用户名: 密码: 验证码:
东准噶尔卡拉麦里地区金铜多金属矿成矿规律与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东准噶尔卡拉麦里成矿带地处我国新疆东北部,夹持于阿尔泰山与天山之间,大地构造上处于中亚造山带的中段,显生宙以来历经了漫长而复杂的构造演化史,造就了区内丰富多彩且独具特色的构造、沉积、岩浆类型和特征,为区内成矿奠定了良好的物源、动力和空间基础,区域成矿条件可与中亚成矿域哈萨克斯坦、西准噶尔等地区相类比,属中亚成矿域环巴尔喀什-准噶尔金铜多金属巨型成矿带的重要组成部分,找矿前景看好。
     近年来,随着1:5万区域地质调查、国家305项目、国土资源大调查和找矿远景区评价项目的相继实施和完成,区内积累了大量的地质、地球化学、地球物理和遥感等基础性地质资料。但与东部发达地区相比,地质工作程度仍处于较低水平,仍有一些基础性的地质问题没有很好解决,运用新理论新方法指导区域地质找矿工作还相对薄弱。
     本文在广泛收集、消化和借鉴前人研究成果的基础上,结合野外地质调查和样品分析测试,采用基础地质研究为先导,定性+定量分析为手段的工作方法,明确了东准噶尔地区晚古生代区域构造演化历史,并以最新的成矿规律和成矿预测理论为指导,查明了研究区主要矿床类型,划分了成矿系列,提取了多元地学成矿信息,总结了成矿规律和控矿因素,建立综合信息成矿预测模型,优选了成矿预测模型方法,以MAPGIS6.7软件和矿产资源预测评价专家系统(MORPAS3.0、GeoDas4.0)为平台对研究区矿产资源进行了定位预测研究,圈定了有利找矿靶区,并进行了评价。本论文取得的主要成果和认识如下:
     1.依据最新的区域调查和科研成果,修编和完善了研究区地质矿产底图,并建立了多元地学空间信息数据库。
     2.以基础地质研究为出发点,通过对研究区及相关区域地层、构造和岩浆岩开展系统的沉积地层学、构造年代学、岩石学、岩相学、岩石地球化学、同位素地球化学和年代学的综合研究,提出:①准噶尔盆地基底的主体可能由底侵的幔源物质+拼合的玄武质洋壳和岛弧体系组成。②~320Ma,东准噶尔地区古亚洲洋还未完全闭合,洋-陆相互作用构造体制依然存在,区内广泛出露的石炭系巴塔玛依内山组火山岩-次火山侵入岩实为古亚洲洋持续南向哈萨克斯坦-准噶尔板块俯冲消减,引发弧后扩张的结果。③~310Ma,卡拉麦里蛇绿岩所代表的弧后盆地并未完全关闭,仅表现为卡拉麦里断裂带北侧部分的消减,南侧实为抬升的残余弧盆。卡拉麦里地区没有发生强烈的陆-陆碰撞造山作用,仅表现为一般的陆-陆拼贴和大规模的NW-SE向右行剪切走滑作用。区内黄羊山岩体可能就是该走滑拉伸作用下的产物。④东准噶尔地区石炭纪中晚期岩浆作用具明显的壳幔混合特征,而且幔源物质丰富,为成矿奠定了良好基础,区域成矿条件可与西准噶尔及哈萨克斯坦等中亚地区相比,找矿前景看好。
     3.采用聚类分析法、因子分析法及C-A多重分形方法对研究区20种地球化学元素数据进行了处理和信息提取,绘制了各元素地球化学异常图和组合异常图;参照王世称教授地球物理数据处理方法,对研究区重磁数据进行了处理和图件绘制,并对构造、岩体及区域大地构造单元属性信息进行了提取。同时,结合区域大地构造解析,将研究区以卡拉麦里断裂为界划分为南北两个不同的大地构造单元。
     4.依据成矿系列理论,并结合区域最新研究成果和实际工作,将研究区金铜多金属成矿划分为与早-中二叠世韧性剪切带变形变质作用有关的金矿床和与晚石炭世早期中酸性火山-次火山岩有关的铜钼(金)矿床两大成矿系列,并总结了成矿规律和控矿因素。
     5.以GIS技术为手段,采用定性和定量分析相结合的方法,提取了研究区两大成矿系列多元成矿信息,并构建了相应综合信息找矿预测评价模型。
     6.采取数据驱动为主知识驱动为辅的混合模型方式,首次运用找矿信息量法+模糊证据权法的组合方法,对研究区与早-中二叠世韧性剪切带变形变质作用有关的金矿床开展了成矿定位预测研究,圈定了有利找矿靶区9个,其中A级找矿靶区3个,B级找矿靶区2个,C级找矿靶区4个,并分别进行了评价。
     7.采取知识驱动为主数据驱动为辅的混合模型方式,首次将地球化学元素组合异常圈定方法——累加指数法引入区域成矿预测中,并对研究区与晚石炭世早期中酸性火山-次火山岩有关的铜钼(金)矿床进行了成矿定位预测研究,圈定了有利找矿靶区6个,其中A级找矿靶区2个,B级找矿靶区1个,C级找矿靶区3个,并分别进行了评价。
Kalamaily metallogenic belt in East Junggar is located between Altai mountains andTianshan mountains in the northeast part of Xinjiang. Belonging to the central part ofCentral Asian Orogen, it experienced a protracted and complicated tectonic development inPhanerozoic and produced numerous and distinctive types of structure, sediment andmagma, which provided favorable materials, dynamics and space for ore-forming process.As the important part of circum-Balkhash-Junggar Au-Cu polymetallic large metallogenicbelt, Kalamaily metallogenic belt can be well comparable to Kazakhstan and West Junggarareas in Central Asian Metallogenic domain in terms of regional metallogenic conditions,having good ore-prospecting potential.
     In recent years, masses of basic geological data related to geology, geochemistry andremote sensing have been accumulated, with the implementation and accomplishment of1:50000regional geological survey, National Project305, land and resource survey andprospecting potential area evaluation project, which builds up a better foundation for oreprospecting. However, this region still remains a low geological research level comparedwith the eastern developed regions. Some fundamental geological problems have not beenwell settled and researches on metallogenic regularity and prediction carried out by new oreprospecting theory and method are also insufficient relatively.
     On the basis of collecting, absorbing and referring to previous researches, the regionaltectonic evolution of East Junggar in Paleozoic have been further clarified by combinedmethods of field geological survey and geochemical analysis in this paper. Under theguidance of latest metallogenic theory and prediction, types of ore deposits in research areahave been determined, metallogenic series have been divided in detail and metallogenicregularities and ore-controlling factors have also been summarized. Furthermore,comprehensive information metallogenic prediction model has been established byextracting multiple geoscience information and prediction methods of the model have alsobeen optimized. Based on MAPGIS6.7and mineral resource prediction and evaluationexpert system(MORPAS3.0、GeoDas4.0), a spatial location prediction research has beenperformed for mineral resources in this area. At last, prospecting targets are given andevaluated. The main achievements are listed as follows:
     1.According to the latest regional geological survey data and scientific researchachievements, bottom map of regional geology and mineral resource has been modified and improved in our research area and multiple geoscience spatial information database hasbeen established.
     2.Based on a comprehensive analysis involved stratum, structure and magma, it isinferred that:(1)the major part of the basement of Junggar Basin is mainly composedunderplated mantle-derived materials, subducted oceanic crust and island arc system.(2)Paleo-Asian Ocean in East Junnggar was not closed at the time of~320Ma and theinteraction of ocean-continent still existed. The volcanic and subvolcanic rocks from theCarboniferous Batamayineishan Formation was the product of back-arc extension inducedby the southward subduction of Paleo-Asian Ocean beneath Kazakhstan and Junggarplate.(3) Back-arc basin represented by Kalamaily ophiolites was not closed completely atthe time of~320Ma. The northern part of the Kalamaily structural belt was being subductedwhile the southern part was a uplift residual arc basin. Intensified continent-continentcollision did not occur in Kalamaily area. The closure of Paleo-Asian Ocean in this regionwas in the forms of continent-continent collage and the large-scale NW-SE trending dextralstrike-slip. Huangyangshan pluton may be the product under the strike-slip extension.(4)Middle-late Carboniferous magmatism in East Junngar has the distinctive features ofcrust-mantle hybrid and the mantle-derived materials accounts for a high proportion, whichmay lay better foundation for ore-forming process. Regional metallogenic conditions ofKalamaily metallogenic belt can be well comparable to Kazakhstan and West Junggar areasof Central Asian Metallogenic domain and have good ore-prospecting potential. TheKalamaily metallogenic belt has good ore-prospecting potential because of comparableregional metallogenic conditions to Kazakhstan and West Junggar areas in Central Asian.
     3.20geochemical elements have been processed and extracted to accomplishgeochemical anomaly maps and geochemical comprehensive anomaly maps by means ofcluster analysis, factor analysis and C-A multifractal method. In terms of geophysical dataprocessing method of Professor Wang Shichen, gravity and magnetic data have beenhandled to draw related maps and attributes of structures, rock boby and tectonic unit havebeen extracted. Meanwhile, combined with regional tectonic analysis,research area isdivided two different part tectonic unit by Kalamaily fracture, the north one and the southone.
     4. In the light of metallogenic series theory, the Au-Cu polymetallic ore deposits can bedivided two series, Au ore deposits related to early-middle Permian deformed andmetamorphic process of ductile shear zone and Cu-Mo(Au) deposits bearing a closerelationship with late Carboniferous intermediate volcanic and subvolcanic rocks, and metallogenic regularities and ore-controlling factors have been summarized.
     5.Based on GIS technology and by the means of a combination of qualitative andquantitative analytical methods, multiple metallogenic information of the two seriesmentioned above was extracted and comprehensive information ore prospecting model hasbeen established.
     6.Based on the hybrid model of data driven supplemented knowledge driven,thecombination method of prospecting-information contents and fuzzy weights of evidencemethod has been performed for Au ore deposits related to early-middle Permian deformedand metamorphic process of ductile shear zone,and9ore favorable prospecting target areaswere outlined,including2A type,3B type and4C type targets.
     7. Based on the hybrid model of knowledge driven supplemented data driven,thecomprehensive information prediction method has been performed for Cu-Mo(Au) oredeposits related to early late Carboniferous intermediate volcanic and subvolcanic rocks,and6ore favorable prospecting target areas were outlined,including2A type,1B type and3Ctype targets.
引文
1) Agerberg F. New Applications of the Model of de Wijs in Regional Geochemistry[J].MathematicalGeology,2007,39(1):1~25.
    2) Agterberg F P, Bonham-Carter G F, Cheng Q M,et al. Weighs of evidence modeling and weightedlogistic regression for mineral potential mapping[C]. In: Davis J C and Herzfeld U C(eds.).Computers in Geology:25Years of Progress. New York: Oxford Univ.Press,1993,13~32.
    3) Agterberg F P.Computer programs for mineral exploration[J].Science,1989,245:76~81.
    4) Aldrich Jr M J, Chapin C E and Laughli A W. Stress history and tectonic development of the RioGrande Rift, New Mexico[J].Jour.Geophys.Res.1986,91:6199~6211.
    5) Bonham-Carter G F, Agterberg F P, and Wright D F.Weights of evidence modelling: a new approachto mapping mineral potential[C].In: Agterberg F P, and Bonham-Carter G F(eds.).StatisticalApplications in the Earth Sciences.Geol. Survey Canada,Paper89-9,1989,171~183.
    6) Boleneus D E, Raines G L, Causey J D, et al. Assessment method for Epithermal Gold Deposits inNortheast Washington State Using Weights-of-Evidence GIS Modeling[R].Open-File Report USGS,2001,1~52.
    7) Botbol J M. An Application of Characteristic Analysis to Mineral Exploration.In;Proceedings of9thInternational Symposium on Techniques for Decision-Making in the Mineral Industry[C].MontrealCanada:Canadian Institute of Mining and Metallurgy Special Volume12,1971.92~99.
    8) Cabanis P B and Thiéblemont D.La discrimination des thoeiites continentales et des basaltesarrière-arc.Proposition d'un nouveau diagramme,le triangle Th-3Tb-2Ta[J].Bull.Socéol.Fr.,1988,(6):927~935.
    9) Castillo P R and Newhall C G. Geochemical Constraints on Possible Subduction Components inLavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines[J]. Journal of Petrology,2004,45:1089~1108.
    10) Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifsfrom Ariege(Northeastern Pyrenees, France):An ion microprobe study[J].GeochimicalCosmochimica Acta,1990,54:2835~2846.
    11) Chen B and Arakawa Y.Elemental and Nd~Sr isotopic geochemistry of granitoids from the WestJunggar foldbelt (NW China),with implications for Phanerozoic continental growth[J].Geochimicaet Cosmochimica Acta,2005,69(5):1307~1320.
    12) Chen Q M and Agterberg F P.Fuzzy Weights of Evidence Method and Its Application in MineralPotential Mapping[J].Natural Resources Research,1999,8(1):27~35.
    13) Chen Q M.Non-Linear Theory and Power-Law Models for Information Integration and MineralResources Quantitative Assessments[J].Math Geosci,2008,40:503~532.
    14) Chen Zhang,Li Yaochang, Mao Xieyong,et al.. Reduction of distortion and improvement ofefficiency for gridding of scattered gravity and magnetic data[J].Applied Geophysics,2012,9(4):378~399.
    15) Cheng Q M and Zhang S. Fuzzy weights of evidence method implemented in GeoDAS GIS forinformation extraction and integration for prediction of point events.In: Proceedings of IEEEinternational conference of geosciences and remote sensing,(IGA RSS02),Toronto,Canada,2002,24~28.
    16) Cheng Q M.Spatial and scaling modeling for geochemical anomaly separation[J].Journal ofExploration Geochemistry,1999,65:175~194.
    17) Cheng Q, Agterberg F P and Ballantyne S B.The separation of geochemical anomalies frombackground by fractal methods [J]. Journal of geochemical Exploration,1994,51:109~130.
    18) Cheng Q.Multifractality and spatial statistics [J].Computer&Geosciences,1999,25(9):949~962.
    19) Crosta A P and McM Moore J.Enhancement of landsat thematic mapper imagery for residual soilmapping in SW Minais Gerrain[C].In:Proceedings of the7th(ERIM)thematic conference:RemoteSensing for Exploration Geology Calgary.1989,1173~1187.
    20) Defant M J and Dmmmond M S. Derivation of some modem arc magmas by melting of youngsubducted lithosphere[J]. Nature,1990,347:662~665.
    21) DePaolo D J and Wasserburg G J.The sources of island arcs as indicated by Nd and Sr isotopicstudies[J].Geophys.Res.Lett.,1977,4:465~468.
    22) Dickin A P.Radiogenic isotope geology[M].Cambridge University Press,2005,70~101.
    23) Dosso L,Boespflug X,Romeur M,et al..Isotopic and trace element data on Back-Arc basalts from theSouth West Pacific Basins and the Sunda Arc[J].Chemical Geology,1988,70(1-2):47.
    24) Edwards C M H,Menzies M A,Thirlwall M F,et al..The transition to potassic alkaline volcanics inisland arcs: the Ringgit-Beser complex, East Java, Indonesia[J]. Journal of Petrology,1994,35:1557~1595.
    25) Fretzdorff S,Livermore R A,Devey C W,et al.. Petrogenesis of the Back-arc East Scotia Ridge,South Atlantic Ocean[J].Journal of Petrology,2002,43(8):1435~1467.
    26) Geng H Y, Sun M,Yuan C et al.. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies ofLate Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridgesubduction?[J].Chemical Geology,2009,266:364~389.
    27) Gill J B.Orogenic Andesites and Plate Tectonics[M].Springer-Verlag,New York,1981,1~390.
    28) Hedenquist JW and Richard JP.The influence of geochemical techniques on the development ofgeneticmodels for porphyry copper deposits.Reviews in Economic Geology,1998,10:235~256.
    29) Hollings P. Archean Nb-enriched basalts in the northern Superior province[J]. Lithos,2002,64:1~14.
    30) Irvine T N and Barager W R A. A guide to the chemical classification of the common volcanicrocks[J]. Canadian Journal of Earth Sciences,1971,8:523~548.
    31) Keller R A,Fisk M R,Smellie J L,et al..Geochemistry of back arc basin volcanism in BransfieldStrait,Antarctica:Subducted contributions and along-axis variations[J].Journal of GeophysicalResearch,2002,107:EVC4-1~EVC4-17.
    32) Kemp L D, Bonham-Carter G F, Raines G L,et al..Arc-SDM:Arcview extension for spatial datamodelling using weights of evidence, logistic regression,fuzzy logic and neural network analysis.http://ntserv.gis.nrcan.gc.ca/sdm/,2001.
    33) Kieffer B, Arndt N, Lapierre H, et al., Keller F and Meugniot C.Flood and shield basalts fromEthiopia: magmas from the African superswell[J]. J.Petrol.,2004,45(4):793~834.
    34) Kudryavtsev Y K.The Cu Mo deposits of Central Kazakhstan.In: Shatov V, Seltmann R,Kremenetsky A,et al.(eds.).Granite-related Ure Deposits of Central Kazakhstan and AdjacentAreas[C]. St Petershurg;Glagol Puhl. House,1996,119~144.
    35) Le Maitre R W, Streckeisen A, Zanettin B,et al.. Igneous Rocks——A Classification and Glossary ofTerms(2ed.).Recommendations of the International Union of Geological Sciences Subcommissionon the Systematics of igneous rocks[M]. Oxford:Cambridge University Press,2002,30~42.
    36) Liu Y L,Guo LS,Liu Y D,et al..Geochronology of Baogutu porphyry copper deposit in westernJunggar area,Xinjiang of China[J].Science in China(Series D),2009,52(10):1543~1549.
    37) Long X P,Yuan C,Sun M,et al..Geochemistry and U–Pb detrital zircon dating of Paleozoicgraywackes in East Junggar,NW China:Insights into subduction-accretion processes in the southernCentral Asian Orogenic Belt[J].Gondwana Research,2012,21:637~653.
    38) Loughlin W P. Principal component analysis for alterationmapping[C].In:Proceedings of the8ththematic conference on Geologic Remote Sensing.USA:Denver,1991,293~306.
    39) Ludwig K R.User's manual for Isoplot3.75:A geochronological toolkit for MicrosoftExcel[M].Berkeley Geochronology Center Special Publication,2012,1~75.
    40) Luo X, Dimitrakopoulos R. Data-driven fuzzy analysis in quantitative mineral resourceassessment[J]. Computers&Geoscience,2003,(29):3-13.
    41) Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, ChengLS,Yang JM and Zhang CQ.Areview of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (XinjiangAutonomous Region, NW China): Principal characteristics and ore-forming processes[J].JournalofAsian Earth Sciences,2008,32:184-203
    42) Meschede M.A method of discriminating between different types of mid-ocean ridge basalts andcontinental tholeiites with the Nb-Zr-Y diagram[J].Chemical Geology,1986,56:207~218.
    43) Pearce J A,Cann J R.Tectonic setting of basic volcanic rocks determined using trace elementanalyses[J].Earth and Planetary Science Letters,1973,19:290~300.
    44) Pearce J A,Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks[J].Journal of Petrology,1984,25(4):956~983.
    45) Pearce J A,Norry M J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks[J].Contributions to Mineralogy and Petrology,1979,69:33~47.
    46) Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C].In: Thorpe,R S. Orogenic andesites and related rocks, Chichester, England: John Wiley and Sons,1982,528-548.
    47) Perisov A V. Remote Sensing from Research to Operation Proceedings of the18th AnnualConference of RS Society[C]. University of Dundee,1992,129~146.
    48) Ping A, wooil M M,and Andy R.1991.Application of fuzzy set theory to integrated mineralexploration[J]. Canada of journal of exploration geophysics,27(1):1~11.
    49) Plank T and Langmuir C H. The chemical composition of subducling sediment and itsconsequences for the crust and mantle[J].Chemical Geology,1998,145(3-4):325~394.
    50) Porwal A, Carranza E J M,Hale M.Knowledge-driven and Data-driven Fuzzy Models for PredictiveMineral Potential Mapping[J].Natural Resources Research,2003,12(1):1~25.
    51) Rapp R P, Watson E B. Dehydration melting of metabasalt at8~32kbar: implications for continentalgrowth and crust–mantle recycling[J]. Journal of Petrology,1995,36(4),891~931.
    52) Rickwood P C. Boundary lines within petrological diagrams which use oxides of major and minorelements[J].Lithos,1989,22(4):247~263.
    53) Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J]. Geochim.Cosmochim. Acta,1992,56:5-20.
    54) Rollinson H R. Using geochemical data: evaluation, presentation,interpretation[M]. Longnan GroupUK Ltd., New York,1993,1~352.
    55) Rudnick R L and Gao S. The composition of the continental crust[C].In:Rudnick R L. The Crust Vol.3, Treatise on geochemistry(eds. Holland H D and Turekinan K K), Elsevier, Oxford,2003,1~64.
    56) Saunders A D, Storey M, Kent R W et al..Consequences of plume-lithosphere interaction[C].In:Storey B C, Alabaster T and Pankhurst R J. Magmatism and the Causes of Continental Break_up.Geol. Soc. Spec. Pub., London,1992,68:41~60.
    57) Saunders A D,John T.The geochemistry of basalts from a back-arc spreading centre in the EastScotia Sea[J]. Geochimica et Cosmochimica Acta,1979,43(4):555~572.
    58) Sibson R H.Fault rocks and fault mechanism. Journal of the Geological Society,1977,133:191-213.
    59) Singel D A,Berger V I,MenZie W D, et al.. Porphyry copper deposit density[J].Economic Geology,2005,100:491~514.
    60) Singer D A.Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J].Nonrenewable Resources,1993,2(2):69~81.
    61) Smith R S, and O'Connell M D. Interpolation and gridding of aliased geophysical data usingconstrained anisotropic diffusion to enhance trends.[J] Geophysics,2005,70(5):121~127.
    62) Su Y P, Zheng J P, Griffin W L, et al. Geochemistry and geochronology of Carboniferous volcanicrocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition[J].GondwanaResearch,2012,22(3-4):1009~1029.
    63) Sun S S and McDonough W F.1989.Chemical and isotopic systematic of ocean basalts:Implications for mantle composition and processes[C].In:Saunders A D and Norry MJ(ed.).Magmatism in the Ocean Basins.Geological Society of London,Special Publications,1989,42:313~345.
    64) Syromyatnikova N G,Kolesnikov V V,IIyin VA, et al.. Isotope dating of copper-porphyrymineralisation and ore-controling intrusions of the Aktogay ore field (northeast Balkhasharea).Isotope Dating of Endogenic Ore Formations.Conference Abstract Volume,Kiev,1990,6~79(inRussian).
    65) Taylor H P.The application of oxygen and hydrogen isotope studies to problem of hydrotbermalalteration and ore deposition[J]. Economic Geology,1974,69:843~883.
    66) Tian L Y,Castillo P R, Hawkins J W,et al.. Major and trace element and Sr–Nd isotope signatures oflavas from the Central Lau Basin: Implications for the nature and influence of subductioncomponents in the back-arc mantle [J]. Journal of Volcanology and Geothermal Research,2008,178:657~670.
    67) Turner S,Foden J,George R,Evans P,et al.,Elburg M,Jenner G. Rates and processes of potassicmagma evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia[J].Journal ofPetrology,2003,44:491~515.
    68) Wang J B, Wang Y W and Wang L J.The Junggar immature continental crust province and itsmineralization[J].Acta Geologica Sinica,2004,78(2):337~344
    69) Weaver B L and Tarney J.Major and trace element composition of the continental lithosphere[C].In:Pollack H N and Murthy V R.Structure and Evolution of the Continental Lithosphere, Physicsand Chemistry of the Earth.,1984,15:39~68.
    70) Wedepohl K H. The composition of the continental crust.Gochim[J]. Cosmochim Acta,1995,59:217~232.
    71) Wilkinson J J and Johnston J D. Pressure fluctuations, phase separation, and gold precipitationduring seismic fracture propagation[J]. Geology,1996,24:395~398.
    72) Wilson M.Igneous Petrogenesis:A global Tectonic Approach[M].London:Unwin HymenLtd,1989,342~359.
    73) Winchester J A and Floyd P A.Geochemical discrimination of different magma series andtheirdifferentiation products using immobile elements[J].Chemical Geology,1977,20:325~343.
    74) Wybron L, Gallagher R and Mernagh T.Using GIS for mineral potential evaluation areas with fewknown mineral occurrences,Second National Forumon GIS in the Geosciences.AustralianGeological Survey Organization Record,1995,199~211.
    75) Wyman D A, Ayer J A and Devaney J R. Niobium-enriched basalts from the Wabigoon subprovince,Canada: evidence for adakitic metasomatism above an Archean subduction zone [J]. Earth andPlanetary Science Letters,2000,179:21~30.
    76) Xiao W J, Han C M, Yuan C, et al..Middle Cambrian to Permian subduction-related accretionaryorogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of CentralAsia[J].Journal of Asian Earth Sciences,2008,32(2-4):102~117
    77) Xiao Y, Zhang H F, Shi J A,et al.. Late Paleozoic magmatic record of East Junggar, NW China andits significance:Implication from zircon U–Pb dating and Hf isotope[J].Gondwana Research,2011,20:532~542.
    78) Yao C L and Pang X L.Research on the enhancement of trends of aeromagnetic Data:The ChineseGeophysics[J], China Science and Technology University Press, China,2009,267~267.
    79) Yin J Y,Yuan C,Sun M, Long X P, et al. Late Carboniferous high-Mg dioritic dikes in WesternJunggar,NW China: Geochemical features,petrogenesis and tectonic implications[J].GondwanaResearch,2010,17(1):145~152.
    80) Zartman R E and Doe B R.Plumbotectonic-the model[J].Tectonophysics,1981,195(1/2):135~162.
    81) Zhang Z C, Zhou G, Kusky T M et al..Late Paleozoic volcanic record of the Eastern Junggar terrane,Xinjiang, Northwestern China: Major and trace element characteristics, Sr–Nd isotopic systematicsand implications for tectonic evolution[J]. Gondwana Research,2009,16:201~215.
    82) Zheng J P, Sun M, Zhao G et al..Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoicvolcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolutionof the basin basement[J].Journal of Asian Earth Sciences,2007,29:778~794.
    83) Zuo R, Cheng Q and Agterberg F P. Application of a hybrid method combining multilevel fuzzycomprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity[J]. OreGeology Reviews,2009,35,101~108.
    84)边伟华.准噶尔盆地巴塔玛依内山组火山岩储层地质学研究[博士学位论文].长春:吉林大学,2011,1~81.
    85)曹静平,谢兰芳,张晓黎.矿产资源GIS评价预测中的若干技术问题探讨.见:加强地质工作促进社会经济和谐发展——2007年华东六省一市地学科技论坛论文集[C].合肥:合肥工业大学出版社,2007,312~322.
    86)陈柏林,吴淦国,叶得金,等.北山南带韧性剪切带构造与金矿成矿动力学[M].北京:地震出版社,2003,1~127.
    87)陈家富,韩宝福,张磊.西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义[J].岩石学报,2010,26(8):2317~2335.
    88)陈建平,王功文,侯昌波,等.基于GIS技术的西南三江北段矿产资源定量预测与评价[J].矿床地质,2005,24(1):15-24.
    89)陈建平,张寿廷,汤军,等.非传统矿产资源定量预测的理论思考[J].地球物理学进展,2002,17(2):342~348.
    90)陈建平.矿产资源勘查与评价学科发展动态——记第五届国际矿产资源学术讨论会[J].地质科技情报,1999,18(3):47~50.
    91)陈仁义.新疆东准噶尔铜金矿床类型及时空分布[J].矿床地质,1995,14(3):228~234.
    92)陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998,1~387.
    93)陈述彭.遥感大辞典[M].北京:科学出版社,1990,1~1060.
    94)陈祥云.中国现代化发展与矿产资源消费关系研究[J].资源经济,2008,21(3):7~10.
    95)陈文,孙枢,张彦,等.新疆东天山秋格明塔什——黄山韧性剪切带40Ar/39Ar年代学研究[J].地质学报,2005,79(6):790~804.
    96)陈文,张彦,秦克章,等.新疆东天山剪切带型金矿床时代研究[J].岩石学报,2007,23(8):2007~2016.
    97)陈宣华,陈正乐,韩淑琴,等.中亚巴尔喀什成矿带晚古生代岩浆活动与斑岩铜矿成矿时代[J].吉林大学学报(地球科学版),2008,43(3):734~747.
    98)陈宣华,屈文俊,韩淑琴,等.巴尔喀什成矿带Cu-Mo-W矿床的辉钼矿Re-Os同位素年龄测定及其地质意义[J].地质学报,2010,8(9):1333~1348.
    99)陈宣华,杨农,陈正乐,等.哈萨克斯坦阿克斗卡超大型斑岩型铜矿田地质特征与成矿模式[J].地质力学学报,2010,16(4):325~339.
    100)陈宣华,杨农,叶宝莹,等.中亚成矿域多核成矿系统西准噶尔成矿带构造体系特征及其对成矿作用的控制[J].大地构造与成矿学,2011,35(3):325~338.
    101)陈永清,陈建国,汪新庆,等.基于GIS矿产资源综合定量评价技术[M].北京:地质出版社,2008,1~294.
    102)陈永清,张牛元,夏庆霖,等.应用多重分形滤波技术提取致矿地球化学异常:以西南“三江”南段Cu、Zn致矿异常提取为例[J].地球科学——中国地质大学学报,2007,31(6):861~866.
    103)陈毓川,王登红,朱裕生,等.中国成矿体系与区域成矿评价[M].北京:地质出版社,2007,1~1005.
    104)陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学[M].北京:地震出版社,2005,1~441.
    105)成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007,14(5):42~53.
    106)成秋明.多维分形理论和地球化学元素分布规律[J].地球科学,2000,25(3):311~18.
    107)成秋明.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘(中国地质大学(北京);北京大学),2009,16(2):185~197.
    108)成秋明.覆盖区矿产综合预测思路与方法[J].地球科学(中国地质大学学报),2012,37(6):1109~1125.
    109)成勇,李刚,俞彦龙,等.综合信息分析在包古图地区铜金矿找矿中的应用[J].新疆有色金属,2009,(1):13~14.
    110)程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列问题[J].中国地质科学院院报,1979,32~58.
    111)邓晋福,罗照华,苏尚国,等.岩石成因构造环境与成矿作用[M].北京:地质出版社,2009,1~381.
    112)邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地质学报,2007,13(3):392~402.
    113)邓一谦.重磁异常的解析延拓[J].物探化探计算技术,1982,(1):88~92.
    114)地质部地球物理探矿局611物探队.新疆准噶尔盆地东北部重力磁法区域普查报告[D].1955,1~35.
    115)丁清峰,孙丰月.专家证据权重法及其在东昆仑地区的应用[J].地质与勘探,2005,41(4):88~94.
    116)董连慧,徐兴旺,屈迅,等.初论环准噶尔斑岩铜矿带的地质构造背景与形成机制[J].岩石学报,2009,25(4):713~737.
    117)范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社,2003,1~280.
    118)方世虎,贾承造,郭召杰,等.准噶尔盆地二叠纪盆地属性的再认识及其构造意义[J].地学前缘(中国地质大学(北京);北京大学),2006,13(3):108~121.
    119)谷志猛,边立恩,揣媛媛,等.网格参数选取对低幅度构造成图的影响[J].石油天然气学报,2012,34(12):50~54.
    120)管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005,27~41.
    121)郭芳放,姜常义,卢荣辉,等.新疆北部卡拉麦里地区黄羊山碱性花岗岩的岩石成因[J].岩石学报,2010,26(8):2357~2373.
    122)郭华东等.对地观测技术与可持续发展[M].北京:科学出版社,200l,1~219.
    123)韩宝福,何国琦,王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学D辑:地球科学,1999,29(1):16~21.
    124)韩淑琴,陈宣华,杨农,等.哈萨克斯坦科翁腊德斑岩型铜矿地质特征与成矿模式[J].地质力学学报,2010,16(2);203~212.
    125)郝建荣,周鼎武,柳益群,等.新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析[J].岩石学报,2006,22(1):189~198.
    126)何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社,1994:62~220.
    127)何国琦,陆书宁,李茂松.大型断裂系统在古板块研究中的意义——以中亚地区为例[J].高校地质学报,1995,1(1):1~10.
    128)贺敬博,陈斌.西准噶尔克拉玛依岩体的成因:年代学、岩石学和地球化学证据[J].地学前缘,2011,18(2):191~211.
    129)洪大卫,王式光,谢锡林,等.试析地幔来源物质成矿域——以中亚造山带为例[J].矿床地质,2003,22(1):41~54.
    130)黄岗,牛广智,王新录,等.新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据[J].地质通报,2012,31(8):1267~1278.
    131)李长江,麻土华.矿产勘查中的分形混沌与ANN[M].北京:地质出版社,1999,1~152.
    132)李光明,秦克章,李金祥.哈萨克斯坦环巴尔喀什斑岩铜矿地质与成矿背景研究[J].岩石学报,2008,28(12):2679~2700.
    133)李华芹,陈富文.中国新疆区域成矿作用年代学[M].北京:地质出版社,2004,1~391.
    134)李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(1):148~168.
    135)李锦轶,杨天南,李亚萍,等.东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束[J].地质通报,2009,28(12):1817~1826.
    136)李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3):304~322.
    137)李明,周圣华,胡庆雯.中亚成矿域斑岩铜(钼)矿带的认识与建立[J].2007,34(5):870~877.
    138)李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45~54.
    139)李玮,柳益群,董云鹏,等.新疆三塘湖地区石炭纪火山岩年代学、地球化学及其大地构造意义[J].中国科学,2012,42(11):1716~1728.
    140)李文昌,赵志芳,卢映祥,等.云南省遥感地质应用[M].北京:地质出版社,2009,1~188.
    141)李亚萍,李锦轶,孙桂华,等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑错石的证据[J].岩石学报,2007,23(7):1577~1590.
    142)李裕伟,赵精满,李晨阳.基于GMS、DSS和GIS的潜在矿产资源评价方法[M].北京:地质出版社,2007,291~358.
    143)李源,杨经绥,张健,等.新疆东天山石炭纪火山岩及其构造意义[J].岩石学报,2011,27(1):193~209.
    144)梁小筠.正态分布检验(一)[J].上海统计,2000,(10):22~25.
    145)梁小筠.正态分布检验(二)[J].上海统计,2000,(11):29~31.
    146)梁小筠.正态分布检验(三)[J].上海统计,2000,(12):24~28.
    147)梁云海,李文铅,李卫东.新疆准噶尔造山带多旋回开合构造特征[J].地质通报,2004,23(3):279~285.
    148)刘家远,钱建平,程志平,等.新疆东准噶尔陆相火山作用与金铜成矿[M].北京:地质出版社,2002,1~225.
    149)刘通,方庆新,王世伟,等.巴尔喀什-准噶尔斑岩铜(钼、金)矿的找矿靶区的选择[J].新疆地质,27(增刊):62~65.
    150)刘因,王金锋,刘辉.GIS成矿预测的数据驱动与知识驱动分析[J].安徽地质,2003,13(2):126~129.
    151)龙晓平,孙敏,袁超,等.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J].岩石学报,2006,22(1):31~40.
    152)卢作祥,范永香,刘辅臣,等.成矿规律和成矿预测学[M].武汉:中国地质大学出版社,1989,1~245.
    153)陆松年.Sm-Nd等时线年龄合理性的判别[J].中国区域地质,1994,2:148~159.
    154)路彦明,赵军,陈祥,等.东准噶尔双泉地区韧-脆性剪切带与金矿成矿[J].新疆地质,2007,25(2):164~168.
    155)路彦明.新疆东准双泉地区金矿构造控矿规律及勘查找矿方向[博士学位论文].中国地质大学(北京),2008,1~102.
    156)毛治国,邹才能,朱如凯,等.准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义化学特征及其构造环境意义[J].岩石学报,2010,26(1):207~216.
    157)梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001,1~380.
    158)聂晓勇,宋谢炎,薄科武,等.卡拉麦里金矿带典型矿床——双泉金矿的地质地球化学特征及成因[J].矿物岩石地球化学通报,2009,28(2):169~176.
    159)牛贺才,单强,张兵,等.东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩[J].岩石学报,2009,25(6):1484~1491.
    160)牛贺才,单强,张海祥,等.东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义[J].岩石学报,2007a,23(7):1627~1634.
    161)牛贺才,张海祥,单强,等.扎河坝石榴辉石岩中超硅-超钛石榴子石的发现及其地质意义[J].科学通报,2007b,52(18):2169~2174.
    162)彭希龄.准噶尔盆地早古生代陆壳存在的证据[J].新疆石油地质,1994,15(4):289~297.
    163)任忠宝,吴庆云.新世纪我国矿产资源形势研判[J].中国矿业,2011,20(2),10~13.
    164)申萍,沈远超,潘成泽,等.新疆哈图-包古图金铜矿集区锆石年龄及成矿特点[J].岩石学报,2010a,26(10):2875~2893.
    165)申萍,沈远超.西准噶尔与环巴尔喀什斑岩型铜矿床成矿条件及成矿模式对比研究[J].岩石学报,2010b,26(8):2299~2316.
    166)申维.分形理论与矿产预测[M].北京:地质出版社,2002.1~68.
    167)沈远超,金成伟.西准噶尔地区岩浆活动与金矿化作用[M].北京:科学出版社.1993,1~192.
    168)石油工业部新疆石油管理局地质调查处.准噶尔盆地重磁力综合研究队总结报告[D].1958,1~150.
    169)舒良树,夏飞雅克,郭令智,等.新弧中天山北缘阿齐克库都格——尾亚古生代大型韧性剪切带研究[J].地质学报(英文版),1999,73(2):189.
    170)舒良树,王玉净.新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J].地质论评,2003,19(4):408~412.
    171)宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,5(增刊):26~30.
    172)宋国耀,张晓华,肖克炎,等.矿产资源潜力评价的理论及GIS技术.物探化探计算技术.1999,21(3):199~205
    173)宋会侠,刘玉琳,屈文俊,等.新疆包古图斑岩铜矿矿床地质特征[J].岩石学报,2007,23(8):1981~1988.
    174)苏玉平,唐红峰,丛峰.新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因[J].矿物学报,2008,28(2):117~126.
    175)谭佳奕,吴润江,张元元,等.东准噶尔卡拉麦里地区巴塔玛依内山组火山岩特征和年代确定[J].岩石学报,2009,25(3):539~546.
    176)唐功建,王强,赵振华,等.西准噶尔包古图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义[J].地球科学——中国地质大学学报,2009,34(1):56~74.
    177)唐红峰,苏玉平,刘丛强,等.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110~117.
    178)唐永成,何义权,王永敏,等.GIS应用于安徽东部地区金矿资源评价研究[M].北京:地质出版,2000,1~254.
    179)汪帮耀,姜常义,李永军,等.新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义[J].矿物岩石,2009,29(3):74~82.
    180)王道永,邓江红.东准噶尔地区被块构造特征及演化[J].成都理工学院学报,1995,22(4):38~45.
    181)王家林,王一新,万明浩.石油重磁解释[M].北京:石油工业出版社,1991,1~373.
    182)王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].长春:科学出版社,2000,1~343.
    183)王世称,王於天.综合信息解译原理与矿产预测图编制方法[M].长春:吉林大学出版社,1989:3-18.
    184)王世称,许亚光,侯惠群.综合信息成矿系列预测的基本思路与方法[J].中国地质,1992,10:14~16.
    185)王学彦,赵更新,王小兵.新疆北部区域地球化学异常特征[J].新疆地质,2001,19(3):194~199.
    186)王义文.金矿床同位素地球化学.见:于津生,李耀崧(编).中国同位素地球化学[M].北京:科学出版社,314~343.
    187)王玉往,王京彬,龙灵利,等.岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例[J].岩石学报,2012,28(8):2317~2330.
    188)吴淦国,董连慧,薛春纪,等.新疆北部主要斑岩铜矿带[M].北京:地质出版社,2008,1~345.
    189)吴小奇,刘德良,魏国齐,等.准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景[J].岩石学报,2009,25(1):55~66.
    190)夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77~89.
    191)肖芳锋,侯贵廷,王延欣,等.准噶尔盆地及周缘二叠纪以来构造应力场解析[J].北京大学学报(自然科学版),2010,46(2):224~230.
    192)新华网.新闻分析:我国资源形势有多严峻?http://news.xinhuanet.com/politics/2007-04/22/content_6011485.htm.
    193)肖克炎,丁建华,刘锐.美国“三步式”固体矿产资源潜力评价方法评述[J].地质论评,2006,52(6):793~798.
    194)肖克炎,张晓华,朱裕生,等.矿产资源GIS评价系统[M].北京:地质出版社,2000,1~142.
    195)肖文交,韩春明袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062~1075.
    196)肖序常,汤耀庆,冯益民.新疆北部及邻区大地构造.北京:地质出版社,1992,1~167.
    197)新疆地勘局第一区调大队.新疆奇台县双井子地区金自然重砂、化探异常检查及铜矿普查报告[D].2000,1~74.
    198)新疆地矿局物化探大队.新疆准噶尔盆地东缘1:20万区域重力调查研究成果报告[D].1991,1~67.
    199)新疆地质矿产开发局第四地质大队.新疆青河县也布山一带1:5万区域地质矿产调查项目地球物理普查报告[D].2009,1~69.
    200)徐斌,路彦明,顾雪祥,等.新疆奇台地区双泉金矿床的成矿时代[J].地质通报,2009,28(12):1871~1884.
    201)徐绍史.加快发展和改革步伐提高矿产资源保障能力[J].国家行政学院学报(行政首长论坛),2008,2:4~7.
    202)徐志刚,陈毓川,王登红,等.中国成矿区带划分方案[M].北京:地质出版社,2008.
    203)许继峰,梅厚钧,于学元,等.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物[J].2001,46(8):684~688.
    204)杨富全,刘德泉,赵财盛,等.中国新疆北部与西部邻区地质矿产对比研究[M].北京:地质出版社,2010,1~395.
    205)杨富全,闫升好,刘国仁,等.新疆准噶尔斑岩铜矿地质特征及成矿作用[J].矿床地质,2010,29(6):956~970.
    206)杨梅珍,吴宏恩,杨高学.东准噶尔卡拉麦里SSZ型蛇绿岩地球化学及其构造意义[J].岩石矿物学杂志,2009,28(3):251~263.
    207)杨忠宝.新疆托里县包古图斑岩铜矿地质及化探异常特征[J].新疆有色金属,2008,14(3):14~16.
    208)姚长利,谢永茂,张晨,等.离散数据分布特征分析与最佳网格化参数提取方法技术[J].中国地球物理,2010,421.
    209)叶天竺,肖克炎,陈秋明,等.矿产定量预测方法[M].北京:地质出版社,2010,1~191.
    210)袁超,肖文交,陈汉林,等.新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义[J].地质学报,2006,80(2):254~263.
    211)袁学诚.论中国大陆基底构造[J].地球物理学报,1995,38(4):448~459.
    212)曾华霖.重力场与重力勘探[M].北京:地质出版社,2005,214~220.
    213)翟裕生,邓军,崔彬,等.成矿系统及综合地质异常[J].现代地质,1999,13(1):100~103.
    214)翟裕生,彭瑞民,向运川,等.区域成矿研究方法[M].北京:中国大地出版社,2004,1~183.
    215)翟裕生,彭润民,邓军,等.区域成矿学与找矿新思路[J].现代地质,2001,15(2):151~156.
    216)张本仁.大陆造山带地球化学研究: Ⅰ岩石构造环境地球化学判别的改进[J].西北地质,2001,34(3):1~17.
    217)张海祥,牛贺才,Hiroaki Sato,等.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据[J].高校地质学报,2004,10(1):106~113.
    218)张海祥,牛贺才,沈晓明,等.阿尔泰造山带南缘和准噶尔板块北缘晚古生代构造演化及多金属成矿作用[J].矿床地质,2008,27(5):596~604.
    219)张海祥,牛贺才,于学元,等.新疆北部富蕴县沙尔布拉克玻安岩的地球化学特征及构造意义[J].地球化学,2003a,32(3):155~160.
    220)张海祥,牛贺才,于学元,等.准噶尔板块东北缘富铌玄武岩的发现及其地质意义[J].地质找矿论丛,2003b,18(1):71~72.
    221)张櫵英,闻立峰.遥感地质目视解译[M].北京:地质出版社,1986,1~86.
    222)张理刚.稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985,1~267.
    223)张连昌,万博,焦学军,等.西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质,2006,33(3):626~631.
    224)张明华,乔计花,刘宽厚,等.重力资料解释应用技术要求[M].北京:地质出版社,1~79.
    225)张锐,许发军,赵杰,等.西准包古图呼的合铜矿地质特征、成因及成矿规律研究[J].新疆地质,2010,28(4):385~392.
    226)张元元,郭召杰.准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J].岩石学报,2010,26:421~430.
    227)张招崇,闰升好,陈柏林,等.新疆东准噶尔北部俯冲花岗岩的SHRIMP U-Pb锆石定年[J].科学通报,2006,51(13):1565~1574.
    228)张志欣,杨富全,闫升好,等.新疆包古图斑岩铜矿床成矿流体及成矿物质来源)来自硫、氢和氧同位素证据[J].岩石学报,2010,26(3):707-716.
    229)赵恒乐,许凡,张冀,等.东准噶尔卡拉麦里蛇绿岩形成时代、地质特征及构造意义[J].新疆地质,2012,30(2):161~164.
    230)赵磊,季建清,徐芹芹,等.新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次[J].岩石学报,2012,28(7):2257~2268.
    231)赵伦山,张本仁.地球化学[M].北京:地质出版社,1988,1~404.
    232)赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].武汉:中国地质大学出版社,1999,1~138.
    233)赵鹏大,池顺都.初论地质异常[J].地球科学-中国地质大学学报,1991,16(3):241~248.
    234)赵鹏大,胡旺亮,李紫金.矿床统计预测(第二版)[M].北京:地质出版社,1994,1~314.
    235)赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版),2004,(31)2:111~117.
    236)赵鹏大.“三联式”资源定量预测与评价——数字找矿理论与实践探讨[J].地球科学——中国地质大学学报,2002,27(5):482~490.
    237)赵鹏大.地质异常与成矿预测[J]∥陈毓川.当代地质矿产资源勘查评价的理论与方法[M].北京:地震出版社,1999:283~292.
    238)赵霞,贾承造,张光亚,等.准噶尔盆地陆东-五彩湾地区石炭系中基性火山岩地球化学及其形成环境[J].地学前缘(中国地质大学(北京);北京大学),2008,15(2):272~279.
    239)赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003,1~493.
    240)赵振华.微量元素地球化学原理[M].北京:科学出版社,2007,1~238.
    241)周鼎武,柳益群,邢秀娟,等.新疆吐哈-三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J].中国科学D辑,2006,36(2):143~153
    242)朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社,1998:1~330.
    243)朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世-早白至世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534~546.
    244)朱笑青,王中刚,王元龙,等.新疆后造山碱性花岗岩的地质特征[J].岩石学报,2006,22(12):2945~2956.
    245)朱永峰,徐新,魏少妮,等.西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究[J].岩石学报,2007,23(7):1739~1748.
    246)朱裕生,肖克炎等.成矿预测方法通则之二[M].北京:地质出版社,1997,1~330.
    247)朱志新,李少贞,李篙龄.东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山~沉积体系特征[J].新疆地质,2005,23(1):14~25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700