用户名: 密码: 验证码:
多孔锆钛酸铅压电陶瓷的制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆钛酸铅(PZT)压电陶瓷具有优良的介电、压电性能和可靠性,是高灵敏度水声传感器和医用超声换能器的首选材料。研究发现,烧结致密的PZT压电陶瓷静水压品质因数HFOM较低、声阻抗较大,用于水声传感器领域时和医用超声换能器领域时,会降低器件的灵敏度和医用超声换能器成像的分辨率。多孔PZT压电陶瓷通过在压电陶瓷相中引入具有低密度、低介电性和无压电性的空气相,可以显著提高材料的HFOM值,降低声阻抗,增加了材料的灵敏度和材料与媒介的声学匹配。论文主要结论如下:
     通过直接发泡法与凝胶注模工艺相结合,制备具有高孔隙率、高静水压品质因数和低声阻抗的3-0与3-3型的泡沫PZT压电陶瓷。通过优化工艺参数,使该工艺适用于制备泡沫PZT压电陶瓷。经过研究,加入0.5wt%(相对于粉体重量)阿拉伯树胶分散剂的浆料流变性能较好;采用机械搅拌的方式使陶瓷浆料发泡,通过短链的两亲分子戊酸修饰PZT陶瓷颗粒,可以使浆料具有更高的发泡率;催化剂(MBAM)和引发剂(APS)水溶液最佳含量分别为0.5vol%和1.0vol%(相对于溶剂)。
     系统研究了浆料的固相体积分数、浆料pH值、戊酸浓度和烧结温度对直接发泡法制备泡沫PZT压电陶瓷性能的影响规律。通过调控陶瓷浆料的发泡率和多孔PZT压电陶瓷的孔隙率,泡沫PZT压电陶瓷的孔隙率在27.8%至76.3%之间,其变化范围远高于传统的造孔剂燃烧工艺。并且,随着孔隙率的增大,泡沫PZT压电陶瓷的开孔气孔率相应增高,由3-0型向3-3型压电陶瓷转变。多孔PZT压电陶瓷的HFOM最大值可至19520×10-15Pa-1,声阻抗最小值为1.35Mrayls,具有非常高的灵敏度和低的声阻抗,适用于高灵敏度水声传感器和医用超声换能器。
     利用海藻酸钠离子凝胶反应工艺制备具有定向通孔结构的3-1型蜂窝压电陶瓷。系统深入研究了Ca2+作为固化剂,在1mol/L葡萄糖酸内酯溶液和1mol/L HCl溶液中依次各浸泡24h的方式置换阳离子,得到湿坯后通过溶剂置换与空气中室温干燥相结合,成功避免了坯体开裂,制备了孔径分布均匀,具有定向通孔结构的蜂窝陶瓷坯体。
     研究了浆料的固含量、阳离子溶液浓度、海藻酸钠溶液浓度和烧结温度对海藻酸钠离子凝胶反应工艺制备3-1型PZT压电陶瓷性能的影响规律。通过调节工艺参数,3-1型PZT陶瓷的孔隙率在16.4%-64.8%之间,孔径在100-300μm之间,HFOM值在448-7554×10-15Pa-1之间,具备较高的灵敏度。并且,鉴于3-1型PZT陶瓷蜂窝状的孔结构,以及在制备工艺中引入了CaO掺杂物,其机械性能得到了大幅度提升。
     利用3-1型PZT陶瓷压电相和非压电相周期性排列的特征,建立3-1型PZT陶瓷电学计算模型,研究了孔径尺寸/壁厚对多孔PZT陶瓷电学性能的影响规律。研究发现:3-1型PZT陶瓷的相对介电常数εr、纵向压电应变常数d33和横向压电应变常数d31都随着孔径尺寸/孔壁厚度比的增大而减小;3-1型PZT陶瓷的静水压压电电压常数gh随着孔径尺寸/孔壁厚度比的增大而增大;3-1型PZT陶瓷的静水压品质因数HFOM则随着孔径尺寸/孔壁厚度比值的增大而呈现先增大后减小的趋势。因此,可以在较低孔隙率下通过控制孔径尺寸/孔壁厚比值使多孔压电陶瓷达到较高的灵敏度,并且使材料具备较高的相对介电常数,增强了器件的稳定性。
Lead zirconate titanate (PZT), by virtue of its excellent dielectric property, piezoelectricproperty and coupled electromechanical characteristics, is considered to be the key materialfor ultrasonic transducers. However, for their high sound velocity and low hydrostatic figureof merit (HFOM), dense PZT ceramics are not appropriate for these applications. Byintroducing into dense PZT, a second phase, air, in the form of pores, porous PZT ceramicssucceed in lowering density and relative permittivity, and bringing about improved HFOMand coupling with biological tissue or water.
     By combining the particle-stabilized foams and the gelcasting technique,3-0and3-3type of porous PZT ceramics with high porosity, improved HFOM, low acoustic impedancewere prepared. Process parameters in the preparation were throughly investigated andoptimized, the gel-casting process of particle-stabilized wet foams has been improved tobecome a mature preparation technique in preparing porous PZT ceramics. The resultsshowed that the slurry with0.5wt%Arabic gum as the dispersant had the best stability.Through the rapid electric stirring of short-chain amphiphilic molecules (valericacid)-modified ceramic powders slurry, particle-stabilized foams with high foaming capacitywere prepared. The catalyst (MBAM) and initiator (APS) aqueous solution of the best contentwas0.5vol%and1.0vol wt%(to solvent), respectively.
     The effect of solid loading of slurry, pH value, concentration of valeric acid and sinteringtemperature on properties of porous PZT ceramics was analyzed. By adjusting experimentparameters, the foaming capacity and porosity could be controlled. The porosity of the porousPZT ceramics changed between27.8%and76.3%, much broader than that of burnableplastic spheres (BURPS) processes. With the increase in the porosity, the open porosity ofporous PZT ceramics increased too, which implies the changing trend from3-0type to3-3type PZT ceramics. Finally, the prepared sample possessed a maximal HFOM value of19520×10-15Pa-1, and a minimum acoustic impedance of1.35Mrayls, which shows highHFOM and coupling with biological tissue or water, making them promising candidates for application of medical ultrasonic imaging or underwater sonar detectors.
     The3-1type porous PZT ceramics with unidirectional aligned pores were prepared bythe ionic gel process of sodium alginate. By investigating and optimizing process parameters,the ionic gel process of sodium alginate were improved to become a mature preparationtechnique in preparing3-1type porous PZT ceramics. The results showed that the alginatechains could be cross-linked by the calcium ions, the unidirectional diffusion of the calciumions through the sol formed capillaries which are oriented parallel to the diffusion direction.Wet gels were immersed into gluconolactone and HCl solutions for24h respectively toexchanged calcium ions. The drying process could be operated by combining solventexchanging and room temperature drying to make sure the integrity of green bodies.
     The effect of solid loading of slurry, concentration of calcium solution, concentration ofalginate sodium and sintering temperature on3-1type PZT ceramics was investigated. Byadjusting experiment parameters, the porosity of the3-1type PZT ceramics changed between16.4%and64.8%with pore size increasing from100μm to300μm. Finally, the preparedsample possessed a high sensitivity with HFOM value between448×10-15Pa-1and7554×10-15Pa-1. Furthermore, by virtue of the unidirectional pore structures and introducing in smallamounts of CaO, the3-1type PZT ceramics processed high compressive strength.
     By utilizing the periodic repeated array of3-1type PZT ceramics, the calculation modelof electric properties were built, and the effect of pore size/wall thickness on the propertieswere also researched. The results showed that the value of εr, d33and d31decreased with theincrease of pore size/wall thickness; the hydrostatic voltage coefficient (gh) values increasedwith the increase of pore size/wall thickness; the value of HFOM increased first and thendecreased with the increase of pore size/wall thickness. Therefore, it is possible to fabricatehigh sensitive porous PZT ceramics with a low level of porosity by controlling the value ofpore size/wall thickness, which insuring the stability of devices.
引文
[1] Rybyanets AN. Porous Piezoelectric Ceramics—A Historical Overview. Ferroelectrics.2011,419(1):90-96.
    [2]曾涛,董显林,毛朝梁,梁瑞虹,杨洪.孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究.物理学报.2006,55(6):3073-3079.
    [3]解妙霞.用于医学超声的1-3型压电复合材料性能的有限元研究[硕士]:陕西师范大学,2006.
    [4] Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS. Piezoelectric properties of ferroelectricPZT-polymer composites. Journal of Physics D: Applied Physics.2001,34(4):487-492.
    [5] Zhang HL, Li J-F, Zhang B-P. Microstructure and electrical properties of porous PZT ceramics derivedfrom different pore-forming agents. Acta Materialia.2007,55(1):171-181.
    [6]曲远方.功能陶瓷材料:化学工业出版社材料科学与工程出版中心,2003.
    [7]王春雷,李吉超,赵明磊.压电铁电物理:科学出版社,2009.
    [8]曲远方.功能陶瓷物理性能.北京:化学工业出版杜,2007.
    [9] Kar-Gupta R, Venkatesh TA. Electromechanical response of porous piezoelectric materials. ActaMaterialia.2006,54(15):4063-4078.
    [10] Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: Areview. Journal of the American Ceramic Society.2006,89(6):1771-89.
    [11] Galassi C. Processing of porous ceramics: Piezoelectric materials. Journal of the European CeramicSociety.2006,26(14):2951-2958.
    [12] Skinner DP, Newnham RE, Cross LE. Flexible composite transducers. Materials Research Bulletin.1978,13(6):599-607.
    [13] Schwartzwalder K, Somers AV. Method of making porous ceramic articles. US Patent3090094,1963.
    [14] Colombo P. Conventional and novel processing methods for cellular ceramics. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.2006,364(1838):109-124.
    [15] Kara H, Ramesh R, Stevens R, Bowen CR. Porous PZT ceramics for receiving transducers. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control.2003,50(3):289-296.
    [16]孙莹,谭寿洪,江东亮.多孔碳化硅材料的制备及其催化性能.无机材料学报.2003,18(4):830-836.
    [17] Piazza D, Galassi C, Barzegar A, Damjanovic D. Dielectric and piezoelectric properties of PZTceramics with anisotropic porosity. Journal of Electroceramics.2010,24(3):170-176.
    [18] Piazza D, Capiani C, Galassi C. Piezoceramic material with anisotropic graded porosity. Journal of theEuropean Ceramic Society.2005,25(12):3075-3078.
    [19] Zeng T, Dong X, Mao C, Zhou Z, Yang H. Effects of pore shape and porosity on the properties ofporous PZT95/5ceramics. Journal of the European Ceramic Society.2007,27(4):2025-2029.
    [20] Zeng T, Dong X, Mao C, Chen S, Chen H. Preparation and properties of porous PMN-PZT ceramicsdoped with strontium. Materials Science and Engineering B-Solid State Materials for AdvancedTechnology.2006,135(1):50-54.
    [21] Zeng T, Dong X, Chen S, Yang H. Processing and piezoelectric properties of porous PZT ceramics.Ceramics International.2007,33(3):395-399.
    [22] Zeng T, Dong XL, Chen H, Wang YL. The effects of sintering behavior on piezoelectric properties ofporous PZT ceramics for hydrophone application. Materials Science and Engineering B-Solid StateMaterials for Advanced Technology.2006,131(1-3):181-185.
    [23] Kumar BP, Kumar HH, Kharat DK. Study on pore-forming agents in processing of porouspiezoceramics. Journal of Materials Science-Materials in Electronics.2005,16(10):681-686.
    [24] Roncari E, Galassi C, Craciun F, Capiani C, Piancastelli A. A microstructural study of porouspiezoelectric ceramics obtained by different methods. Journal of the European Ceramic Society.2001,21(3):409-417.
    [25]林煌,杨金龙,唐来明,席小庆,梁睿,黄勇.直接发泡法制备泡沫陶瓷过滤器.稀有金属材料与工程.2007,36(1):376-378.
    [26]沈钟,王果庭.胶体与界面化学.北京:化学工业出版社,2004.
    [27] Colombo P, Modesti M. Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer. Journal ofthe American Ceramic Society.1999,82(3):573-578.
    [28] Bao X, Nangrejo MR, Edirisinghe MJ. Synthesis of silicon carbide foams from polymeric precursorsand their blends. Journal of Materials Science.1999,34(11):2495-2505.
    [29] Peng HX, Fan Z, Evans JRG, Busfield JJC. Microstructure of ceramic foams. Journal of the EuropeanCeramic Society.2000,20(7):807-813.
    [30] Powell SJ, Evans JRG. The Structure of Ceramic Foams Prepared from Polyurethane-CeramicSuspensions. Materials and Manufacturing Processes.1995,10(4):757-771.
    [31] Williams EJAE, Evans JRG. Expanded ceramic foam. Journal of Materials Science.1996,31(3):559-563.
    [32] Fujiu T, Messing GL, Huebner W. Processing and Properties of Cellular Silica Synthesized byFoaming Sol-Gels. Journal of the American Ceramic Society.1990,73(1):85-90.
    [33] Santos EP, Santilli CV, Pulcinelli SH. Effect of Aging on the Stability of Ceramic Foams Prepared byThermostimulated Sol-Gel Process. Journal of Sol-Gel Science and Technology.2003,26(1-3):165-169.
    [34] Grader GS, Shter GE, Hazan Yd. Novel Ceramic Foams from Crystals of AlCl3(Pri2O) complex.Journal of Materials Research.1999,14(04):1485-1494.
    [35]刘海燕.蛋白质发泡法制备氧化锆多孔陶瓷[硕士].天津大学,2007.
    [36]宋贤良,陈玲,叶建东.酯化淀粉原位凝固成型Al2O3陶瓷的研究.硅酸盐通报.2006(01):90-93.
    [37]张卉芳.淀粉固结成型工艺制备多孔陶瓷[硕士]:华中科技大学,2007.
    [38]宋贤良.利用淀粉原位凝固胶态成型高性能陶瓷的研究[博士]:华南理工大学,2003.
    [39] Galassi C, Roncari E, Capiani C, Fabbri G, Piancastelli A, Peselli M, et al. Processing of porous PZTmaterials for underwater acoustics. Ferroelectrics.2002,268(1):47-52.
    [40]朱新文,江东亮,谭寿洪.多孔陶瓷的制备、性能及应用:(I)多孔陶瓷的制造工艺.陶瓷学报.2003,24(1):40-45.
    [41] Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structureby freeze-dry processing. Journal of the American Ceramic Society.2001,84(1):230-232.
    [42] Yoon BH, Koh YH, Park CS, Kim HE. Generation of large pore channels for bone tissue engineeringusing camphene-based freeze casting. Journal of the American Ceramic Society.2007,90(6):1744-1752.
    [43] Araki K, Halloran JW. Room-temperature freeze casting for ceramics with nonaqueous sublimablevehicles in the naphthalene-camphor eutectic system. Journal of the American Ceramic Society.2004,87(11):2014-2019.
    [44] Lee SH, Jun SH, Kim HE, Koh YH. Fabrication of porous PZT-PZN piezoelectric ceramics with highhydrostatic figure of merits using camphene-based freeze casting. Journal of the American CeramicSociety.2007,90(9):2807-2813.
    [45] Lee SH, Jun SH, Kim HE, Koh YH. Piezoelectric properites of PZT-based ceramic with highly alignedpores. Journal of the American Ceramic Society.2008,91(6):1912-1915.
    [46]闫绍盟.通过流延成型法制备平板式ZrO2汽车氧传感器[硕士]:武汉科技大学,2007.
    [47] Janney MA, Omatete OO. Method for molding ceramic powders using a water-based gel casting. USPatent5028362,1991.
    [48] Young AC, Omatete OO, Janney MA, Menchhofer PA. Gelcasting of Alumina. Journal of theAmerican Ceramic Society.1991,74(3):612-618.
    [49]吴甲民,吕文中,梁军,汪小红.水基凝胶注模成型工艺制备0.9Al2O3-0.1TiO2陶瓷的微波介电性能(英文).无机材料学报.2011,26(1):102-106.
    [50]杨金龙. α—Al2O3悬浮体的流变性及凝胶注模成型工艺的研究.硅酸盐学报.1998,26(1):41-46.
    [51]王亚利,郝俊杰,郭志猛.凝胶注模成型生坯强度影响因素的研究.材料科学与工程学报.2007,25(2):262-264.
    [52]马利国,杨金龙,张立明,黄勇.煅烧预处理改善氮化硅的凝胶注模成型工艺.硅酸盐通报.2004,23(1):13-16.
    [53]张雯,王红洁,张勇,金志浩.凝胶注模工艺制备高强度多孔氮化硅陶瓷.无机材料学报.2004,19(4):743-748.
    [54]易中周,谢志鹏.重结晶碳化硅凝胶注模成型及其性能研究.硅酸盐通报.2002,21(4):3-7.
    [55]仝建峰,陈大明.部分稳定氧化锆陶瓷的凝胶注模成型工艺.硅酸盐学报.2008,36(11):1620-1624.
    [56]李玉山. SiAlON-SiC复相材料的制备及性能研究[硕士]:河北理工大学,2005.
    [57]王小锋,王日初,彭超群,李婷婷,罗玉林,王超,等.凝胶注模成型技术的研究与进展.中国有色金属学报.2010,20(03):496-509.
    [58]庞学满.氮化硅基陶瓷复合材料凝胶注模成型工艺研究[博士]:天津大学,2008.
    [59]邓捷.凝胶注模氮化硅基复合陶瓷的制备工艺与性能研究[硕士]:哈尔滨工业大学,2009.
    [60] Chen R, Wang C-A, Huang Y, Ma L, Lin W. Ceramics with special porous structures fabricated byfreeze-gelcasting: using tert-butyl alcohol as a template. Journal of the American Ceramic Society.2007,90(11):3478-3484.
    [61] Yang AK, Wang CA, Guo R, Huang Y. Microstructure and Electrical Properties of porous PZTceramics fabricated by different methods. Journal of the American Ceramic Society.2010,93(7):1984-1990.
    [62]杨安坤.高性能多孔锆钛酸铅陶瓷的制备及性能表征[硕士]:清华大学,2011.
    [63] Yang AK, Wang CA, Guo R, Huang Y, Nan C-W. Porous PZT ceramics with high hydrostatic figure ofmerit and low acoustic impedance by TBA-based gel-casting process. Journal of the AmericanCeramic Society.2010,93(5):1427-1431.
    [64]郭瑞,汪长安,杨安坤.3-3型与1-3型多孔锆钛酸铅陶瓷的结构和性能.硅酸盐学报.2011,39(11):1780-1086.
    [65]刘永启,牟宝杰,郑斌,刘瑞祥,高振强.莫来石蜂窝陶瓷的阻力特性.陶瓷学报.2012,33(2):162-166.
    [66]张文彦.微孔氧化铝蜂窝陶瓷结构的制备研究[硕士]:南京航空航天大学,2006.
    [67]黄肖容,黄仲涛.优化陶瓷膜孔结构的新型浆料分散剂.新技术新工艺.1999(03):42-43.
    [68]施云波,吕芳,冯侨华,王立权.多孔型阳极氧化铝膜的制备及微观分析.长春理工大学学报(自然科学版).2010,33(1):85-88.
    [69]王锡彬,熊杰,郭培,朱聪,等.溶胶–凝胶法制备Pb(Zrx,Ti1–x)O3薄膜研究进展.电子元件与材料.2012,31(07):70-75.
    [70] Guo R, Wang CA, Yang AK. Piezoelectric Properties of the1–3type porous lead zirconate titanateceramics. Journal of the American Ceramic Society.2011,94(6):1794-1799.
    [71] Guo R, Wang CA, Yang AK. Effects of pore size and orientation on dielectric and piezoelectricproperties of1-3type porous PZT ceramics. Journal of the European Ceramic Society.2011,31(4):605-609.
    [72] Guo R, Wang CA, Yang AK, Fu JT. Enhanced piezoelectric property of porous lead zirconate titanateceramics with one dimensional ordered pore structure. Journal of Applied Physics.2010,108(12):124112.
    [73] Wakino K, Okada T, Yoshida N, Tomono K. A new equation for predicting the dielectric constant of amixture. Journal of the American Ceramic Society.1993,76(10):2588-2594.
    [74] Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.I. Dielektrizit tskonstanten und Leitf higkeiten der Mischk rper aus isotropen Substanzen. Annalender Physik.1935,416(7):636-664.
    [75] Okazaki K. Recent developments in piezoelectric ceramics in japan. Ferroelectrics.1981,35(1):173-178.
    [76] Banno H. Effects of shape and volume fraction of closed pores on dielectric, elastic, andelectromechanical properties of dielectric and piezoelectric ceramics—A theoretical approach. AmCeram Soc Bull.1987,66(9):1332-1337.
    [77] Bowen CR, Perry A, Kara H, Mahon SW. Analytical modelling of3-3piezoelectric composites.Journal of the European Ceramic Society.2001,21(10-11):1463-1467.
    [78] Bowen CR, Perry A, Lewis ACF, Kara H. Processing and properties of porous piezoelectric materialswith high hydrostatic figures of merit. Journal of the European Ceramic Society.2004,24(2):541-545.
    [79] Bowen CR, Kara H. Pore anisotropy in3–3piezoelectric composites. Materials Chemistry andPhysics.2002,75(1-3):45-49.
    [80]肖文文.多孔PZT的制备与性能表征[硕士]:武汉理工大学,2008.
    [81] Okazaki K, Nagata K. Effects of grain size and porosity on electrical and optical properties of PLZTceramics. Journal of the American Ceramic Society.1973,56(2):82-86.
    [82]李远.压电与铁电材料的测量:科学出版社,1984.
    [83] Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ. Ultrastable particle-stabilized foams.Angewandte Chemie-International Edition.2006,45(21):3526-3530.
    [84]周祖康,顾惕人,马季铭.胶体化学.北京:北京大学出版社,1991.
    [85] Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ. Macroporous ceramics from particle-stabilizedwet foams. Journal of the American Ceramic Society.2007,90(1):16-22.
    [86] Yu JL, Yang JL, Li HX, Xi XQ, Huang Y. Study on particle-stabilized Si3N4ceramic foams. MaterialsLetters.2011,65(12):1801-1804.
    [87]杨栋华,邵慧萍,郭志猛,林涛,樊联鹏.凝胶注模工艺制备医用多孔Ti-Co合金的性能.稀有金属材料与工程.2011,40(10):1822-1826.
    [88]金晓.氧化铝陶瓷凝胶注模成型工艺中固化应力的测试与表征[硕士]:中北大学,2011.
    [89]李飞舟.两种分散剂交互作用Al2O3悬浮液稳定性的研究.新技术新工艺.2009,(09):83-7.
    [90]张晓峰,李海林,吴东棣.稳定的α-Al2O3注浆料的制备.硅酸盐通报.1996(04):33-6.
    [91] Thiele H. Geordnete Kristallisation. Nucleation und Mineralisation. Journal of Biomedical MaterialsResearch.1967,1(2):213-238.
    [92] Batich CD, Willenberg BJ, Hamazaki T, Terada N. Novel tissue engineered scaffolds derived fromcopper capillary alginate gels. US Patent2004196423.2005.
    [93] Willenberg BJ, Hamazaki T, Meng FW, Terada N, Batich C. Self-assembled copper-capillary alginategel scaffolds with oligochitosan support embryonic stem cell growth. Journal of Biomedical MaterialsResearch Part A.2006,79A(2):440-450.
    [94] Dittrich R, Tomandl G, Despang F, Bernhardt A, Hanke T, Pompe W, et al. Scaffolds for hard tissueengineering by ionotropic gelation of alginate-influence of selected preparation parameters. Journal ofthe American Ceramic Society.2007,90(6):1703-1708.
    [95] Eljaouhari AA, Muller R, Kellermeier M, Heckmann K, Kunz W. New anisotropic ceramicmembranes from chemically fixed dissipative structures. Langmuir.2006,22(26):11353-11359.
    [96] Xue WJ, Sun Y, Huang Y, Xie Z, Sun J. Preparation and Properties of Porous Alumina with HighlyOrdered and Unidirectional Oriented Pores by a Self-Organization Process. Journal of the AmericanCeramic Society.2011,94(7):1978-1981.
    [97] Xue WJ, Huang Y, Xie ZP, Liu W. Al2O3ceramics with well-oriented and hexagonally ordered pores:The formation of microstructures and the control of properties. Journal of the European CeramicSociety.2012,32(12):3151-3159.
    [98]薛伟江.环保型直通孔结构多孔陶瓷的制备与性能[硕士]:天津大学,2009.
    [99] Tajima K, Hwang HJ, Sando M, Niihara K. PZT nanocomposites reinforced by small amount ofoxides. Journal of the European Ceramic Society.1999,19(6–7):1179-1182.
    [100] Zheng K, Lu J, Chu J. A novel wet etching process of Pb(Zr,Ti)O3thin films for applications inmicroelectromechanical system. Japanese Journal of Applied Physics.2004,43(6S):3934.
    [101] Tawfik A, Eatah AI, Abd El-Salam F. Dielectric and electromechanical properties of calcium-dopedlead zirconate titanate. Materials Science and Engineering.1983,60(2):145-149.
    [102]刘强,杨秋红,赵广根,陆神州,张浩佳.二氧化钛含量对铈稳定立方氧化锆陶瓷的性能影响.无机化学学报.2013,29(04):798-802.
    [103]袁万宗.铁电陶瓷剩余极化强度与纵向压电应变常数之间的线性关系.爆轰波与冲击波.1995(3):21-24.
    [104] Promsawat M, Watcharapasorn A, Sreesattabud T, Jiansirisomboon S. Effect of ZnOnano-particulates on structure and properties of PZT/ZnO ceramics. Ferroelectrics.2009,382(1):166-172.
    [105] Jiansirisomboon S, Promsawat M, Namsar O, Watcharapasorn A. Fabrication–structure–propertiesrelations of nano-sized NiO incorporated PZT ceramics. Materials Chemistry and Physics.2009,117(1):80-85.
    [106] Kara H, Perry A, Stevens R, Bowen CR. Interpenetrating PZT/polymer composites for hydrophones:Models and experiments. Ferroelectrics.2002,265(1):317-332.
    [107] Topolov VY, Glushanin SV, Bowen CR. Piezoelectric response of porous ceramic and compositematerials based on Pb(Zr,Ti)O3experiment and modelling. Advances in Applied Ceramics.2005,104(6):300-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700