用户名: 密码: 验证码:
铜基纳米材料的制备及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前资源短缺问题日渐突出,资源消耗已逼近环境承载极限。如何减少有限资源的浪费,提高其利用率,已成为人们关注的热点。目前广泛使用的催化剂以性能优良的金、铂、钯、银等贵金属为主,但它们储量有限价格高昂,且由于其催化活性组分在纳米颗粒的表面,核中大部分的贵金属会被浪费掉。引入Fe、Ni、Cu等便宜的金属到核部分是一种有效节约贵金属催化剂生产成本的方法。运用纳米制备技术,以铜替代贵金属,制备出结构新颖、性能优越的复合材料,在增强催化活性的同时,有效降低催化剂的成本,提高贵金属资源的利用率,具有重要的理论意义和应用价值。铜纳米材料的控制合成已取得了很大的进展,但是,探索铜纳米材料生成过程中的影响因素,设计简便易行的合成路线,制备出形貌新颖的纳米材料并拓展其应用仍然具有重要的意义。
     本论文旨在通过合理的技术路线,合成形貌结构新颖的铜纳米粒子和铜基复合纳米材料,并研究其在催化方面的性能。采用XRD、SEM-EDS、TEM、DRS、 UV-vis、ICP、EA等测试手段对合成的催化剂的结构、形貌、光电性能及催化性能进行研究。本文的具体研究内容如下:
     1.采用溶剂热的方法,控制反应的条件,使用CuI和VCNa分别制得了梭形、绒球形和花形的铜微纳米粒子。研究了微纳米铜的生长过程,并简单探讨了微纳米铜的生长机理。用以上制备的铜微纳米材料对苯乙炔和苄基叠氮进行链接反应时的催化作用进行了相应研究。比较了各种形貌微纳米铜的催化活性,其中微米花状的铜催化性能最好。
     2.应用反相微乳液的方法制备了大小可控的纳米铜粒子。考查了还原剂硼氢化钠的使用量对制备铜纳米粒子的影响。研究了各种铜盐作为前驱体制备纳米铜的情况,结果表明氯化铜和醋酸铜能制备得到纯纳米铜,而硝酸铜则不能制备得到纯纳米铜。通过控制反相微乳液体系中水相和乳化剂的比例,成功制备出了形貌均一,粒径大小可控的铜纳米粒子。
     3.通过反相微乳液的方法,制备出结构新颖的Cu@Ag和Cu@Ag/RGO(还原石墨烯)核壳结构的纳米复合材料。采用XRD、TEM、EDS、ICP、EA等测试手段对制备得到的纳米材料的微观结构及其组成进行了相应的表征。对于Cu@Ag纳米粒子,由各表征得到的结果综合分析,其确为铜核银壳的核壳结构纳米粒子。对于Cu@Ag/RGO纳米粒子,分析表明,Cu@Ag核壳纳米粒子能较密集的均匀分布于RGO表层之上,且其结构与单一未经负载的核壳纳米粒子无差异。对所得到的纳米材料进行加氢催化研究,结果表明,所制备出的Cu@Ag和Cu@Ag/RGO纳米核壳材料的催化性能均十分优良,并且Cu@Ag/RGO优于Cu@Ag。
     4.通过反相微乳液的方法,制备出结构新颖的以铜为核贵金属金、铂、钯等材料为壳的核壳结构纳米材料。采用XRD、TEM、EDS、ICP等测试手段对制备得到的纳米材料的微观结构及其组成进行了相应的表征。对于各纳米粒子,由各表征得到的结果综合分析,可以得出结论,所制备得到的纳米材料确为以铜为核而外壳分别是由金、铂、钯所构成的核壳结构纳米粒子。并且通过控制贵金属盐加入量的方法,制备出组成可控的核壳材料。对所得到的核壳材料进行加氢催化研究,结果表明,所制备出的各核壳纳米材料其催化性能均远好于单纯的铜和贵金属材料。
     5.通过反相微乳液的方法,制备出结构新颖的RGO负载铜为核贵金属金、铂、钯等材料为壳的核壳结构的复合纳米材料。采用XRD、TEM、EDS、ICP、EA等测试手段对制备所得到的复合纳米材料的微观结构及其组成进行了相应的表征。对于各复合纳米粒子,由各表征得到的结果综合分析,可以得出结论,已经成功制备得到RGO负载Cu@(Au、Pt、Pd)纳米粒子的复合纳米材料。各种复合纳米粒子能较密集的均匀分布于RGO表层之上,并且其结构与单一未经负载的核壳纳米粒子无差异。对所得到的纳米材料进行加氢催化研究,结果表明,所制备出的RGO负载Cu@(Au、Pt、Pd)纳米核壳材料,其催化性能较相应的未经负载RGO的核壳纳米粒子有了明显的改善,也均远好于相应的单纯的RGO负载铜、金、铂、钯的材料。
Currently, the issue of resource shortage has been increasingly prominent and the resource consumption has been approximating the limit of environmental carrying capacity. How to reduce the waste of the limited resources and elevate their utilization rate has been a focus of people's attention. The catalysts widely used currently are dominated by such precious metals with excellent properties as gold, platinum, palladium, silver etc. but they have limited reserves and high prices. In addition, most of the precious metals in the nucleus will be wasted due to the fact that their catalytic activity components are on the surface of the nanoparticles. Introduction of such cheap metals as Fe, Ni, Cu etc. is an effective method to save the production cost of precious metal catalysts. The resource utilization rate can be elevated and the consumption of precious metals can be reduced by using the nano preparation technique and substituting the copper for precious metals. Thus, preparation of composite materials with a novel structure and excellent properties is significant theoretically and practically. Much progress has been made in the controlled synthesis of copper nanomaterials but it is still significant to explore the influencing factors during generation of cooper nanomaterials, design a simple and feasible synthetic route, prepare nanomaterials with a novel morphology, and expand their applications.
     The paper aims to synthesize copper crystals and copper-based composite nanomaterials with a novel morphological structure by appropriate means and study their properties in catalysis. A study was conducted for the structure, morphology, photoelectric properties, and catalytic properties of the synthesized catalyst tested by such test methods as XRD, SEM-EDS, TEM, DRS, UV-vis, ICP, EA. The results are as follows:
     1. A micro-nano copper crystals with a novel morphological structure was prepared by using Cul and VCNa under controlled reaction conditions with the solvothermal method. There has been no relevant report on shuttle-shaped, pompons-shaped, and flower-shaped products. Research was conducted for the growth process of the micro-nano copper and simple discussion was made for the growth mechanism of the micro-nano copper. An appropriate study was conducted for the catalysis during the ligation reaction between phenylacetylene and azidomethyl using the copper micro-nano material prepared above. Comparisons of catalytic activity were made among various micro-nano copper and the copper micron flower had the best catalytic performance.
     2. Nano-copper particles with a controllable size were prepared by the method of reversed microemulsion. An investigation was made to examine the effect of the dosage of the reductant of the sodium borohydride on preparation of the copper nano particles. Research on preparation of nano-copper was made with various copper salts as the precursors and the results showed that pure nano-copper could be prepared by using copper chloride and copper acetate while pure ano-copper could not be prepared with copper nitrate. Copper nano particles with a uniform morphology and controllable size were successfully prepared by controlling the proportion of the water phase and emulgator in the reverse microemulsion systems.
     3. Nano-composite materials of Cu@Ag and Cu@Ag/RGO core-shell structure were prepared with the method of reversed microemulsion. Appropriate characterization was performed for the microstructure and composition of the nanomaterial prepared by such testing methods as XRD, TEM, EDS, UV-vis, ICP, EA etc. Based on a comprehensive analysis of the results from various characterizations, the Cu@Ag nano particles were really ones of core-shell structure (copper core and silver shell). The analysis showed that Cu@Ag core-shell nano particles were able to densely distribute on the surface layer of RGO. And, their structure was the same as that of the unloaded core-shell nano particles. A hydrogenation catalysis study was conducted for the nanomaterials obtained. The result indicated that catalytic performance of the Cu@Ag and Cu@Ag/RGO nano core-shell materials prepared was very excellent. And the catalytic performance of Cu@Ag/RGO was better than that of Cu@Ag.
     4. Nanomaterial with a novel structure was prepared by use of reversed microemulsion. It is core-shell structure with copper as the core and noble metals such as gold, platinum, palladium as the shell. Appropriate characterization was performed by XRD, TEM, EDS, UV-vis, ICP for the for the microstructure and composition of the nanomaterials prepared. Based on a comprehensive analysis of the results from characterization of the various nano particles, it could be concluded that the nanomaterials prepared were really nano particles of core-shell structure with copper as the core and gold, platinum, and palladium as the shell. In addition, core-shell materials with controllable components were prepared by controlling the amount of precious metal salt added. A hydrogenation catalysis study was conducted for the core-shell material obtained. The results showed that the catalytic performance of all core-shell nanomaterials prepared was far more higher than that of pure copper and precious metal materials.
     5. Nanomaterial with a novel structure was prepared with the method of reversed-phase microemulsion. It is of core-shell structure with RGO-loading copper as the core and the precious metals of gold, platinum, palladium etc. as the shell. Appropriate characterization was performed for the microstructure and composition of the composite nanomaterial prepared by such testing methods as XRD, TEM, EDS, UV-vis, ICP, EA etc. Based on a comprehensive analysis of the results from characterization of various composite nano particles, it could be concluded that the composite nanomaterial with RGO-loading Cu@(Au, Pt, and Pd) nano particles had been successfully prepared. Various composite nano particles were able to densely distribute on the surface layer of RGO. And, their structure was the same as that of the unloaded core-shell nano particles. A hydrogenation catalysis study was conducted for the nanomaterials obtained. The result showed that the catalytic performance of the RGO-loading Cu@(Au, Pt, and Pd) nanomaterials prepared significantly improved compared with the core-shell nano particles unloaded with RGO. And the catalytic performance was much better than appropriate pure RGO-loading copper, gold, platinum and palladium materials.
引文
[1]Sardar R, Funston A M, Mulvaney P, et al. Gold nanoparticles:past, present, and future[J]. Langmuir,2009,25,13840-13851
    [2]Corma A, Garcia H, Xamena F X L. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev.,2010,110,4606-4655
    [3]Talapin D V, Lee J S, Kovalenko M V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chem. Rev.,2010,110,389-458
    [4]Scott R W J, Wilson O M, Crooks R M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles[J]. J. Phys. Chem. B,2005,109,692-704
    [5]Parker J F, Fields-Zinna C A, Murray R W. The story of a monodisperse gold nanoparticle: Au25Li8[J]. Acc. Chem. Res.,2010,43,1289-1296
    [6]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J. Catal.,1989,115, 301-309
    [7]Sardar R, Beasley C A, Murray R W. Interfacial ion transfers between a monolayer phase of cationic Au nanoparticles and contacting organic solvent[J]. J. Am. Chem. Soc.,2010,132, 2058-2063
    [8]Choi J, Fields-Zinna C A, Stiles R L, et al. Reactivity of [Au25(SCH2CH2Ph)18]1- nanoparticles with metal ions[J]. J. Phys. Chem. C,2010,114,15890-15896
    [9]Wang D S, Xie T, Li Y D. Nanocrystals:solution-based synthesis and applications as nanocatalysts[J]. Nano Res.,2009,2,30-46
    [10]Jaime M, Movshovich R, Stewart G R, et al. Closing the spin gap in the Kondo insulator Ce3Bi4Pt3 at high magnetic fields[J]. Nature,2000,405,160-163
    [11]Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys[J]. Nature Mater.,2005,4,450-454
    [12]Adams B D, Wu G S, Nigrio S, et al. Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage[J]. J. Am. Chem. Soc.,2009,131,6930-6931
    [13]Wei W, Li S Z, Millstone Jill E., et al. Surprisingly long-range surface-enhanced raman scattering (SERS) on Au-Ni multisegmented nanowires[J]. Angew. Chem. Int. Ed.,2009,48, 4210-4212
    [14]Wang D S and Li Y D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process [J]. J. Am. Chem. Soc.,2010,132,6280-6281
    [15]Wang C, Peng S, Lacroix L M, et al. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles[J]. Nano Res.,2009,2, 380-385
    [16]Chaubey G S, Barcena C, Poudyal N, et al. Synthesis and stabilization of FeCo nanoparticles[J]. J. Am. Chem. Soc.,2007,129,7214-7215
    [17]Mazumder V, Chi M F, More K L, et al. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction[J]. J. Am. Chem. Soc.,2010,132, 7848-7849
    [18]Wang L L and Johnson D D. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles[J]. J. Am. Chem. Soc.,2009,131,14023-14029
    [19]Kang Y J and Murray C B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes)[J]. J. Am. Chem. Soc.,2010,132,7568-7569
    [20]Wu J B, Zhang J L, Peng Z M, et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts [J]. J. Am. Chem. Soc.,2010,132,4984-4985
    [21]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437,121-124
    [22]Brian L C, Vladimir L K, Charles J O. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev.,2004,104,3893-3946
    [23]Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science,2000,287,1471-1473
    [24]Zhang J L, Du J M, Han B X, et al. Sonochemical formation of single-crystalline gold nanobelts[J]. Angew. Chem. Int. Ed.,2006,45,1116-1119
    [25]Krusin-Elbaum L, Newns D M, Zeng H, et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping[J]. Nature,2004,431,672-676
    [26]Jiang X, Mayers B, Herricks T, et al. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires[J]. Adv. Mater.,2003,15,1740-1743
    [27]Gong J Y, Yu S H, Qian H S, et al. Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes[J]. Chem. Mater., 2006,18,2012-2015
    [28]Zhao L L, Ji X H, Sun X J, et al. Formation and stability of gold nanoflowers by the seeding approach:the effect of intraparticle rpening[J]. J. Phys. Chem. C,2009,113,16645-16651
    [29]Kuo C H, Chen C H, Huang M H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm[J]. Adv. Funct. Mater.,2007,17, 3773-3780
    [30]Park J, Shen X P, Wang G X, et al. Solvothermal synthesis and gas-sensing performance of CO3O4 hollow nanospheres[J]. Sens. Actuators B,2009,136,494-498
    [31]Chen D G, Zhao F, Qi H, et al. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source citing articles[J]. Chem. Mater., 2010,22,1437-1444
    [32]David M R, Judith O S, Omar A. Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes[J]. Small,2008,4,1301-1306
    [33]Sharma, Chhabra, Cheng A C, et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles[J]. Science,2009,323,112-116
    [34]Zuo F, Yan S, Zhang B, et al. L-cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures[J]. J. Am. Chem. Soc.,2008,112,2831-2835
    [35]Mayers B and Xia Y N. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds[J]. Adv. Mater.,2002,14,279-282
    [36]Xiong Y J, Xie Y, Li Z Q, et al. Aqueous-solution growth of GaP and InP nanowires:a general route to phosphide, oxide, sulfide, and tungstate nanowires[J]. Chem. Eur. J.,2004,10, 654-660
    [37]Chen X Y, Wang Z H, Wang X, et al. Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties[J]. Inorg. Chem.,2005,44,951-954
    [38]Wang X and Li Y D. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires[J]. J. Am. Chem. Soc.,2002,124,2880-2881
    [39]Zeng S Y, Tang K B, Li T W, et al. Hematite hollow spindles and microspheres:selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment[J]. J. Am. Chem. Soc.,2007,111,10217-10225
    [40]Tang Q, Zhou W J, Shen J M, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property[J]. Chem. Commun.,2004,6,712-713
    [41]Liu J F, Li Q H, Wang T H, et al. Metastable vanadium dioxide nanobelts:hydrothermal synthesis, electrical transport, and magnetic properties[J]. Angew. Chem. Int. Ed.,2004,43, 5048-5052
    [42]Mo M, Zeng J, Liu X, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes[J]. Adv. Mater.,2002,14,1658-1662
    [43]Wang Z H, Liu J W, Chen X Y, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires [J]. Chem. Eur. J.,2004,11,160-163
    [44]Liu Z, Li S, Yang Y, et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[J]. Adv. Mater.,2003,15,1946-1948
    [45]Wang J and Li Y. Rational synthesis of metal nanotubes and nanowires from lamellar structures[J]. Adv. Mater.,2003,15,445-447
    [46]Hu B, Wang K, Wu L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Adv. Mater.,2010,22,813-828
    [47]Ma D K, Zhang M, Xi G C, et al. Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike β-Ag2Se nanorods inside carbonaceous nanotubes[J]. Inorg. Chem.,2006,45,4845-4849
    [48]Sun X M and Li Y D. Cylindrical silver nanowires:preparation, structure, and optical properties[J]. Adv. Mater.,2005,17,2626-2630
    [49]Wen Z, Liu J, Li J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Adv. Mater.,2008,20, 743-747
    [50]Yu S H, Wu Y S, Yang J, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E=S, Se, Te) and morphological control[J]. Chem. Mater.,1998,10,2309-2312
    [51]Deng Z X, Wang C, Sun X M, et al. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route[J]. Inorg. Chem.,2002,41,869-873
    [52]Yang J, Zeng J H, Yu S H, et al. Formation process of CdS nanorods via solvothermal route[J]. Chem. Mater.,2000,12,3259-3263
    [53]Yang J, Xue C, Yu S H, et al. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller [J]. Angew. Chem. Int. Ed., 2002,41,4697-4700
    [54]Xu J, Ge J P, Li Y D. Solvothermal synthesis of monodisperse PbSe nanocrystals[J]. J. Phys. Chem. B,2006,110,2497-2501
    [55]Yang Q, Tang K B, Li Q R, et al. The fabrication of MP (M=In and Ga) nanowires by a new Ullmann reaction[J]. Nanotechnology,2004,15,918-923
    [56]Zhan J H, Yang X G, Wang D W, et al. Polymer-controlled growth of CdS nanowires[J]. Adv. Mater.,2000,12,1348-1351
    [57]Yang Q, Tang K. B, Wang C R, et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires[J]. J. Phys. Chem. B,2002,106,9227-9230
    [58]Chen W, Chen K B, Peng Q, et al. Triangular CdS nanocrystals:rational solvothermal synthesis and optical studies[J]. Small,2009,5,681-684
    [59]Lu J, Qi P F, Peng Y Y, et al. Metastable MnS crystallites through solvothermal synthesis[J]. Chem. Mater.,2001,13,2169-2172
    [60]Yu D B, Wang D B, Meng Z Y, et al. Synthesis of closed PbS nanowires with regular geometric morphologies[J]. J. Mater. Chem.,2002,12,403-405
    [61]Liu Q, Zhou Y, Kou J H, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. J. Am. Chem. Soc.,2010,132,14385-14387
    [62]Xiong S L, Xi B J, Wang C M, et al. Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-Cysteine's assistance[J]. Chem. Eur. J.,2007,13,3076-3081
    [63]Yao W T, Yu S H, Jiang J, et al. Complex Wurtzite ZnSe microspheres with high hierarchy and their optical properties[J]. Chem. Eur. J.,2006,12,2066-2072
    [64]Yao W T, Yu S H, Pan L, et al. Flexible Wurtzite-type ZnS nanobelts with quantum-size effects:a diethylenetriamine-assisted solvothermal approach[J]. Small,2005,1,320-325
    [65]Zang Z A, Yao H B, Zhou Y X, et al. Synthesis and magnetic properties of new [Fe18S25](TETAH)14 (TETAH=Protonated Triethylenetetramine) nanoribbons:an efficient precursor to Fe7S8 nanowires and porous Fe2O3 nanorods[J]. Chem. Mater.,2008,20, 4749-4755
    [66]Zhou Y X, Yao H B, Wang Y, et al. Hierarchical hollow Co9Sg microspheres:solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties[J]. Chem. Eur. J.,2010, 16,12000-12007
    [67]Gao M R, Yao W T, Yao H B, et al. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution[J]. J. Am. Chem. Soc.,2009,131, 7486-7487
    [68]Xiong S L, Xi B J, Wang C M, et al. Solution-phase synthesis and high photocatalytic activity of Wurtzite ZnSe ultrathin nanobelts:a general route to 1D semiconductor nanostructured materials[J]. Chem.-Eur. J.,2007,13,7926-7932
    [69]Xiong S L, Yuan C Z, Zhang X Q, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors[J]. Chem.-Eur. J., 2009,15,5320-5326
    [70]Xi B J, Xiong S L, Fan H, et al. Shape-controlled synthesis of tellurium 1D nanostructures viaanovel circular transformation mechanism[J]. Cryst. Growth Des.,2007,7,1185-1191
    [71]Liu Z, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process[J]. Adv. Mater.,2003,15,936-940
    [72]Liu Z P, Yang Y, Liang J B, et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process[J]. J. Phys. Chem. B,2003,107, 12658-12661
    [73]Liu Z P, Xu D, Liang J B, et al. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent[J]. J. Phys. Chem. B,2005,109,10699-10704
    [74]Xiong S, Shen J, Xie Q, et al. A precursor-based route to ZnSe nanowire bundles[J]. Adv. Funct. Mater.,2005,15,1787-1792
    [75]Fang X S, Xiong S L, Zhai T Y, et al. High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors[J]. Adv. Mater.,2009,21,5016-5021
    [76]Xi B J, Xiong S L, Xu D C, et al. Tetraethylenepentamine-directed controllable synthesis of Wurtzite ZnSe nanostructures with tunable morphology[J]. Chem.-Eur. J.,2008,14, 9786-9791
    [77]Schulman J H, Stoekenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron microscopy[J]. J. Phys. Chem.,1959,63,1677-1680
    [78]Chhabra V, Free mL, Kang P K, et al. Microemulsion as an emerging technology[J]. Tensile Surfact. Det.,1997,34,156-168
    [79]Julian E, Martin J, Hollamby, et al. Recent advances in nanoparticle synthesis with reversed micelles[J]. Adv. Colloid. Interf. Sci.,2006,128,5-15
    [80]Destree C, Debuigne F, George S, et al. J complexes of retinol formed within the nanoparticles prepared from microemulsions[J]. Colloid. Polym. Sci.,2008,286,1463-1470
    [81]Zhong M O, Hiroshi Y, Keisaku K. Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation[J]. J. Photochem. Photobio. A:Chem., 2007,189,7-14
    [82]Wan Z Z, Xue L Q, Jian G C. Synthesis and characterization of silver nanoparticles in AOT microemulsion system[J]. Chem. Phys.,2006,330,495-500
    [83]Luisi P L, Majid L J, Fendler J H. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution[J]. Crit. Rev. Biochem.1986,20,409-474
    [84]Fletcher P D I, Robinson B H, Tabony J. A quasielastic neutron scattering study of water-in-oil microemulsions stabilised by aerosol-OT[J]. J. Chem. Soc.,1986,82,2311-2321
    [85]Ekwall P, Mandell L, Solyom P. The solution phase with reversed micelles in the cetyltrimethylammonium bromide-hexanol-water system[J]. J. Colloid. Interf. Sci.,1970,35, 266-272
    [86]Lopez-Quintela M A, Tojo C, Blanco M C, et al. Microemulsion dynamics and reactions in microemul-sions[J]. Curr. Opin. Colloid. Interf. Sci.,2004,9,264-278
    [87]Kurihara K, Kizling J, Stenius P, et al. Laser and pulse radiolytically induced colloidal gold formation in water-in-oil microemulsions[J]. J. Am. Chem. Soc.,1983,105,2574-2579
    [88]Li Y C and Park C W. Particle size distribution in the synthesis of nanoparticles using microemulsions[J]. Langmuir,1999,15,952-956
    [89]Bagwe R P and Khilar K C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT[J]. Langmuir,2000,16,905-910
    [90]Monnoyer P, Fonseca A, Nagy J B. Preparation of colloidal AgBr particles from microemulsions[J]. Colloid. Surf. A:Physicochem. Eng. Asp.,1995,100,233-243
    [91]Nagy J B. Multinuclear NMR characterization of microemulsions preparation monodisperse colloidal metal boride particles[J]. Colloid. Surf.,1989,3,201-220
    [92]Natarajan U, Handique K, Mehra A, et al. Ultrafine metalparticle formation in reverse micellar systems:effects of intermicellar exchange on the formation of particles[J]. Langmuir, 1996,12,2670-2678
    [93]Bandyopadhyaya R, Kumar R, Gandhi K S, et al. Modeling of precipitation in reverse micellar systems[J]. Langmuir,1997,13,3610-3620
    [94]Wang L N, Zhang Y, Muhammed M. Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions[J]. J. Mater. Chem.,1995,5,309-314
    [95]Kumar A R, Hota G, Mehra A, et al. Modeling of nanoparticles formation by mixing of two reactive microemuIsions[J]. AIChE J.2004,50,1556-1567
    [96]Boutonnet M, Kizling J, Stenivs P. The preparation of monodisperse colloidal metal particles from mieroemulsion[J]. Colloid. Sur.,1982,5,209-212
    [97]Zhang J, Sun L D, Liao C S, et al. Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method[J]. Solid State Commun.,2002,124,45-48
    [98]Tang H, G. Xu Y, Weng L Q, et al. Luminescence and photophysical properties of colloidal ZnS nanoparticles[J]. Acta Mater.,2004,52,1489-1494
    [99]叶钊,林荣英,林松,等.反相胶束微反应器制备Fe203超细粒子的研究[J].福州大学学报,2002,30,918-920
    [100]Chen F X, Xu G Q, Andy T S. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion[J]. Mater. Lett.,2003,57,3282-3286
    [101]Kishore S, Nelson J A, Adair J H, et al. Hydrogen storage in spherical and platelet palladium nanoparticles[J]. J. Alloy Compd.,2005,389,234-242
    [102]Chen D H and Wu S H. Synthesis of nickel nanoparticles in water-in-oil microemulsions[J]. Chem. Mater.,2000,12,1354-1360
    [103]Wang W H, Tian X L, Chen K, et al. Synthesis and characterization of Pt-Cu bimetallic alloy nanoparticles by reverse micelles method[J]. Colloid. Sur. A,2006,273,35-42
    [104]Bana I, Drofenik M, Makovec D. The synthesis of iron-nickel alloy nanoparticles using a reverse micelle technique[J]. J. Magn. Magn. Mater.,2006,307,250-256
    [105]Bol A A, Beek R V, Meijerink A. On the incorporation of trivalent rare earth ions in Ⅱ-Ⅵ semiconductor nanocrystals[J]. Chem. Mater.,2002,14,1121-1126
    [106]Srikanth H, Carpenter E E, Spinu L, et al. Dynamic transverse susceptibility in Au-Fe-Au nanoparticles[J]. Mater. Sci. Eng. A,2001,304,901-904
    [107]Chen D, Li J J, Shi C S, et al. Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion[J]. Chem. Mat.,2007,19, 3399-3405
    [108]Gong J L, Jiang J H, Liang Y, et al. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology [J]. J. Colloid. Interf. Sci.,2006,298,752-756
    [109]Oldenburg S J, Averitt R D,.Westcott S L, et al. Nanoengineering of optical resonances[J]. Chem. Phys. Lett.,1998,288,243-247
    [110]Suchita K, Gosavi S W, Urban J, et al. Nanoshell particles:synthesis, properties and applications[J]. Curr. Sci.,2006,91,1038-1052
    [111]Balakrishnan S, Bonder M J, Hadjipanayis G C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles[J]. J. Magn. Magn. Mater.,2009,321, 117-122
    [112]Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem. Rev., 2008,108,2064-2110
    [113]Daniel M C and Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev.,2004,104,293-346
    [114]Mal G H, J. Rajiv H K, Tang S H, et al. Observation of resonant energy transfer in Au:CdS nanocomposite[J]. Appl. Phys. Lett.,2004,84,4684
    [115]Nagarajan S and Yong Z. Use of core/shell structured nanoparticles for biomedical applications[J]. Recent Pat. Biomed. Eng.,2008,1,34-42
    [116]Yan E Y, Ding Y, Chen C J, et al. Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments[J]. Chem. Commun.,2009,19,2718-2720
    [117]De M, Ghosh P S, Rotello V M. Applications of nanoparticles in biology[J]. Adv. Mater., 2008,20,4225-4241
    [118]Salazar-Alvarez G, Qin J, Sepelak V, et al. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy[J]. J. Am. Chem. Soc.,2008,130,13234-13239
    [119]Qu X Z, Omar L L, Le T B H, et al. Polymeric amphiphile branching leads to rare nanodisc shaped planar self-assemblies[J]. Langmuir,2008,24,9997-10004
    [120]Liu Z, Elbert D, Chien C L. FIB/TEM characterization of the composition and structure of core/shell Cu-Ni nanowires[J]. Nano Lett.,2008,8,2166-2170
    [121]Xiao R, Cho S, Liu R, et al. Controlled electrochemical synthesis of conductive polymer nanotube structures[J]. J. Am. Chem. Soc.,2007,129,4483-4489
    [122]Min M K, Kim C H, Lee H J. Electrocatalytic properties of platinum overgrown on various shapes of gold nanocrystals[J]. J. Mol. Catal. A,2010,333,6-10
    [123]Radi A, Pradhan D, Sohn Y, et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition[J]. ACS Nano,2010,4,1553-1560
    [124]Lee H, Habas S E, Kweskin S, et al. Morphological control of catalytically active platinum nanocrystals[J]. Angew. Chem. Int. Ed.,2006,116,7988-7992
    [125]Millstone J E, Hurst S J, Metraux G S, et al. Colloidal gold and silver triangular nanoprisms[J]. Small,2009,5,646-664
    [126]Gupta S K, Talati M, Jha P K, et al. Shape and size dependent melting point temperature of nanoparticles [J]. Mater. Sci. Forum,2008,570,132-137
    [127]Dodd A C. A comparison of mechanochemical methods for the synthesis of nanoparticulate nickel oxide[J]. Powder Technol.,2009,196,30-35
    [128]Sasikumar R and Arunachalam R M. Synthesis of nanostructured aluminium matrix composite (AMC) through machining[J]. Mater. Lett.,2009,63,2426-2428
    [129]Wang Y Y, Cai K F, Yao X. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature[J]. J. Solid State Chem.,2009,182,3383-3386
    [130]Yoo S H, Liu L C, Park S H. Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis[J]. J. Colloid Interface Sci.,2009,339,183-186
    [131]Ye J, Broek B V D, Palma R D, et al. Surface morphology changes on silica-coated gold colloids[J]. Colloids Surf. A,2008,332,225-233
    [132]Qi Y L, Chen M, Liang S, et al. Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions[J]. Appl. Surf. Sci.,2008,254,1684-1690
    [133]Lebedev V S, Vitukhnovsky A G, Yoshida A, et al. Absorption properties of the composite silver/dye nanoparticles in colloidal solutions[J]. Colloids and Surf. A,2008,326,204-209
    [134]Nair A S, Pradeep T, MacLaren I. An investigation of the structure of stearate monolayers on Au@ZrO2and Ag@ZrO2 core-shell nanoparticles[J]. J. Mater. Chem.,2004,14,857-862
    [135]Salgueirino-Maceira V, Correa-Duarte M A, Farle M, et al. Bifunctional gold-coated magnetic silica spheres[J]. Chem. Mater.,2006,18,2701-2706
    [136]Li X Q and Zhang W X. Iron nanoparticles:the core-shell structure and unique properties for Ni(Ⅱ) sequestration[J]. Langmuir,2006,22,4638-4642
    [137]Chen Y M, Yang F, Dai Y, et al. Ni@Pt core-shell nanoparticles:synthesis, structural and electrochemical properties[J]. J. Phys. Chem. C,2008,112,1645-1649
    [138]Zhou W L, Carpenter E E, Lin J, et al. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field[J]. Eur. Phys. J. D,2001,16, 289-292
    [139]Ravel B, Carpenter E E, Harris V G. Oxidation of iron in iron/gold core/shell nanoparticles[J]. J. Appl. Phys.,2002,91,8195-8197
    [140]Huang G Y, Xu S M, Xu G, et al. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors [J]. Trans. Nonferrous Met. Soc. China,2009,19,389-393
    [141]Kobayashi Y, Ishida S, Ihara K, et al. Synthesis of metallic copper nanoparticles coated with polypyrrole[J]. Colloid Polym. Sci.,2009,287,877-880
    [142]Wu M L, Chen D H, Huang T C. Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions[J]. J. of Colloid and Interface Sci.,2001,243,102-108
    [143]Zhang X and Chan K Y. Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties[J]. Chem. Mater.,2003, 15,451-459
    [144]Park J I, Kim M G, Jun Y W, et al. Characterization of superparamagnetic "core-shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic "solid solution" nanoalloys[J]. J. Am. Chem. Soc.,2004,126,9072-9078
    [145]Lee W R, Kim M G, Choi J R, et al. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles[J]. J. Am. Chem. Soc.,2005,127, 16090-16097
    [146]Ji Y T, Yang S C, Guo S W, et al. Bimetallic Ag/Au nanoparticles:a low temperature ripening strategy in aqueous solution[J]. Colloids and Surf. A,2010,372,204-209
    [147]Son S U, Jang Y, Park J. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions[J]. J. Am. Chem. Soc.,2004, 126,5026-5027
    [148]Sobal N S, Ebels U, Mohwald H, et al. Synthesis of core-shell PtCo nanocrystals[J]. J. Phys. Chem. B,2003,107,7351-7354
    [149]Xu Z C, Hou Y L, Sun S H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties[J]. J. Am. Chem. Soc.,2007,129,8698-8699
    [150]Kwangjin A, Selim A, Nathan M, et al. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles [J]. J. Am. Chem. Soc.,2013,135,16689-16696
    [151]Wagner A M, Hickman A J, Sanford M S. Platinum-catalyzed C-H arylation of simple arenes[J]. J. Am. Chem. Soc.,2013,135,15710-15713
    [152]Chin Y H, Buda C L, Neurock M, et al. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts[J]. J. Am. Chem. Soc.,2013,135, 15425-15442
    [153]Li B Y, Guan Z H, Wang W, et al. Highly dispersed Pd catalyst locked in knitting aryl network polymers for suzuki-miyaura coupling reactions of aryl chlorides in aqueous media[J]. Adv. Mater.,2012,24,3390-3395
    [154]Son S U, Jang Y J, Park J, et al. Designed synthesis of atom-economical Pd/Ni Bimetallic nanoparticle-based catalysts for sonogashira coupling reactions[J]. J. Am. Chem. Soc.,2004, 126,5026-5027
    [155]Sao-Joao S, Giorgio S, Penisson J M, et al. Structure and deformations of Pd-Ni core-shell nanoparticles[J]. J. Phys. Chem. B,2005,109,342-347
    [156]Kang K M, Kim H W, Shim I W, et al. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane[J]. Fuel Process. Technol.,2011,92, 1236-1243
    [157]Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J]. Nat. Mater.,2009,8,126-131
    [158]Park J C, Lee H J, Kim J Y, et al. Catalytic hydrogen transfer of ketones over Ni@SiO2 yolk-shell nanocatalysts with tiny metal cores[J]. J. Phys. Chem. C,2010,114,63816388
    [159]Guettel R, Paul M, Schueth F. Ex-post size control of high-temperature-stable yolk-shell Au @ ZrO2 catalysts[J]. Chem. Commun.,2010,46,895-897
    [160]Mathias F, Claudia W, Robert G, et al. High-temperature stable, iron-based core-shell catalysts for ammonia decomposition[J]. Chem.Eur. J.,2011,17,598-605
    [161]Ge J P, Zhang Q, Zhang T R, et al. Core-satellite nanocomposite catalysts protected by a porous silica shell:controllable reactivity, high stability, and magnetic recyclability[J]. Angew. Chem., Int. Ed.,2008,47,8924-8928
    [162]Hirakawa T and Kamat PV. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation[J]. J. Am. Chem. Soc.,2005,127,3928-3934
    [163]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306,666-669
    [164]Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Lett,2008, 8,3498-3502
    [165]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320,1308
    [166]Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321,385-388
    [167]Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett.,2008,8,902-907
    [168]Shi W H, Zhu J X, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/reduced grapheneoxide nanocomposites[J]. J. Mater. Chem.,2011,21,3422-3427
    [169]Zhu J X, Zhu T, Zhou X Z, et al. Facile synthesis of metal.oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability[J]. Nanoscale,2011,3, 1084-1089
    [170]Wang S, Goh B M, Manga K K, et al. Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties[J]. ACS Nano, 2010,4,6180-6186
    [171]Han T H, Lee W J, Lee D Hy, et al. Peptide/graphene hybrid assembly into core/shell nanowires[J]. Adv. Mater.,2010,22,2060-2064
    [172]Qi X Y, Pu K Y, Li H, et al. Amphiphilic gaphene cmposites[J]. Angew. Chem. Int. Ed., 2010,49,9426-9429
    [173]Qi X Y, Pu K Y, Zhou X Z, et al. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents[J]. Small,2010,6, 663-669
    [174]Yang H F, Zhang Q X,.Shan C S, et al. Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte[J]. Langmuir,2010,26,6708-6712
    [175]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angew. Chem. Int. Ed.,2009,121,4879-4881
    [176]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection[J]. Anal. Chem.,2010,82,2341-2346
    [177]Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells[J]. J. Am. Chem. Soc.,2010,132,9274-9276
    [178]Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010,4,3187-3194
    [179]Yang S B, Feng X L, lvanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage[J]. Angew. Chem. Int. Ed.,2010,49,8408-8411
    [180]Wang H L, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J. Am. Chem. Soc.,2010,132,13978-13980
    [181]Zhang Y P, Li H B, Pan L K, et al. Capacitive behavior of graphene-ZnO composite film for supercapacitors[J]. J. Electroanal. Chem.,2009,634,68-71
    [182]Kim F, Luo J Y, Cruz-Silva R, et al. Self-propagating domino-like reactions in oxidized graphite[J]. Adv. Funct. Mater.,2010,20,2867-2873
    [183]Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochem. Commun.,2009,11,846-849
    [184]Dong L F, Gari R R S, Li Z, et al. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation[J]. Carbon, 2010,48,781-787.
    [185]Jafri R I, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygenreduction reaction in proton exchange membrane fuel cell[J]. J. Mater. Chem.,2010,20,7114-7117
    [186]Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon schottky junction solar cells[J]. Adv. Mater.,2010,22,2743-2748
    [187]Song J L, Yin Z Y, Yang Z J, et al. Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 Junction[J]. Chem. Eur. J.,2011,17,10832-10837
    [188]Liu H T, Ryu S M, Chen Z Y, et al. Photochemical reactivity of graphene[J]. J. Am. Chem. Soc.,2009,131,17099-17101
    [189]Liu J C, Bai H W, Wang Y J, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications[J]. Adv. Funct. Mater.,2010,20,4175-4181
    [190]Du J, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films:improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities[J]. ACS Nano,2011,5,590-596
    [191]Xie L M, Ling X, Fang Y, et al. Graphene as a substrate to suppress fluorescence in resonance raman spectroscopy[J]. J. Am. Chem. Soc.,2009,131,9890-9891
    [192]Ling X, Xie L M, Fang Y, et al. Can graphene be used as a substrate for raman enhancement? [J]. Nano Lett.,2010,10,553-561
    [193]Ling X and Zhang J. First-layer effect in grapheme enhanced raman scattering[J]. Small, 2010,6,2020-2025
    [194]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457,706-710
    [195]Xiao N, Dong X C, Song L, et al. Enhanced thermopower of graphene films with oxygen plasma treatment[J]. ACS Nano,2011,5,2749-2755
    [196]Dong X C, Li B, Wei A, et al. One-step growth of graphene-carbon nanotube hybrid materials by chemical vapor deposition[J]. Carbon,2011,49,2944-2949
    [197]Wang Y, Xu X F, Lu J, et al. Toward high throughput interconvertible graphane-to-graphene growth and patterning[J]. ACS Nano,2010,4,6146-6152
    [198]Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat. Mater.,2009,8,203-207
    [199]Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat. Nanotechnol.,2009,4,30-33
    [200]Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. J. Am. Chem. Soc.,2010,132,5944-5945
    [201]Zhou X Z, Wei Y Y, He Q Y, et al. Reduced graphene oxide films used as matrix of MALDI-TOF-MS fordetection of octachlorodibenzo-p-dioxin[J]. Chem. Commun.,2010,46, 6974-6976
    [202]Hummers W S and Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958, 80,1339
    [203]Liu J Q, Yin Z Y, Cao X H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes[J]. ACS Nano,2010,4,3987-3992
    [204]Wu S X, Yin Z Y, He QY, et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes[J]. J. Mater. Chem.,2011,21,3467-3470
    [205]Zhang L, Li X, Huang Y, et al. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation[J]. Carbon,2010,48,2367-2371
    [206]He Q Y, Wu S X, Gao S, et al. Transparent, flexible, all-reduced graphene oxide thin film transistors[J]. ACS Nano,2011,5,5038-5044
    [207]Huang X, Zhou X Y, Wu S X, et al. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains[J]. Small,2010,6,513-516
    [208]Zhu Y W, Stoller M D, Cai W W, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets[J]. ACS Nano,2010,4, 1227-1233
    [209]Vinodgopal K, Neppolian B, Lightcap I V, et al. Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(Ⅲ) [J]. J. Phys. Chem. Lett.,2010,1,1987-1993
    [210]Hassan H M A, Abdelsayed V, Khder A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystalsin aqueous and organic media[J]. J. Mater. Chem.,2009, 19,3832-3837
    [211]Huang J, Zhang L M, Chen B, et al. Nanocomposites of size-controlled gold nanoparticles and grapheneoxide:formation and applications in SERS and catalysis[J]. Nanoscale,2010,2, 2733-2738
    [212]Liu J B, Fu S H, Yuan B, et al. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. J. Am. Chem. Soc.,2010,132,7279-7281
    [213]Muszynski R, Seger B, Kamat P V. Decorating graphene sheets with gold Nanoparticles[J], J. Phys. Chem. C,2008,112,5263-5266
    [214]Kim Y K, Na H K, Lee Y W, et al. The direct growth of gold rods on graphene thin films[J]. Chem. Commun.,2010,46,3185-3187
    [215]Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano,2010,4,547-555
    [216]Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ilons on the sidewalls of carbon nanotubes[J]. J. Am. Chem. Soc.,2002,124,9058-9059
    [217]Zhou X Z, Huang X, Qi X Y, et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces[J]. J. Phys. Chem. C,2009,113, 10842-10846
    [218]Wang D H, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano,2009,3,907-914
    [219]Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano,2010,4,3482-3488
    [220]Cao A N, Liu Z, Chu S S, et al. A Facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Adv. Mater.,2010,22, 103-106
    [221]Wu S X, Yin Z Y, He Q Y, et al. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes[J]. J. Phys. Chem. C,2010,114,11816-11821
    [222]Yin Z Y, Wu S X, Zhou X Z, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells[J]. Small,2010,6, 307-312
    [223]Kim Y T, Han J H, Hong B H, et al. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates[J]. Adv. Mater.,2010, 22,515-518
    [224]Schimpf S, Rittermeier A, Zhang X, et al. Stearate-based Cu colloids in methanol synthesis: structural changes driven by strong metal-support interactions[J]. Chem. Cat. Chem.,2010,2, 214-222
    [225]Park J B, Graciani J, Evans J, et al. Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces:high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level[J]. J. Am. Chem. Soc.,2010,132,356-363
    [226]Pastoriza-Santos I, Sanchez-Iglesias A, Rodriguez-Gonza B, et al. Aerobic synthesis of Cu nanoplates with intense plasmon resonances[J]. Small,2009,5,440-443
    [227]Chen H Y, Lee J H, K Y H, et al. Metallic copper nanostructures synthesized by a facile hydrothermal method[J]. J. Nanosci. Nanotechno.,2010,10,629-636
    [228]Zhou G J, Lu M K, Yang Z S. Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures[J]. Langmuir,2006,22,5900-5903
    [229]Lai D Z, Liu T, Jiang G H, et al. Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite[J]. J. Appl. Polym. Sci.,2013,128,1443-1449
    [230]Vazquez-Vazquez C, Banobre-Lopez M, Mitra A, et al. Synthesis of small atomic copper clusters in microemulsions[J]. Langmuir,2009,25,8208-8216
    [231]Kumar A, Saxena A, De A, et al. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions[J]. RSC Adv.,2013,3,5015-5021
    [232]Park B K, Jeong S, Kim D, et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method[J]. J. Colloid Interf. Sci.,2007,311,417-424
    [233]Tang X F, YangZ G, WangW J. A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology[J]. Colloids Surfaces A,2010,360,99-104
    [234]Mott D, Galkowski J, Wang LY, et al. Synthesis of size-controlled and shaped copper nanoparticles[J]. Langmuir,2007,23,5740-5745
    [235]Salavati-Niasari M, Fereshteh Z, Davar F. Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor[J]. Polyhedron,2009,28,126-130
    [236]Salavati-Niasari M, Mir N, Davar F. A novel precursor for synthesis of metallic copper nanocrystals by thermal decomposition approach[J]. Appl. Surf. Sci.,2010,256,4003-4008
    [237]Evano G, Blanchard N, Toumi M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis[J]. Chem. Rev.,2008, 108,3054-3131
    [238]Mikami Y, Ebata K, Mitsudome T, et al. Reversible dehydrogenation-hydrogenation of tetrahydroquinoline-quinoline using a supported copper nanoparticle catalyst[J]. Heterocycles, 2011,82,1371-1377
    [239]Wu T, Chen M X, Zhang L, et al. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance[J]. J. Mater. Chem. A,2013,1,7612-7621
    [240]Kantam M L, Jaya V S, Sreedhar B, et al. Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles[J]. J. Mol. Catal. A-Chem.,2006,256,273-277
    [241]Molteni Giorgio, Bianchi C L, Marinoni G, et al. Cu/Cu-oxide nanoparticles as catalyst in the "click" azide-alkyne cycloaddition[J]. New J. Chem.,2006,30,1137-1139
    [242]Alonso F, Moglie Y, Radivoy G, et al. Copper nanoparticles in click chemistry:an alternative catalytic system for the cycloaddition of terminal alkynes and azides[J]. Tetrahedron Lett.,2009,50,2358-2362
    [243]Xu D, Bliznakov S, Liu Z P, et al. Composition-dependent electrocatalytic activity of Pt-Cu nanocube catalysts for formic acid oxidation[J]. Angew. Chem. Int. Ed.,2010,49,1282-1285
    [244]Lim B, Kobayashi H, Yu T, et al. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth[J]. J. Am. Chem. Soc.,2010,132,2506-2507
    [245]Mazumder V, Chi M F, More K L, et al. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles[J]. Angew. Chem. Int. Ed.,2010,49,9368-9372
    [246]Ji Z Y, Shen X P, Zhu G X, et al. Reduced graphene oxide/nickel nanocomposites:facile synthesis, magneticand catalytic properties[J]. J. Mater. Chem.,2012,22,3471-3477
    [247]Ge L, Han C C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J]. Appl. Catal. A,2011,409-410,215-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700