based materials studied by TPR. Bulletin of Materials Science[J],1999.22(2):89-94.
    [151]. Wu Guangjun, Naijia Guan, and Landong Li, Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition. Catalysis Science & Technology[J], 2011.1(4):601-608.
    [152]. Skorodumova N. V., R. Ahuja, S. I. Simak, et al., Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Physical Review B[J],2001.64(11):115108.
    [153]. Chen Bohao, Yunsheng Ma, Liangbing Ding, et al., Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface:The Role of Oxygen Vacancy. The Journal of Physical Chemistry C[J],2013.117(11):5800-5810.
    [154]. Stetsovych Vitalii, Federico Pagliuca, Filip Dvorak, et al., Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction. The Journal of Physical Chemistry Letters[J],2013. 4(6):866-871.
    [155]. Bruix Albert, Jose A. Rodriguez, Pedro J. Ramirez, et al., A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx TiO2(110) Catalysts. Journal of the American Chemical Society[J], 2012.134(21):8968-8974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700