用户名: 密码: 验证码:
滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中甸矿集区长期被视为印支期斑岩铜矿典例,近年来发现晚白垩世斑岩Cu多金属矿床,显示巨大成矿潜力。论文以中甸矿集区晚白垩世休瓦促、热林和红山三个斑岩矿床及含矿斑岩体为研究对象,开展系统研究,取得如下主要认识:
     (1)辉钼矿Re-Os和LA-ICP-MS锆石U-Pb精细的成岩成矿年代学研究显示,休瓦促黑云母二长花岗斑岩体、热林二长花岗斑岩体和红山石英二长斑岩体分别侵位于86-88Ma,80-82Ma和76-79Ma之间;休瓦促W-Mo矿床、热林Mo-W-Cu矿床、Cu多金属矿床矽卡岩型矿体和斑岩矿体分别形成于85.9±3.3Ma,82.4±3.03Ma和80±1.8Ma,显示这三个矿床形成于同一时期,具有一致的成岩成矿动力学背景。
     (2)含矿斑岩具有一致的地球化学特征,高SiO2含量、高Al2O3含量、高的K2O含量和K2O/Na2O比值,表现出钾玄质岩石地球化学特征;而高Sr含量、高Sr/Y和(La/Yb)N比值,又显示有埃达克质性质。
     (3)高的(87Sr/86Sr)i和低的(143Nd/144Nd)i值、La与La/Yb、La/Sm之间的正相关关系、高Sr/Y和(La/Yb)N比值显示,中甸矿集区含矿斑岩源于加厚下地壳的部分熔融;负的εHf(t)值显示该加厚下地壳为古老下地壳;高的Mg#表明有少量幔源物质的加入;Sr-Nd-Pb同位素特征显示研究区古老下地壳受到了洋壳俯冲作用改造。因此中甸晚白垩世含矿斑岩可能来源于被洋壳俯冲改造之后的古老加厚下地壳的部分熔融。成岩年代显示拉萨板块和羌塘板块的碰撞可能是导致该期岩浆侵入事件的动力学机制。
     (4)流体包裹体和S、Re同位素研究说明中甸矿集区晚白垩世含矿斑岩为同期Cu多金属矿化提供了成矿热液和金属来源。早期埃达克质岩浆沿着区内北西向断裂上侵,周围地层发生热变质作用形成角岩化和大理岩化;随着岩浆的向上侵位,大量富含挥发分和高盐度的超临界流体出溶,导致岩体顶部破裂,静岩压力转变为静水压力,金属元素发生沉淀,从而在岩体中发生最初的斑岩矿化;红山矿区地层中夹杂有性质活泼的大理岩,随着更多岩浆热液的出溶,交代大理岩形成矽卡岩矿体。而在休瓦促、热林地区,周围地层为性质不活泼的角岩,斑岩岩体通常仅发生斑岩矿化,形成斑岩矿床。
Zhongdian mining area has been a good example of Indosinian porphyriticcopper deposit in the southwestern Sanjiang region on where there are only a fewYanshanian-aged research been reported. This study has been doing research on threelate Cretaceous porphyritic copper deposits including Xiuwacu deposit, Relin depositand Hongshan deposit, and we report following results through field work andlaboratory work.
     (1) The dating results indicates, that the biotitic granitic porphyry from Xiuwacudeposit yields an age between86-88Ma; the monzonitic granitic porphyry from Relindeposit yields an age between80-82Ma, the monzonitic porphyry from Hongshandeposit yields an age between76-79Ma; the formation of Xiuwacu W-Mo depositdated back to85.9±3.3Ma; the formation of Relin Mo-W-Mo deposit dated back to82.4±3.03Ma; Hongshan porphyry and related copper mineralization were formed at80±1.8Ma. Those ages are identical, within error, suggests consistent ore-formingprocesses.
     (2) Geochemically, the late Cretaceous porphyries yield consistent characteristicsof relative high SiO2content, high Al2O3content, high K2O content, and high ratio ofK2O and Na2O, showing alkali features. They also have relative high Sr content, highSr/Y and (La/Yb)N,indicating adakitic geochemical features.
     (3) This study presents, that geochemical characteristics indicate Zhongdianporphyries deriving from partial melting of crustal thickening; epsilon Hf valuesindicate crustal sources; high Mg number reflects mantle material involved; Sr-Nd-Pbisotopic compositions indicate subduction-related material. Therefore, the intrusion ofthe late-Cretaceous porphyries in Zhongdian area is likely driven by the collision of ofLhasa block and Qiangtang block.
     (4) Study of fluid inclusions and isotopes provided evidences that the origin ofthe ore-forming fluids in the porphyritic copper deposits were coming from theadakitic porphyritic pluton. First stage adakitic magma travelling upward through thenorthwestern fractures making surrounding stratum thermal metamorphosed andalternated. Volatiles and high salinity fluids were extracted and then leading to thecrack at the top of the pluton, which transferred the lithostatic pressure to thehydrostatic pressure, thus dropping off metal elements and causing mineralization. Wefound skarn-type mineralization in Hongshan deposit because of the enrichment ofmarble in the wallrock and hence the metasomatism, whereas porphyriticmineralization were found in Xiuwacu deposit and Relin deposit due to the stablehornstone in the wallrock.
引文
Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb. ChemicalGeology,2002,192:59-79.
    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basalticcrust. Nature,1993,362:144-146.
    Audétat A, Pettke T, Dolej D. Magmatic anhydrite and calcite in the ore-formingquartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints onporphyry-Cu mineralization. Lithos,2004,72(324):147-161.
    Audétat A, Pettke T, Heinrich C A, et al. The composition of magmatic-hydrothermal fluids inbarren and mineralized intrusions. Economic Geology,2008,103:877-908.
    Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summaryfrom300℃~500℃. American Journal of Science,1991,291:309-38.
    Bodnar R J. Fluid inclusion evidence for a magmatic source for metals in porphyry copperdeposits. Mineralogical Association of Canada Short Course Series,1995,23:139-152.
    Bohlkea J K, Laeter J R, Bievre P D, et al. Isotopic compositions of the elements. Journal ofPhysical and Chemical Reference Data,2005,34(1):57-67.
    Bumham J M. the operating plant-case studies and generalizations.Proceedings of the annualmeeting. The Institute,1979,1:407.
    Burnham C W, Ohmoto H. Late-stage processes of felsic magmatism. Mining Geology SpecialIssue,1980,8:1-11.
    Burnham C W. Magmas and hydrothermal fluids. Geochemistry of Hydrothermal Ore Deposits,1979,2:71-136.
    Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatichydrotheral systems: The origin of porphyry-type ore deposits. Economic Geology,1986,81:1-19.
    Candela P A, Holland H D.The partitioning of copper and molybdenum between silicate melts andaqueous fluids. Geochimica et Cosmochimica Acta,1984,48(2):373-380.
    Candela P A, Piccoli P M. Magmatic processes in the development of porphyry-type ore systems.Economic Geology100thAnniversary Volume,2005,25-37.
    Candela P A. Controls on ore metal ratios in granite-related ore systems: An experimental andcomputational approach. Transactions of the Royal Society of Edinburgh: Earth Sciences,1992,83:317-326.
    Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin island, southernPhilippines: Insights to the source of adakites and other lavas in a complex arc setting.Contributions to Mineralogy and Petrology,1999,134:33-51.
    Chambefort I, Dilles J H, Kent A J R. Anhydrite-bearing andesite and dacite as a source for sulfurin magmatic-hydrothermal mineral deposits. Geology,2008,36:719-722.
    Cherniak D J, Watson E B, Grove M, et al. Pb diffusion in monazite: A combined RBS/SIMSstudy. Geochimica et Cosmochimica Acta,2004,68:829-840.
    Clayton R N, O’Neil J R, Mayada T K. Oxygen isotope exchange between quartz and water.Journal of Geophysics Research,1972,77:3057-3067.
    Cline J S, Bodnar R J. Can economic porphyry copper mineralization be generated by a typicalcalc-alkaline melt?. Journal of Geophysical Research,1991,96:8113-8126.
    Cline J S. Genesis of porphyry copper deposits: the behavior of water, chloride, and copper incrystallizing melts. Arizona Geological Society Digest,1995,20:69-82.
    Cobbing E J, Mallick D I J, Pitfield P E J, et al.The granites of the Southeast-Asian Tin Belt.Journal of the Geological Society,1986,143:537-550.
    Cooke D R, Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics, distribution, andtectonic controls. Economic Geology,2005,100:801-818.
    Coutts B P, Susanto H, Belluz N, et al. Geology of the deep ore zone, Ertsberg East skarn system,Irian Jaya: Pacrim’99Congress, Bali, Indonesia. Proceedings: Melbourne, AustralasianInstitute of Mining and Metallurgy,1999,1999:539-547.
    Crofit F, Hanchar J M, Hoskin P W, et al. Atlas of zircon textures. Reviews in Mineralogy andGeochemistry,2003,53:469-495.
    Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism.Geophysical Monograph,1996,96:251-262.
    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of youngsubducted lithosphere. Nature,1990,347:662-665.
    Defant M J, Xu J F, Kepezhinskas P, et al. Adakites: some variations on a theme. Acta PetrologicaSinica,2002,18(2):129-142.
    Deng J Wang Q F, Sun Z S. Origin of gold-bearing fluid and its initiative localization mechanismin Xiadian Gold Deposit, Shangdong Province. Chines Journal of Geochemistry,2002,21(3):282-288.
    Deng J, Wang Q F, Yang L Q, Zhou L, et al. The structure of ore-controlling strain and stress fieldsin the Shangzhuang Gold Deposit in Shangdong Province, China. Acta Geologica Sinca,2008,82(4):769-780.
    Deng J, Wang Q, Yang S, et al. Genetic relationship between the Emeishan plume and the bauxitedeposits in Western Guangxi, China: constraints from U–Pb and Lu–Hf isotopes of thedetrital zircons in bauxite ores. Journal of Asian Earth Sciences,2010,37(5):412-424.
    Deng J, Yang L Q, Gao B F, et al. Fluid evolution and metallogenic dynamics during tectonicregime transition: Example from the Jiapigou gold belt in Northeast China. ResourceGeology,2009,59:140-152.
    Deng, J, Wang, Q F, Li, G J, et al, Tethys tectonic evolution and its bearing on the distribution ofimportant mineral deposits in the Sanjiang region, SW China, Gondwana Research,2014, doi:10.1016/j.gr.2013.08.002
    Dilles J H. Petrology of the Yerington Batholith, Nevada; evidence for evolution of porphyrycopper ore fluids. Economic Geology,1987,82(7):1750-1789.
    Driesner T and Heinrich C A. The system H2O-NaCl Part I: Correlation formulae for phaserelations in temperature-pressure-composition space from0to1000℃,0to5000bar, and0to1%NaCl. Geochimica et Cosmochimica Acta,2007,71:4880-4901.
    Du A D, Sun D Z, Zou X Q, et al. Study on rhenium–osmium isotope system by inductivelycoupled plasma–mass spectrometry and its application to copper–nickel sulfide andmolybdenite dating. Chinese Academy of Geological Sciences Collection,1995:103-108.
    Du A D, Wu S Q, Sun D Z, et al. Preparation and certification of Re-Os dating reference materials:Molybdenites HLP and JDC. Geostandards and Geoanalytical Research,2004,28(1):41-52.
    Eastoe C J. A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, PapuaNew Guinea. Economic Geology,1978,73:721-748.
    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extincthydrothermal systems: Transitions from porphyry to epithermal environments. Society ofEconomic Geologists Special Publication,2003,10:285-313.
    Einaudi M T, Meinert L D, Newberry R J. Skarn deposits. Economic Geology75thAnniversaryVolume,1981,317-391.
    Einaudi M T. Description of skarns associated with porphyry copper plutons, southwestern NorthAmerica. Advances in geology of the porphyry copper deposits, southwestern North America:Tucson, University of Arizona Press,1982,139-183.
    Eklund O, Konopelko D, Rutanen H.1.8Ga Svecofennian post-collisional shoshonitic magmatismin the Fennoscandian shield. Lithos,1998,45:87-108.
    Ettlinger A D, Meinert L D. Copper-gold skarn mineralization at the Veselyi mine, Siniukhinskoedistrict, Siberia, USSR. Economic Geology,1991,86:185-194.
    Feldstein S N, Lange R A. Pliocene potassic magmas from the Kings River region, Sierra Nevada,California: Evidence for melting of a subduction-modified mantle. Journal of Petrology,1999,40:1301-1320.
    Foley S, Peccerillo A. Potassic and ultrapotassic magmas and their origin. Lithos,1992,28:181-185.
    Foster J G, Lambert D D and Frick L R. Re-Os isotopic evidence for genesis of Archaean nickelores from uncontaminated komatiites. Nature,1996,382:703-706.
    Fournier R O. Conceptualmodels of brine evolution inmagmatic-hydrothermal systems: U. S.GeologicalSurvey ProfessionalPaper,1987,1350:1487-1506.
    Fournier R O. Hydrothermal processes related to movement of fluid from plastic into brittle rockin the magmatic-epithermal environment. Economic Geology,1999,94:1193-1211.
    Fournier R O. The influences of depth of burial and the brittle-ductile transition on the evolutionof magmatic fluids. Geological Survey of Japan Report,1992,277:57-59.
    Gao S, Liu X M, Yuan H L. Determination of forty two major and trace element in USGS andNIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry.Geostandards Newsletter,2002,26:181-196.
    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton.Nature,2004,432:8922-8971.
    Garven G. The role of regional fluid flow in the genesis of the Pine Point deposit, western Canadasedimentary basin. Economic Geology,1985,80(2):307-324.
    Gerhard W. Mountain Ecosystems: Studies in Treeline Ecology by Gabriele Broll: Beate Kaplin.Mountain Research and Development,2006,26(4):385-386
    Giggenbach W F. The origin and evolution of fluids in magmatic-hydrothermal systems.Geochemistry of hydrothermal ore deposits,1997,3:737-796.
    Gow P, Walshe J L. The role of preexisting geologic architecture in the formation of giantporphyry-related Cu±Au deposits: Examples from New Guinea and Chile. EconomicGeology,2005,100:819-833.
    Hall D L, Sterner S M, Bondar R J. Freezing point depression of NaCl-KCl-H2O solutions.Economic geology,1988,83:197-202.
    Hamlyn P R, Keays R R, Cameron W E, et al. Precious metals in magnesian low-Ti lavas:implications for metallogenesis and sulfur saturation in primary magmas. Geochimica etCosmochimica Acta,1985,49:1797-1811.
    Harris N B, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism.1986.Geological Society, London, Special Publications,19:67-81.
    Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel therecord of crustal evolution.Chem. Geol.,2005,226:144-162.
    He Y, Li S, Hoefs J, et al. Post-collisional granitoids from the Dabie orogen: new evidence forpartial melting of a thickened continental crust. Geochimica et Cosmochimica Acta,2011,75:3815-3838.
    Hedenquist J W, Aoki M, Shinohara H. Flux of volatiles and ore-forming metals from themagmatic-hydrothermal system of Satsuma Iwojima volcano. Geology,1994,22(7):585-588.
    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. EconomicGeology,1999,93(4):373-404.
    Hedenquist J W, Claveria R J R, Villafuerte G P. Types of sulfide-rich epithermal deposits andtheir affiliation to porphyry systems: Lepanto-Victoria-Far Southeast deposits, Philippines, asexamples. ProExplo Congreso. Lima, Peru,2001,24-28.
    Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal of deposit.Nature,1994,370:519-527.
    Hedenquist J W, Richards J P. The influence of geochemical techniques on the development ofgenetic models for porphyry copper deposits. Reviews in Economic Geology,1998,10:235-256.
    Heinrich C A. Fluid-fluid interaction, in magmatic-hydrothermal ore formation. Reviews inMineralogy and Geochemistry,2007,65:363-387.
    Hemley J J, Hunt J P. Hydrothermal ore-forming processes in the light of studies in rock-bufferedsystems; II, Some general geologic applications. Economic Geology,1992,87(1):23-43.
    Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile.Contributions to Mineralogy and Petrology,1988,98:455-489.
    Holland H D. Granites, solutions, and base metal deposits. Economic Geology,1972,67:281-301.
    Hoskin P W O and Black L P. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. Journal of Metamorphic Geology,2000,18(4):423-439.
    Hou Z Q, Yang Z M, Qu X M, et al. The Miocene Gangdese porphyry copper belt generatedduring post-collisional extension in the Tibetan orogen. Ore Geology Reviews,2009,36:25-51.
    Hou ZQ, Zhang HR, Pan XF, Yang ZM. Porphyry Cu (–Mo–Au) deposits related to melting ofthickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. OreGeology Reviews,2011,39:21-45.
    Hu J M., Meng Q R., Shi Y R., et al. SHRIMP U-Pb dating of zircons from granitoid bodies in theSongpan-Ganzi terrane and its implications. Acta Petrologica Sinica2005,21:867-880.
    Hu YZ, Li XZ. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenicepochs and deposit types. Ore Geology Reviews,2007,31:48–87.
    Huang X L, Xu Y G, Lan J B, et al. Neoproterozoic adakitic rocks from Mopanshan in the westernYangtze Craton: partial melts of a thickened lower crust. Lithos,2009,112:367-381.
    James D, Sacks I S. Cenozoic formation of the central Andes: A geophysical perspective. Societyof Economic Geologists Special Publication,1999,7:1-25.
    Janou ek V, Bowes D R, Rogers G. Modelling diverse processes in the petrogenesis of acomposite batholiths: the Central Bohemian Pluton, Central European Hercynides. J Petrol,2000,41:511-543
    Jugo P J, Luth R W, Richards J P. Experimental determination of sulfur solubility in basaltic meltsat sulfide vs. sulfate saturation: Possible implications for ore formation. Eos, Transactions,2001,82:47.
    Karsli O, Dokuz A, Uysal I, et al. Generation of the Early Cenozoic adakitic volcanism by partialmelting of mafic lower crust, Eastern Turkey: implications for crustal thickening todelamination. Lithos,2010,114:109-120.
    Kay R W. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. Journal ofVolcanology and Geothermal Research,1978,4:117-132.
    Kemp A I S, Wormald M J, Price R C. Hf isotopes in zircon reveal contrasting contrasting sourcesand crystallization histories for alkaline to peralkaline granites of Temora, southeasternAustralia.Geology,2005,33:797-800.
    Kerrich R, Goldfarb R, Groves D, et al. The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins. Reviews in Economic Geology,2000,13:501-551.
    Kilinc I A, Burnham C W. Partitioning of chloride between a silicate melt and coexisting aqueousphase from2to8kilobars. Economic Geology,1972,67(2):231-235.
    Li W C, Zeng P S, Hou Z Q, et al. The Pulang porphyry copper deposit and associated felsicintrusions in Yunnan province, Southwest China. Economic Geology,2011b,106:79-92.
    Liang H Y, Campbell I H, Allen C. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearingporphyries in eastern Tibet. Mineralium Deposita,2006,41:152-159.
    Lin I J, Chung S L, Chu C H, et al. Geochemical and Sr-Nd isotopic characteristics of Cretaceousto Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications.Journal of Asian Earth Sciences,2012,53:131-150.
    Liu S, Hu R Z, Feng C X, et al. Cenozoic adakite-type volcanic rocks in Qiangtang, Tibet and itssign if icance. Acta Geologica Sinica,2003,77:187-193.
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-ICP-MS without applying an internals standard.Chemical Geology,2008,257:34-43.
    Liu Y, Deng J, Li C F, et al. REE composition in scheelite and scheelite Sm-Nd dating for theXuebaoding W-Sn-Be deposit in Sichuan. Chinese Science Bulletin,2007,52:2543-2550.
    Lizuka T, Hirata T, Komiya T, Rino S, Katayama I, Motoki A, Maruyama S. U-Pb and Lu-Hfisotope systematic of zircons from the Mississippi River sand:Implications for reworking andgrowth of continental crust.Geology,2005,33:485-488.
    López-Moro F J, López-Plaza M. Monzonitic series from the Variscan Tormes Dome (CentralIberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos,2004,72:19-44
    Ludwig K R. User’s Manual for Isoplot3.0: A Geochronological Toolkit for Microsoft Excel.Special Publication,2003,4:1.
    Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: High pressuredifferentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary ScienceLetters,2006,243:581-593.Magmatic-metamorphic events and the closure of a neo-Tethys ocean? Journal of AsianEarth Sciences,2012,56:1–23.
    Mao JW, Zhang ZH, Lehmann B, et al. The Yeniutan granodiorite in Sunan County, GansuProvince, China: Petrological features, geological setting and relationship to tungstenmineralization. Episodes,2000,23(3):163-171.
    Martin H. Adakitic magmas: modern analogues of Archaeangranitoids. Lithos,1999,46:411-429.
    Maughan D T, Keith J D, Christiansen E H, et al.Contributions from mafic alkaline magmas to theBingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineralium Deposita,2002,37:14-37.
    McDonough, W, Sun S S. Composition of the Earth. Chemical Geology,1995,120:223-253.
    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits. Economic Geology100thAnniversary Volume,2005,299-336.
    Meinert L D, Hedenquist J W, Satoh H, et al. Formation of anhydrous and hydrous skarn in Cu-Auore deposits by magmatic fluids. Economic Geology,2003,98(1):147-156.
    Meinert L D, Hefton K K, Mayes D, et al. Geology, zonation, and fluid evolution of the BigGossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Economic Geology,1997,92(5):509-534
    Meinert L D. A review of skarns that contain gold. Mineralogical Association of Canada ShortCourse Series,1998,26:359-414.
    Misra K C. Understanding mineral deposits. Kluwer Academic Publishers,2000,353-449.
    Mitchell A, Chung S L, Oo T, et al U-Pb ages in Myanmar:
    Morley, C K. Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth-ScienceReviews,2012,115:37-75.
    Nagaseki H, Hayashi K. Experimental study of the behavior of copper and zinc in a boilinghydrothermal system. Geology,2008,36:27-30.
    Nagaseki H, Hayashi K. Experimental study of the behavior of copper and zinc in a boilinghydrothermal system. Geology,2008,36(1):27-30.
    Nakano T. Fluctuation model for compositional heterogeneity in skarn clinopyroxenes.Geochemical Journal,1989,23:91-99.
    Nakano T. The zoned skarn developed in diorite porphyry in the Shinyama area, Kamaishi mine,Japan. Mining Geology,1978,28:99-109.
    Ochiai K. A reaction model relating skarn zones and ore formation at the Nippo copper oredeposit, Kamaishi mine, northeastern Japan. Economic Geology,1987,82:1001-1018.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. EconomicGeology,1972,67(5):551-578.
    Pan Y, Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east centralChina: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore GeologyReviews,1999,15(4):177-242.
    Paterno R. Castillo Adakite petrogenesis. Lithos,2011,134:304-316.
    Peacock S M, Rusher T, Thompson A B. Partial melting of subducting oceanic crust. EarthPlanetary scienve letters,1994,121:224-227.
    Pearce JA, Harris BW, Tindle G. Trace Element Discrimination Diagrams for the TectonicInterpretation of Granitic Rocks. Trace Elements of Granitic Rocks,1984,25(4):956-983.
    Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearinghydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemicalmodeling. Geochimica et Cosmochimica Acta,2009,73:5406-5427.
    Potter R W, Clynne M A, Brown D L. Freezing point depression of aqueous sodium chloridesolutions. Economic Geology,1978,73(2):284-285.
    Qu X M., Hou Z Q, Zhou S G. Geochemical and Nd, Sr isotopic study of the post-orogenicgranites in the Yidun arc belt of northern Sanjiang region, southwestern China. ResourceGeology,2002,52:163-172.
    Rapp R P, Watson E B. Dehydration melting of metabasalt at8-32kbar: implications forcontinental growth and crust-mantle recycling. Journal of Petrology,1995,36:891-931.
    Ray G E, Dawson G L, Webster I C L.The stratigraphy of the Nicola Group in the Hedley district,
    British Columbia, and the chemistry of its intrusions and Au skarns. Canadian Journal of Earth
    Sciences,1996,33:1105-1126.
    Redwood S D. Geology and development history of the Antamina copper-zinc skarn deposit, Peru.Society of Economic Geologists Special Publication,2004,11:259-277.
    Reed M H and Spycher N F. Boiling, cooling, and oxidationin epithermal systems: A numericalmodeling approach. Reviews in Economic Geology,1985,1:249-272.
    Reid A J, Wilson C J L, Liu S. Structural evidence for thePermo-Triassic tectonic evolution of theYidun Arc, easternTibetan Plateau. Journal of Structural Geology,2005,27:119-137.
    Reid A, Wilson C J L, Shun L, et al. Mesozoic plutons of the Yidun Arc, SW China: U/Pbgeochronology and Hf isotopic signature. Ore Geology Reviews,2007,31:88-106.
    Richard H S. Porphyry Copper Systems.Economic Geology,2010,105:3-41.
    Richards J P, Kerrich R. Special paper: adakite-like rocks: their diverse origins and questionablerole in metallogenesis. Economic Geology,2007,102:537-576.
    Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits.Книга,2014.
    Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits, inPorter, T.M., ed., Super porphyry copper and gold deposits. A global perspective,2005,1:7-25.
    Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.Economic Geology,2003,98:1515-1533.
    Richards JP. Alkalic-type epithermal gold deposits-a review. Mineralogical Association of CanadaShort Course Series,1995,23:367-400.
    Roderic A, Parnell J R. Hydrologic control of chemical disequilibria in soil and surface waters,Sogndal, Norway. Chemical Geology,1993,105:101-115.
    Roedder E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte,Montana, and Climax, Colorado. Economic Geology,1971,66:98-120.
    Roedder E. Fluid inclusions. Reviews in Mineralogy,1984,12:644.
    Rohrlach B D, Loucks R R. Multi-million-year cyclic ramp-upof volatiles in a lower crustalmagma reservoir trapped below the Tampakancopper-gold deposit by Mio-Pliocene crustalcompression in the southernPhilippines. Книга,2014.
    Rosman K J R, Taylor P D P. Isotopic compositions of the elements1997. Journal of Physical andChemical Reference Data,1998,27(6):1275-1287.
    Rowley D B, Xue F, Tucker R D. Ages of ultra-high pressure metamorphic and sourceorthognisses from the eastern Dabie Shan: U/Th zircon geochronology. Earth and PlanetaryScience Letters,1997,151:191-203.
    Schwartz M O, Rajah S S, Askury A K et al. The southeast Asian tin belt. Earth-ScienceReviews.,1995,38:95–286.
    Seedorff E, Dilles J H, Proffett J M, et al. Porphyry deposits: Characteristics and origin ofhypogene features. Economic Geology100thAnniversary Volume,2005,251-298.
    Seo J H, Guillong M, Heinrich C A. The role of sulfur in the formation of magmatic-hydrothermalcopper-gold deposits. Earth and Planetary Science Letters,2009,282:323-328.
    Shepherd T J, Rankin A H, Alderton D H M. A prcatical guide to fluid inclusion strudies. Blakie:Chapman&Hall.1985,1-239.
    Shinohara H. Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt:Implications for chlorine and metal transport. Geochimica et Cosmochimica Acta,1994,58:5215-5221.
    Shinotsuka K, Suzuki K. Simultaneous determination of platinum group elements and rhenium inrock samples using isotope dilution inductively coupled plasma mass spectrometry aftercation exchange separation followed by solvent extraction. Analytica chimica acta,2007,603(2):129-139
    Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis. AnalyticalChemistry,1995,67(13):2136-2141.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology,1972,67:184-197.
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the circum-Pacific region. Australian Journal of Earth Sciences,1997,44:373-388.
    Sillitoe R H. Major regional factors favouring large size, high hypogene grade,elevated goldcontent and supergene oxidation and enrichment of porphyry copper deposits. Porphyry andhydrothermal copper and gold deposits: A global perspective:Conference proceedings,1998,21-34.
    Simon A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free andS-bearing magmatic assemblages. Geochimica et Cosmochimica Acta,2007,71:1764-1782.
    Singer D A, Berger V I, Menzie W D. Porphyry Copper Deposit Density. Economic Geology,2005,100:491-514.
    Skarmeta J, Mclay K, Bertens A. Structural controls on porphyry copper deposits in northernChile: New models and implications for Cu-Mo mineralization in subduction orogens[abs.]:Décimo Congreso Geologico Chileno, Concepción, Conference Proceedings: DepartamentoCiencias de la Tierra, Universidad de Concepción,200,109-110.
    Smoliar M I, Walker R J, Morgan J W. Re-Os ages of group IIA, IIIA, IVA, and IVB ironmeteorites. Science,1996,271(5252):1099-1102
    Solomon M. Subduction, arc reversal and the origin of porphyry copper-gold deposits in islandarcs. Geology,1990,18:630-633.
    Stein H J, Markey R J and Morgan J W. Highly precise and accurate Re-Os ages f or molybdenum from the East Qinling molybdenum belt, Shaanxi Province, China.Econ. Geol.,1997,92:827-835.
    Stern C R, Funk J A, Skewes M A, et al. Magmatic anhydrite in plutonic rocks at the El TenienteCu-Mo deposit, Chile, and the role of sulfur-and copper-rich magmas in its formation.Economic Geology,2007,102:1335-1344.
    Stille P, Steiger R H. Hf isotope systematics in granitoids from the central and southern Alps.Contributions to Mineralogy and Petrology,1991,107:273-278.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications formantle composition and processes. In: Saunders, A.D., Norry, M.J.(Eds.), Implications forMantle Composition and Processes, Magmatism in the Ocean Basins: Geological Society,London, Special publication,1989,42:313-345.
    Suzuki K, Shimizu H, Masuda A. Re-Os dating of molybdenite from ore deposits in Japan:Implication for the closure temperature of the Re-Os system for molybdenite and coolinghistory of molybdenite ore deposit. Geochim.Cosmochim. Acta,1996,60:3151-3159.
    Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from asubducted lithosphere and the origin of arc magmas: Evidence from high pressureexperiments and natural rocks. Journal of Volcanology and Geothermal Research,1986,29:293-309.
    TopuzG, AltherrR, SchwarzWH, SiebelW, Sat rM, DokuzA. Postcollisionalplutonism withadakite-like signatures: the Eocene Sarayc kgranodiorite (Eastern Pontides,Turkey).Mineralogy andPetrology,2005,150,441-455.
    Turner S, Arnaud N, Liu J, et al. Post-collision,shoshonitic volcanism on the Tibetan Plateau:implications forconvective thinning of the lithosphere and the source of ocean islandbasalts.Journal of Petrology,1996,37:45-71.
    Ulrich T, Mavrogenes J. An experimental study of the solubility of molybdenum in H2O andKCl-H2O solutions from500°C to800°C, and150to300MPa. Geochimica etCosmochimica Acta,2008,72:2316-2330.
    Ulrich T, Mavrogenes J. An experimental study of the solubility of molybdenum in H2O andKCl–H2O solutions from500°C to800°C, and150to300MPa. Geochimica etCosmochimica Acta,2008,72(9):2316-2330.
    Wang B Q, Zhou M F, Li J W, et al. Late Triassic porphyritic instructions and associated volcanicrocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakiticmagmatism and porphyry copper mineralization. Lithos,2011,127:24-38.
    Wang Q, McDermott F, Xu J F, et al. CenozoicK-rich adakitic volcanic rocks in the Hohxil area,northern Tibet: Lower-crustal melting in an intra-continental setting.Geology,2005,33:465-468
    Wang Q, Wyman D A, Xu J, et al. Eocene melting of subducting continental crust and earlyuplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkalineandesites, dacites and rhyolites. Earth and Planetary Science Letters,2008a,272:158-171.
    Wang Q, Wyman D A, Xu JF, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneousrocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics andCu-Au mineralization. Lithos,2006b,89:424-446.
    Wang Q, Wyman D A, Zhao Z H, et al. Petrogenesis of Carboniferous adakites and Nb-enrichedarc basalts in the Alataw area, northern Tianshan Range (western China): implications forPhanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology,2007a,236:42-64.
    Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting,dexing, South China: implications for the genesis of porphyry copper mineralization. Journalof Petrology,2006a,47:119-144.
    Wang X S, Bi X W, Leng C B, et al. Geochronology and geochemistry of Late Cretaceous igneousintrusions andMo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implicationsfor metallogenesis and geodynamic setting. Ore Geology Reviews,(2014),doi:10.1016/j.oregeorev.2014.01.006.
    Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca.7Ma. Geology,2006,34:309-312.
    Wieser M E. Atomic weights of the elements2005(IUPAC technical report). Pure and AppliedChemistry,2006,78(11):2051-2066.
    Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation ofmagmatic-hydrothermal ore deposits. Economic Geology,2005,100:1287-1312.
    Wilson M. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London,1989,466.
    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhenarea of east China: partial melting of delaminated lower continental crust? Geology,2002,30:1111-1114.
    Xu L L, Bi X W, Hu R Z, et al. Relationships between porphyry Cu-Mo mineralization in theJinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U-Pband molybdenite Re-Os geochronology. Ore Geology Reviews,2012a,48:460-473.
    Xu X W, Zhang B L, Liang G H, et al. Zoning of mineralization in hypogene porphyry copperdeposits: Insight from comb microfractures within quartz-chalcopyrite veins in the Hongshanporphyry Cu deposit, western Yunnan, SW China. Journal of Asian Earth Sciences,2012b,56:218-228.
    Xu Y G, Yang Q J, Lan J B, et al. Temporal-spatial distribution and tectonic implications of thebatholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints fromzircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences,2012c,53:151–175.
    Yang L Q, Deng J, Goldfarb R J, et al.40Ar/39Ar geochronological constraints on the formation ofthe Dayingezhuang gold deposit: New implications for timing and duration of hydrothermalactivity in the Jiaodong gold province, China. Gondwana Research,2014,25:1469-1483.
    Yang L Q, Deng J, Guo C Y, et al. Ore-forming fluid characteristics of the Dayingezhuang golddeposit, Jiaodong gold province, China. Resource Geology,2009,59:182-195.
    Yang L Q, Deng J, Zhang J, et al. Decrepitation Thermometry and Compositions of FluidInclusions of the Damoqujia Gold Deposit, Jiaodong Gold Province, China: Implications forMetallogeny and Exploration. Journal of China University of Geosciences,2008,19(4):378-390.
    Yang L Q, Deng J, Zhang J, et al. Preliminary studies of fluid inclusions in Damoqujia golddeposit along Zhaoping fault zone, Shandong Province, China. Acta Petrologica Sinica,2007,23(1):153-160
    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review Earthand Planetary Sciences,2000,28:211-280.
    Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting ofsubducting oceanic lithosphere at plate edges. Nature,2001,409:500-504.
    Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidencefrom silicate melt and vapor inclusions in a basaltic andesite from the Villarica volcano(Chile). Earth and Planetary Science Letters,2009,282:115-121.
    Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of theTibetan plateau prior to the Indo-Asian collision. Earth-Science Reviews,2012,114:236-249.
    Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X. Late Cretaceous charnockite with adakiticaffinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyanmid-ocean ridge subduction? Gondwan a Research,2010,17:615-631.
    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocksalong an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,2009a,268:298-312.
    Zhu D C, Zhao Z D, Niu Y L, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,2013,23(4):1429-1454.
    Zhu J L, Hu R Z, Bi X W, et al. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pbisotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints onpetrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos,2011b,126:248-264.
    曹殿华,王安建,黄玉凤,张维,侯可军,李瑞萍,李以科.中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成.2009,83(10):1430-1435
    曹殿华,王安建,修群业,等.中甸地区甭哥正长岩地球化学特征及其地质意义.2007,81(7):995-1003.
    曾普胜,侯增谦,高永峰,等.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用.地质论评,2006,52(1):72-84.
    曾普胜,莫宣学,喻学惠,等.滇西北中甸斑岩及斑岩铜矿.矿床地质,2003,22(4):393-400.
    曾普胜,莫宣学,喻学惠.大火成岩省研究新进展.地学前缘,1999,6(4):378
    曾普胜,王海平,莫宣学,等.中甸岛弧带构造格架及斑岩铜矿前景.地球学报,2005,25(5):535-540
    曾普胜,王海平,莫宣学,等.中甸岛弧带构造格架及斑岩铜矿前景.地球学报,2005,25(5):535-540.
    常印佛,刘湘培,吴言昌.长江中下游成矿带.北京:地质出版社,1991,1-379.
    邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化.地质科技情报,2005,24(1):49-54
    邓军,孙忠实.成矿流体运动系统与金质来源和富集机制讨论.地质科技情报,2000,19(1):41-45
    邓军,王长明,李龚建.三江特提斯叠加成矿作用样式及过程.岩石学报,2012,28(5):1349-1361.
    邓军,杨立强,刘伟,等.胶东招掖矿集区巨量金质来源和流体成矿效应.地质科学,2001,36(3):257-268
    杜安道,赵敦敏,王淑贤,等. Carius管溶样——负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    范玉华,李文昌.云南普朗斑岩铜矿床地质特征.中国地质,2006,33(2):352-362
    耿建珍,李怀坤,张健,周红英,李惠民.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报2011,30(10):1508-1513
    管琪,朱弟成,赵志丹,张亮亮,刘敏,李小伟,于枫,莫宣学.西藏南部冈底斯带东段晚白垩世埃克岩:新特提斯洋脊俯冲的产物?岩石学报,2010,26(7)
    侯增谦,侯立纬,叶庆同,等.三江义敦岛弧火山作用与火山成因块状硫化物矿床.北京:地震出版社,1995.
    侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿.现代地质,2007,21:332-351.
    侯增谦,曲晓明,黄卫,等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,2001,28(10):27-30.
    侯增谦,宋玉财,李政,等.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质,2008,27(2):123-144.
    侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统.地质学报,2004,78(1):109-120.
    侯增谦,杨岳清,王海平,等.三江义敦岛弧碰撞造山过程与成矿系统.北京:地质出版社,2003,154-187,
    侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统.地质学报,2004,78(1):109-12
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型.地质学报,2009,83(12):1780-1817.
    侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统.地质学报,2004,78(1):109-120.
    黄典豪,杜安道.华北地台钼(铜)矿床成矿年代学研究:辉钼矿铼-锇年龄及其地质意义.矿床地质,1996,15(4):365-373.
    黄典豪,吴澄宇,杜安道,等.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质,1994,1(4):221-231.
    黄肖潇,许继峰,陈建林,等.中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因.岩石学报,2012,28(5):1493-1506.
    姜耀辉,蒋少涌,凌宏飞.陆-陆碰撞造山环境下的含铜斑岩岩石成因-以藏东玉龙斑岩铜矿带为例.岩石学报,2006,22(4):697-706.
    冷成彪,张兴春,王守旭,秦朝建,苟体忠,王外全.滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义.大地构造与成矿学,1:124-130
    冷成彪,张兴春,王守旭,秦朝建,苟体忠.云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征——以雪鸡坪和普朗斑岩铜矿床为例.矿物学报,2007,27(3):414-422
    李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨锋杰.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报,2010,26(7):2131-2140
    李建康,李文昌,王登红,等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究.岩石学报,2007,23(10):2415-2422
    李文昌,王可勇,尹光侯,秦丹鹤,余海军,薛顺荣,万多.滇西北红山铜矿床成矿流体地球化学特征及矿床成因.岩石学报,2013,29(1):270-282
    李文昌,尹光侯,余海军,等.滇西北格咱火山-岩浆弧斑岩成矿作用.岩石学报,2011,27(9):2541-2552.
    李文昌,尹光候,卢映祥,刘学龙,许东,张世权,张娜.中甸普朗复式斑岩体演化及~(40)Ar-~(39)Ar同位素依据.地质学报,2009,83(10):1421-1429
    李文昌,余海军,尹光侯,等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境.矿床地质,2012,31(2):282-292.
    李献华,祁昌实,刘颖,梁细荣,涂湘林,谢烈文,杨岳衡.扬子块体西缘新元古代双峰式火山岩成因: Hf同位素和Fe/Mn新制约科学通报,2005,50(19):2155-2160
    梁细荣,韦刚健,李献华,刘颖.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学杂志,2003,32(1):91-97
    林清茶,夏斌,张玉泉.云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义.地质通报,2006,80(Z1):133-137
    毛景文,张招崇.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义.地质论评,1999,45(4):412-417.
    孟繁一,赵志丹,朱弟成,张亮亮,管琪,刘敏,于枫,莫宣学.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报,2010,26(7):2180-2192
    孟健寅,杨立强,吕亮,高雪,李建新,罗跃中.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义.2013,29(4):1214-1222
    孟祥金,侯增谦,高永丰,等.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质论评,2004,49(6):660-666.
    莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001,7(2):121-138.
    莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿.北京:地质出版社,1993.
    庞振山,杜杨松,王功文,曹毅.云南普朗复式岩体地质地球化学特征及成因.地质通报,2009,28(4):531-537
    彭慧娟,李洪英,裴荣富,张长青,周云满,田广,李建新,龙飞.云南中甸红牛-红山矽卡岩型铜矿床矿物学特征与成矿作用.岩石学报,2014,1:237-256
    屈文俊,杜安道,李超,等.金川铜镍硫化物样品中锇同位素比值的高精度分析.岩矿测试,2009,28(3):219-222.
    屈文俊,杜安道,李超.黄铁矿Re-Os同位素定年技术方法及应用初探.见:中国矿物岩石地球化学学会第12届学术年会论文集.贵阳:中国矿物岩石地球化学学会,2009,111.
    屈文俊,杜安道.电感耦合等离子体质谱法测定辉钼矿中Re、Os含量质量分馏效应的校正.质谱学报,2004,25(z1):181-182
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试,2003,22(4):254-257
    曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏的第二条玉龙铜矿带?.矿床地质,2001,20:355-366.
    任江波,许继峰,陈建林.中旬岛弧成矿斑岩的锆石年代学及其意义.岩石学报,2011,27(9):58-61
    任涛,韩润生.中甸地区浪都夕卡岩型铜矿成矿期方解石稀土元素特征.矿物学报,2011, S1:633
    芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床.北京:地质出版社,1984,1-350.
    王强,赵振华,许继峰,等.鄂东南铜山口、殷祖埃达克质(adakite)的侵入岩地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报,2004b,20(20):351-360.
    王守旭,张兴春,陈衍景.地球初期壳幔演化的物理过程.地质论评,2006,53(4):442-449
    王守旭,张兴春,冷成彪.秦朝建滇西北中甸普朗斑岩铜矿床地球化学与成矿机理初探.矿床地质,2007,26(3):277-288
    王新松,毕献武,冷成彪,等.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MSU-Pb定年及其地质意义.矿物学报,2011,31(3):315-321.
    王新松,毕献武,冷成彪,等.滇西北中旬红山Cu多金属矿床花岗斑岩锆石LA-ICP-MSU-Pb定年及其地质意义.矿物学报,2011,31(3):315-321
    韦刚健,梁细荣,李献华,刘颖.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学杂志,2002,31(3):295-300
    吴福元,李献华,郑永飞,高山. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220.
    吴福元,杨进辉,张艳斌,柳小明.辽西东南部中生代花岗岩时代.岩石学报,2006,22(2):315-325
    徐兴旺,蔡新平,屈文俊,等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义.地质学报,2006,80(9):1422-1433
    徐兴旺,蔡新平,宋宝昌,等.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及成因机制.岩石学报,2006,22(3):631-642.
    杨立强,邓军,方云,等.构造-流体耦合成矿效应计算模拟.第四届全国青年地质工作者学术讨论会论文集,1999.
    杨岳清,侯增谦,黄典豪,等.中甸弧碰撞造山作用和岩浆成矿系统.地球学报,2002,23(1):17-24.
    杨志明,侯增谦,杨竹森,等.青海纳日贡玛斑岩铜(钼)矿床:岩石成因及构造控制.岩石学报,2008b,24:489-502.
    杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质,2009.
    翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992,1-235.
    张洪瑞,侯增谦,宋玉财,等.斑岩铜矿床在东特提斯成矿域中的时空分布特征.地质学报,2009,83(12):1818-1837.
    张旗,王焰,刘伟,等.埃达克岩的特征及其意义.地质通报,2002,21(7):431-435.
    张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩同位素Sr、Nd制约.岩石学报,2001,17(4):504-513.
    张兴春,冷成彪,杨朝志,王外全,秦朝建.滇西北中甸春都斑岩铜矿含矿斑岩的锆石SIMSU-P年龄及地质意义.矿物学报,2009,29(z1):359-360
    章邦桐,吴俊奇,凌洪飞,陈培荣.“花岗岩锆石U-Pb年龄能代表花岗岩侵位年龄”质疑:花岗岩锆石U-Pb年龄与全岩Rb-Sr等时线年龄对比证据.地质论评,2008,54(6):775-785
    赵振华,熊小林,王强,等.新疆西天山莫斯遭特石英钠长斑岩铜矿床.一个与埃达克质岩石有关的铜矿实例.岩石学报,2004,20(1):249-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700