用户名: 密码: 验证码:
辽河干流输沙水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽河流域有其独特的自然与人文环境及特点,目前,辽河干流水资源短缺与河道泥沙沉积问题同时存在,已经严重威胁到了该区工农业生产的可持续发展。然而,目前辽河干流输沙水量规律研究较少,理论基础缺乏。鉴于此,论文将研究区域定位在辽河干流,将研究内容确定为水沙规律探索,并应用多种比选计算方法,深入探索辽河干流输沙水量计算方法及水资源科学配置模式。
     论文从自然地理、人文环境、河道演变、洪水过程等环境特征研究入手,对辽河干流未来河道发展趋势进行了研判,对辽河干流径流与水资源、10种(0.007、0.01、0.025、0.05、0.1、0.25、0.5、1.0、2.0、5.0mm)粒径泥沙特性及径流与泥沙之间的关系,7个组别(<0.007mm,0.007~0.01mm,0.01~0.025mm,0.025~0.05m,0.05~0.1mm,0.1~0.25mm,>0.25mm)粒径泥沙在水、沙两相流中的作用,悬移质泥沙沿程、随时间泥沙颗粒分布特征,以及床沙颗粒特征进行了全面分析。明晰了辽河干流上游将继续冲刷下切、中游保持基本稳定、下游处于持续淤积的趋势,下垫面、降雨和人为活动是辽河干流泥沙问题形成的主要原因。辽河干流有“东水西沙”的分布特点,泥沙沿程呈现由粗到细的特点。丰水期悬移质泥沙粒径一般小于枯水期泥沙粒径,0.025-0.1m泥沙粒径组是下游河道泥沙沉积的主要成分,0.01~0.1mm泥沙粒径组对输沙水量影响较大。在此基础上,应用含沙量法、河道水沙资料法、净水量法和能量法4种方法对辽河干流输沙水量进行了比选计算,经过综合分析各种计算结果认为,应用净水量计算法对辽河干流输沙水量确定更具指导意义和实践价值。应用净水量法计算出通江口、铁岭、马虎山、平安堡和六间房水文站年平均输沙水量分别为772.1、899.9、2551.5、809.5和1310.9m3/t。辽河下游各站汛期、非汛期、全年的单位输沙水量随时间呈现增大、与汛期平均流量呈对数关系、随着平均流量和来沙系数的增大而减小,随着含沙量的增大而增大。综合研究表明,充分利用冬三月水量、创造平滩流量、针对不同粒径、水库等水利枢纽工程综合调配,才能实现输沙用水和水资源高效利用。
     论文针对不同粒径进行输沙水量研究,打破了以往全沙输沙水量研究模式,在研究思路上具有重要的创新价值;将研究内容确定在水沙规律探索方面,为辽河流域有限的水资源得到科学、合理和高效配置,在解决辽河流域泥沙淤积现实问题上具有重要的创新价值;应用多种方法进行比选计算,确保输沙水量计算结果的科学性、准确性,在研究方法上具有重要的创新价值。
Liaohe River Basin has its unique natural and humanistic environment. The shortage of water resources of the trunk stream of Liaohe River and river sediment deposition problems exist at the same time and it has been a serious threat to the sustainable development of industrial and agricultural production in this region. However,at present, research on runoff sediment transport regular pattern for Liaohe River is little. The shortage of theoretical basis seriously restricted the work of water resources management scientifically and effectively. In view of the facts, the trunk stream of Liaohe River will be as the object of study in dissertation. Its research content is exploring the regular between Water and sediment and water demand for transporting sediment in the trunk of Liaohe River, Configuration mode of water resources.
     This research analyses the development of the trunk stream of Liaohe River, flow and water resources, the property of sediment(0.007,0.01、0.025、0.05、0.1、0.25、0.5、1.0、2.0、5.0mm), the relationship between flow and sediment, the effect of sediment (<0.007mm,0.007-0.01mm,0.01-0.025mm,0.025~0.05mm,0.05~0.1mm,0.1~0.25mm,>0.25mm)on two phase flow of water and sediment, the distribution characteristics of Suspended sediment in different distances and bed sediment characteristics in different time. It clears that scouring continues in upstairs, middle reaches is stable and downstairs deposit. Underlying surface, rainfall and human activity are the main causes of sediment in the trunk of Liaohe River. The distribution characteristics of the trunk of Liaohe River is sediment in the west and water in the east, the sediment becomes smaller particles with the growth of distance. The particles of sediment in wet reasons is larger than it in low water period. The sediment in0.025-0.1mm is main components of sediment deposition in downstairs, sediment in0.01~0.1mm influences water demand for sediment transport heavily. On this basis, computing water demand for transporting sediment using concentration method, water and sediment data method, net water method and energy method. The results show net water method is more suitable for water demand for transporting sediment. The water demand for transporting sediment in Tongjiangkou, Tieling, Mahushan, Pinganbao and Liujianfang are772.1、899.9、2551.5、809.5and1310.9m3/t under net water method. The water demand for transporting sediment in high and low water period in every station in Liaohe River are increasing with the growth of time, decreasing with the growth of mean flow and incoming sediment coefficient, increasing with the growth of sediment concentration. The research shows that only making full use of water in winter, creating bankfull discharge, integrated deployment depending on different particles and water conservancy project can we realize efficient utilization of water resources.
     The research studies on the different particle size water demand for transporting sediment, breaking the previous research model. The study has important innovative value on the research idea; This research is to explore the regular between water and sediment scheme of water resources in Liao river to use limited water resources rationally scientific efficiently. It is important innovation on solving practical problems in Liao river sediment deposition. The import innovativeness of this research is using multiple methods to ensure the Scientificity and accuracy of water demand for transporting sediment.
引文
[1]Anthony J. Parsons, Athol D. Abrahams, and Shiu-huang Luk. Size characteristics of sediment in interrill overland flow on a semiarid hillslope, southern Arizona[J]. Earth Surface Processes and Landforms,1991,16,143-152.
    [2]Anton Van Rompaey, Paolo Bazzoffid, Robert J.A. Jones, et al.. Modeling sediment yields in Italian catchments [J]. Geomorphology,2005,65:157-169.
    [3]Bernard Rondeau, D. Cossa, P. Gagnon et al.. Budget and sources of suspended sediment transported in the St. Lawrence River, Canada [J]. Hydrological Processes,2000, 14:21-36.
    [4]Chien, N. and Wan, Z. Mechanics of sediment transport. ASCE Press, New York.1999.
    [5]Clark R. Alexander, Claudi Venherm. Modern sedimentary processes in the Santa Monica, California continental margin:sediment accumulation, mixing and budget [J]. Marine environmental research,2003,56:177-204.
    [6]Duan X. H., Wang Z. Y., Xu M. Z. Effects of fluvial processes and human activities on stream macroinvertebrates[J]. Int J Sed Res,2011,26(4):416-430.
    [7]De Boer, D.H.. An evaluation of fractal dimensions to quantify changes in the morphology of fluvial suspended sediment particles during baseflow conditions. Hydrological Process,1997,11,415-426.
    [8]Deizman, M.M., Mostaghimi, S., Shanholtz, V.O., and Mitchell, J.K.. Size Distribution of eroded sediment from two tillage systems. Transactions of the ASAE,1987,30(6), 1642-1647.
    [9]Evans J. K., Gottgens, J. F., Gill, W. M.& Mackey, S. D. Sediment yields controlled by intrabasin storage and sediment conveyance over the interval 1842-1994:Chagrin River, Northeast Ohio, USA. J. Soil Water Conservation,2000,55(3),264-270.
    [10]Farenhorst, A. and Bryan, R.B.. Particle size distribution of sediment transported by shallow flow. Catena,1995,25,47-62.
    [11]Fontaine, T.A., Moore, T.D., and Burgoa, B.. Distributions of contaminant concentration and particle size in fluvial sediment. Water. Research.,2000,34(13),3473-3477.
    [12]Fu XD, Jiang LW, Wu BS, et al. Quantifying channel maintenance in-stream flows for the Lower Yellow River:an optimization-based approach[C]//Proceedings of the 33rd IAHR Congress, Vancouver, Canada,2009:3266-3281.
    [13]Glenn. S. Maas, Mark.G Macklin. The impact of recent climate change on flooding and sediment supply within a Mediterranean mountain catchment, southwestern Crete, Greece [J]. Earth surface processes and landforms,2002,27:1087-1105.
    [14]Grabowski. R.C., Wharton. G, Davies. GR., Droppo. I.G Spatial andtemporal variations in the erosion threshold of fine river bed sediments[J]. J Soils Sediments, 2012,12:1174-1188.
    [15]Glenn. S. Maas, Mark.G. Macklin. The impact of recent climate change on flooding and sediment supply within a Mediterranean mountain catchment, southwestern Crete, Greece [J]. Earth surface processes and landforms,2002,27:1087-1105.
    [16]Geraldene. W., Brian. K., Nives. O., et al. Interactions between sediments and water: perspectiveson the 12th International Association for Sediment WaterScience Symposium[J]. J Soils Sediments,2012,12:1497-1500.
    [17]Heye R. Bogena, Bernd Diekkruger. Modelling solute and sediment transport at different spatial and temporal scales [J]. Earth Surface Processes and Landforms,2002, 27:1475-1489.
    [18]Horowitz, A.J.. A primer on trace metal-sediment chemistry, U. S. Geological Survey Water Supply Paper 2277,1985.
    [19]Ian Townend, Peter Whitehead. A preliminary net sediment budget for the Humber Estuary [J]. The science of the total environment,2003,314-316:755-767.
    [20]Jack Lewis. Quantifying recent erosion and sediment delivery using probability sampling:a case study, Earth surface processes and landforms,2002,27:559-572.
    [21]Jiongxin Xu, Dongsheng Cheng. Relation between the erosion and sedimentation zones in the Yellow River, China [J]. Geomorphology,2003,48:365-382.
    [22]Jiongxin Xu. Grain-size characteristics of suspended sediment in the Yellow River, China [J]. Catena,1999,38:243-263.
    [23]Jiongxin Xu. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration; the Yellow River basin, China [J]. Catena,2002,49:289-307.
    [24]Jolanta Swiechowicz. Linkage of slope wash and sediment and solute export from a foothill catchment in the Carpathian foofhills of south Poland [J]. Earth Surface Processes and Landforms.2002,27:1389-1413.
    [25]Jonathan D. Phillips. Fluvial sediment budgets in the North Carolina Piedmont [J]. Geomorphology,1991,4:231-241.
    [26]Jonathan D. Phillips. Sediment storage, sediment yield, and time scales in landscape denudation studies [J]. Geographical Analysis,1986a,102:161-167.
    [27]Jonathan D. Phillips. The utility of the sediment budget concept in sediment pollution control [J]. Professional Geographer,1986b,246-258.
    [28]Jonathan Phillips. Alluvial storage and the long-term stability of sediment yields [J]. Basin research,2003,15:153-163.
    [29]Kerin, A., Petticrew, E., and Udelhoven, T.. The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed. Catena,2003,53, 165-179.
    [30]Lang, A.& Honscheidt, S. Age and source of colluvial sediment at Vaihingen-Enz, Germany. Catena,1999,38(2),89-107.
    [31]Li G. Y., Sheng L. X.. Model of water-sediment regulation in Yellow River and its effect. Sci China[J]. Tech Sci,2011,54(4):924-930.
    [32]Margareta B. Jansson. Determining sediment source areas in a tropical river basin, Costa Rica [J]. Catena,2002,47:63-84.
    [33]Martin, Y.E., Church, M.. Bed material transport estimated from channel surveys: Vedder River, British Columbia [J]. Earth Surface Processes and Landforms,1995, 20:347-361.
    [34]McDowell, R.W., Sharpley, A.N., and Folmar, G.. Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agricultural, Ecosystems and Environment,2003,99,187-199.
    [35]McLean, D.G., Church, M.. Sediment transport along lower Fraser River:2. Estimates based on the long-term gravel budget [J]. Water Resources Research,1999,35 (8):2549-2559.
    [36]Meyer, L.D., Harmon, W.C., and McDowell, L.L..Sediment sizes eroded from crop row side slopes. Transactions of the ASAE,23(3),1980,891-898.
    [37]Meyer, L.D., Line, D.E. and Harmon, W.C.. Size characteristics of sediment from agricultural soils. Soil and Water Conservation,1992,47(1),107-111.
    [38]Michael C. Slattery, Paul A. Gares, Jonathan D. Phillips. Slope-Channel Linkage and Sediment Delivery on North Carolina Coastal Plain Cropland [J]. Earth Surface Processes and Landforms.2002,27:1377-1387.
    [39]Michael C. Slattery, Timothy P. Burt. Particle size characteristics of suspended sediment in hillslope runoff and stream flow [J]. Earth surface processes and landforms, 1997,22:705-719.
    [40]Milliman J D, MeadeR H. Worldwide delivery of river sediment to the ocean [J]. Journal of Geology,1983(9):11-21.
    [41]Philip N. Owens, D.E. Walling. Change in sediment sources and floodplain deposition rates in the catchment of the river Tweed, Scotland, over the last 100 years:the impact of climate and land use change [J]. Earth surface processes and landforms,2002, 27:403-423.
    [42]Reid, I. and Frostick, L.E.. Fluvial sediment transport and deposition, Sediment Transport and Depositional Processes, in Pye, K., ed., Blackwell Scientific Publications, Oxford, 89-155,1994.
    [43]Reis, I. and Frostick, L.E.. Flow dynamics and suspended sediment properties in arid-zone flash floods. Hydrological Processes,1987,1(3),239-253.
    [44]Richard Hodgkins, Richard Cooper, Jemma Wadham, et al.. Suspended sediment fluxes in a high-Arctic glacierised catchment:implications for fluvial sediment storage [J]. Sedimentary geology,2003,162:105-117.
    [45]Richard S. Pyrce, Peter E. Ashmore. Particle path length distributions in meandering gravel-bed streams:Results from physical models [J].2003,28:951-966.
    [46]Roberts, R. G.& Church, M. The sediment budget in severely disturbed watersheds, Queen Charlotte Ranges, British Columbia. Can. J. Forest Res.,1986,16(5),1092-1106.
    [47]Ross A. Sutherland and Rorke B. Bryan. Sediment budgeting:a case study in the Katiorin drainage basin, Kenya [J]. Earth surface processes and landforms,1991, 16:383-398.
    [48]Rovira, A., Batalla, R.J., Sala M.. Fluvial sediment budget of a Mediterranean river: the lower Tordera (Catalan Coastal Ranges, NE Spain)[J]. Catena,2005,60:19-42.
    [49]Schick, A.P., Lekach J.. An evaluation of two ten-year sediment budgets, Nahal Yael, Israel. Physical [J]. Geography,1993,14 (3):225-238.
    [50]Slattery, M.C. and Burt, T.P.. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surface Processes and Landforms,1997,22, 705-719.
    [51]Smith, B.P.G., Naden, P.S., Leeks, G.J.L., and Wass, P.D.. The influence of storm events on fine sediment transport, erosion and deposition within a reach of the River Swale, Yorkshire, UK. The Science of the Total Environment,2003,314/316,451-474.
    [52]Stone, P.M. and Walling, D.E.. Particle size selectivity considerations in suspended sediment budget investigations. Water Air Soil Pollution,1997,99:63-70.
    [53]Sutherland, R.A. and Bryan R.B.. Variability of particle size characteristics of sheetwash sediment in a small semiarid catchments, Kenya. Catena,1989,16,189-204.
    [54]Trimble, S. W. A sediment budget for Coon Creek, the driftless area, Wisconsin, 1853-1977. Am. J. Science 283,1983,454-474.
    [55]Tena A., Batalla R.J., Vericat D., Lopez-Tarazon J.A. Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula)[J]. Geomorphology,2011,125:73-84.
    [56]Udelhoven, T., Nagel, A., and Gasparini, F.. Sediment and suspended particle interactions during low water flow in small heterogeneous catchments. Catena,1997,30, 135-147.
    [57]Wall, G.J., Wilding, L.P.. Mineralogy and related parameters of fluvial suspended sediments in northwestern Ohio. Journal of Environmental Quality [J],1976,5(2), 168-173.
    [58]Walling, D.E., and Moorehead, P.W.. Spatial and temporal variation of the particle-size characteristics of fluvial sediment. Geografisk Annaler,1987,69(A),47-59.
    [59]Walling, D.E., andMoorehead, P.W.. The particle size characteristics of fluvial sediment: an overview. Hydrobiologia,1989,176/177,125-149.
    [60]Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., and Wass, P.D.. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. The Science of the Total Environment,2000,251/252,205-222.
    [61]Walling, D.E. Human impact on the sediment loads of Asian rivers. In:Sediment Problems and Sediment Management in Asian River Basins. IAHS Publ,2011,349: 37-51.
    [62]Young, R.A.. Characteristics of eroded sediment, Transactions of the ASAE,1980,23(5), 1139-1142 and 1146.
    [63]Yu G.Q., Li Z.B., Zhang X., Li P., et al.. Effects of vegetation types on hillslope runoff-erosion and sediment yield[J]. Advances in Water Science,2010,23(4):593-599.
    [64]Zuo S. H., Zhang N. C., Li B., et al. A study of suspended sediment concentration in Yangshan deep-water port in Shanghai, China[J]. Int J Sed Res,2012,27(1):50-60.
    [65]柴晓利,何兴梅,尚春旭,等.减少石佛寺水库泥沙淤积的非工程措施[J].东北水利水电.2012,(2):53-54,61.
    [66]柴晓利.石佛寺水库低水位蓄水带来的泥沙淤积问题[J].东北水利水电.2012,(6):66-67.
    [67]常炳炎,薛松贵,张会言,等.黄河流域水资源合理分配和优化调度[M].郑州:黄河水利出版社,1998.
    [68]党连文.辽河流域水资源规划概要[J].中国水利,2011,23:101-104.
    [69]范小黎,师长兴,邵文伟,等.近期渭河下游河道冲淤演变研究[J].泥沙研究,2013,1:20-26.
    [70]高季章,王浩.黄河治理开发与南水北调工程[J],中国水科院学报,1999(1):27-34.
    [71]高素丽.辽河流域河道生态工程建设方案[J].水土保持应用技术,2011,(6):35-38.
    [72]巩琼.柳河流域侵蚀-沉积-产沙规律的初步研究[D].沈阳农业大学,2007.
    [73]韩宇舟,何俊仕.辽河干流区水资源承载力综合评价[J].中国农村水利水电,2010,(6):47-49,53.
    [74]韩云霞.辽河下游河道泥沙特点及中水河槽治理探讨[J].东北水利水电.2001,(10):28-29.
    [75]何俊仕,郭铭,韩宇舟.辽河干流多水库联合生态调度研究[J].武汉大学学报(工学版),2009,42(6):731-733.
    [76]黄方,刘湘南.辽河中下游流域土地利用变化及其生态环境效应[J].水土保持通报,2004,24(6):18-21.
    [77]黄金池,刘树坤.黄河下游输沙用水量的研究[J].中国水科院学报,2000(I):43-49.
    [78]黄武林.辽河干流铁岭以上段橡胶坝与滩地生态蓄水工程设计[J].广西水利水电,2012,(2):37-40.
    [79]胡江,杨胜发,王兴奎.三峡水库2003年蓄水以来库区干流泥沙淤积初步分析[J].泥沙研究,2013,1:39-44.
    [80]姜英震,赵福.辽宁省辽河保护区辽河河流功能转变探讨[J].华北水利水电学院学报(社科版),2012,28(3):11-13.
    [81]康萍萍,周林飞,李波,等.辽河干流河道生态需水量研究[J].水资源保护,2011,27(3):11.15.
    [82]李闯.辽河下游河道冲淤与河道治理研究[J].中华建筑,2008,(11):61-62.
    [83]梁文章,柴晓利,曹炜伦.石佛寺水库2010720暴雨洪水分析[J].东北水利水电.2011,(3):49-50.
    [84]辽宁省水利厅.辽宁省水资源[M].沈阳:辽宁科学技术出版社,2006.
    [85]林秀芝,姜乃迁,粱志勇,等.渭河下游输沙用水量研究[M].郑州:黄河水利出版社,2005.
    [86]刘小勇,李天宏,赵业安,等.黄河下游河道输沙用水量研究[J].应用基础与工程科学学报,2002,10(3):253-262.
    [87]刘晓燕,申冠卿,李小平,等.维持黄河下游主槽平滩流量4000m3/s所需水量[J].水利学报,2007,38(9):1140-1144.
    [88]刘雅萍,杨袆.辽河干流河道冲淤分析[J].东北水利水电,2008,26(285):49-51.
    [89]刘燕,江恩惠,赵连军,等.黄河与辽河河道整治对比分析[J].人民黄河,2010,32(3):23-24,28.
    [90]齐璞,李世谨,刘月兰,等.黄河水沙变化与下游河道减淤措施[M],郑州:黄河水利出版社,1997.
    [91]钱意颖,叶青超,曾庆华.黄河干流水沙变化与河床演变[M].北京:中国建材工业出版社,1993.
    [92]石伟,王光谦.黄河下游最经济输沙水量及其估算[J].泥沙研究,2003,5:32-36.
    [93]史红玲,胡春宏,王延贵,等.松花江干流河道演变与维持河道稳定的需水量研究[J].水利学报,2007,38(4):473-480.
    [94]苏飞,陈敏建,董增川,等.辽河河道最小生态流量研究[J].河海大学学报(自然科学版),2006,34(2):136-139.
    [95]孙桂喜.河道清淤疏浚必要性探析[J].东北水利水电.2010,(9):53-54.
    [96]孙杰明.柳河流域来沙与产沙分析[J].科技创新导报,2010,7:222.
    [97]申冠卿,张原锋,曲少军.从水动力量化指标谈黄河水沙的协调性配置[J].泥沙研究,2012,6:33-38.
    [98]宋玉亮,郭成久,范昊明,等.大凌河中下游泥沙颗粒特征分析[J].人民黄河,2010,32(2):42-43,48.
    [99]汤金顶,潘桂娥,王立强.辽河下游(柳河口至盘山闸段)河床演变初探[J].泥沙研究,2003,(5):59-63.
    [100]田世民,刘月兰,张晓华,等.黄河下游不同流量级洪水冲淤特性的计算与分析[J]_泥沙研究,2012,4:69-75.
    [101]王兵,张晓红,何宝珠.辽河流域水文特性浅析[J].东北水利水电,2002,20(2):22-24.
    [102]王福林,牛宝昌.河道清淤疏浚是解决辽河干流防洪的重要工程措施[J].东北水利水 电,2001,(4):29-31.
    [103]温会军.辽河干流橡胶坝联合调度方案编制方法[J].现代农业科技,2012(9):274-276.
    [104]吴保生,李凌云,张原锋.维持黄河下游主槽不萎缩的塑槽输沙需水量[J].水利学报,2011,42(12):1392-1397.
    [105]吴保生,张原锋.黄河下游输沙量的沿程变化规律和计算方法[J].泥沙研究,2007,(1):30-35.
    [106]吴保生,郑珊,李凌云.黄河下游塑槽输沙需水量计算方法[J].水利学报,2012,43(5):594-600.
    [107]王党伟,陈建国,吉祖稳,等.黄河下游河道滞沙条件及滞沙空间研究[J].泥沙研究,2012,5:26-32.
    [108]谢功生,汪世伦.关于辽河中下游河道演变及整治的探讨[J].水利管理技术,1997,17(6):50-53.
    [109]熊敬东.辽河中下游河道冲淤分析及整治规划研究[D].河海大学,2005.
    [110]严军,胡春宏.黄河下游河道输沙水量的计算方法及应用[J].泥沙研究,2004,4:25-32.
    [111]严军,申红彬,王俊,等.用泥沙输移公式推求黄河下游河道输沙水量[J].人民黄河,2009,31(2):25-26.
    [112]杨丽丰,王煜,陈雄波,等.渭河下游输沙用水量研究[J].泥沙研究,2007,3:24-29.
    [113]杨丰丽,陈雄波,梁志勇.塑槽输沙用水量计算方法研究[J].人民黄河,2010,32(6):24-26.
    [114]岳德军,侯素珍,赵业安,等.黄河下游输沙水量研究[J].人民黄河,1996,18(8):32-33,40.
    [115]张翠萍,伊晓燕,张超.渭河下游河道输沙水量初步分析[J].泥沙研究,2007(1):63-66.
    [116]张静,何俊仕.辽河流域径流序列特性分析[J].中国农村水利水电,2011,(4):10-13.
    [117]张燕菁,胡春宏,王延贵,等.辽河干流河道演变与维持河道稳定的输沙水量研究[J].水利学报,2007,38(2):176-181.
    [118]张原锋,申冠卿.黄河下游维持主槽不萎缩的输沙需水研究[J].泥沙研究,2009(3):8-12.
    [119]张小光.辽河流域生态环境综合评价[J].中国科技信息,2011,9:45.-46.
    [120]赵若雨,赵直,林岚.辽河下游泥沙治理措施初探[J].东北水利水电,2008,26(293):17-18.
    [121]中国水利水电科学研究院.辽河下游(柳河口以下)河床演变及河道整治的研究[R].北京:中国水利水电科学研究院,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700