用户名: 密码: 验证码:
广西大王顶金矿构造叠加晕研究及成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大王顶金矿是广西古袍金矿田中新发现的重要金矿床之一。本研究密切结合该矿山生产建设和深部找矿需求,在综合研究成矿地质地球化学背景及矿床地质特征的基础上,对大王顶金矿开展了构造叠加晕和成矿预测研究。取得以下主要成果:
     1、矿区内大王顶岩体与近EW和NE的断层控制了矿体三维空间形态。矿体整体上近东西走向,倾向在大王顶花岗斑岩体以北,主要是北西和北北西倾;以南,主要是西倾。
     2、计算了大王顶金矿围岩10件背景样品的几何平均值,获得了矿山指示元素地球化学背景,为构造叠加晕研究的异常分带提供了依据。
     3、在大量系统的样品采集和化学分析基础上,研究了矿床元素组合及不同阶段元素地球化学特征;在三维空间内,制作了各元素构造叠加晕系列图件,为原生晕轴向分带变化规律分析奠定了基础。编制了能够反映成矿流体活动规律的系列元素分布图,以此为依据,对矿体进行了重新圈定,较好地揭示了矿体的分布规律。
     4、编制了系列构造叠加晕剖面图和纵投影图,对前缘晕、近矿晕和尾晕进行了剥离解析,近矿晕元素组合为Au、Ag、Cu、Pb,前缘晕元素组合为As、Sb、Hg和尾晕元素组合为Mo、Bi;多期次成矿叠加晕表现为:Au具有一个或多个强异常中心,不同期次成矿过程形成的矿体-晕在构造空间上有同位-近于同位-部分同位-或只有上部矿尾晕与深部盲矿前缘晕叠加等复杂的叠加结构,揭示了热液化学晕的叠加规律,建立了该矿床的构造叠加晕模型:认为大王顶金矿床构造叠加晕模式最佳指示元素组合为:Au、Ag、As、Sb、Hg、Cu、Pb、Zn、Bi、Mo;确定了盲矿预测的构造叠加晕标志。
     5、根据盲矿体预测的标志,提出了41个盲矿预测靶位和1个有利成矿部位。
     6、大王顶金矿矿体所研究的元素衬度值明显低于已知的其它研究实例金矿,显示出该金矿成矿热液活动不强烈,成矿规模相应较其它研究矿山小。
     大王顶金矿在大瑶山金矿成矿区具有很好的代表性,本研究为矿山下一步生产及勘查指明了方向,且对于该成矿区其它金矿具有较好的借鉴意义。由于大王顶金矿目前仅有三个中段,中段少导致从巷道采集样品数量少,且矿区内存在破矿构造,使其控矿规律更加复杂,加剧了样品代表局限性,导致对矿床地球化学特征研究局限性的存在。建议随着矿山中段增加,继续跟踪研究。此外,构造叠加晕模型是建立在就矿找矿和对已有数据统计分析基础上。该模式虽在生产实践中显示了强大的生命力,但由于各种地质因素共同作用下成矿过程的复杂性,热液矿床原生晕分带形成的机制等,需要在今后进一步加强理论研究。
The Dawangding gold deposit located in the Gupao Town of Zhaoping County, is one ofthe most important and newly discovered gold deposits in the Gupao gold ore field. In order tofigure out the distribution of the ore body and the potential of the resources, structuralsuperimposed halo and metallogenic prognosis study of the Dawangding gold deposit aresystematacially carried out in this dissertation. Combined with comprehensive study of itsdeposit geology and ore-forming geochemical background, the following achievements areobtained.
     1. In the mining district, three-dimensional morphology of the ore body is controlled bythe Dawangding intrusion, nearly EW-striking and NE-striking faults. The ore body strikesnearly EW, with the trend of W and NNW in the north of the Dawangding intrusion, whereasin the south it turns into west.
     2.According to computing the geometric mean of10background samples from the wallrock in the mine, the elements of Bi, As, Au, Pb, Sb, W, Sn, Ba and Ag are enriched. Andthrough doing this, the geochemical background of the indicator elements are obtained, whichprovides the standard for the structural superimposed halo anomaly analysis.
     3.Based on systematic collection of709samples and analysis of their contents of18elements, the element assemblage and their quantitative geochemical characteristics of theDawangding gold deposit have been obtained. A series of structural superimposed halo chartsof each element have also been made in the three-dimensional space, which lay the foundationfor variation analysis on the axial zoning of the primary halo. We have also made distributioncharts of the18elements in order to reflect activity rule of the ore-forming fluid. Based on this,the ore body has been delineated again, which can better reveal the distribution of the orebody.
     4.Section and vertical projection drawings of the structural superimposed halo inDawangding gold deposit have been made. The corresponding metallogenic pattern of headhalo, near-ore halo and tailing halo has also been set up.The near-ore halo is composed ofAu、Ag、Cu、Pb, the head halo ofAs、Sb、Hg and the tailing halo of Mo、Bi. TheAu element hasone or more abnormal centers. The halo of the ore body, derived from different ore-formingprocessed, is characterized by apposition, or near apposition, or part apposition, or some ofthem is characterized by superimposed structure of the hailing halo of the upper ore and the head halo of the blind ore. This helps to better reveal the superimposed rule of thehydrothermal halo and also to build the structural superimposed halo metallogenic pattern inthe Dawangding gold deposit. Thus, we suggest that the best indicator elements of theDawangding gold ore body are Au, Ag, As, Sb, Hg, Cu, Pb, Zn, Bi, and Mo, which helps toconfirm mark of the structural superimposed halo used to predict the blind ore.
     5. According to the above indicative mark of the blind predicting, the prospecting targetsof41blind ore and one favorable ore-forming location have been proposed.
     6.The contrast values of the18elements studied in the Dawangding gold deposit aresignificantly lower than the other known gold mines. This shows that the metallogenichydrothermal activity is not strong in the Dawangding gold deposit, and thus indicates that themineralization scale is smaller than other mines studied before.
     As a representative in the Dayaoshan gold metallogenic region, structural superimposedhalo study of the Dawangding gold deposit provides a great help for the next exploration ofDawangding deposit and also for the other gold mines in the area. But there are only threedifferent middle sections, resulting in that the samples collected from the tunnels are notenough. Besides, there are also structures destroying the ore body, so the ore-controllingregularity is more complex and the representative samples are limited. All of the above factorslimit in-depth study of the geochemistry of the Dawangding deposit. It is suggested that thetracking study should be continued with the increasing of the mining middle sections. Inaddition, the structural superimposed halo metallogenic pattern is prospecting of unknown oresbased on the known ore deposits, which also needs to statistically analyze the existing data. Inconclusion, although the pattern has been widely used in many gold mines, it also needsfurther theoretical study for improving because of the complexity of the ore-forming processin various geological factors and aslo the complex formation mechanism of the primary halozone in hydrothermal deposits, etc.
引文
1. Aiuppa A. Degassing of halogens from basaltic volcanism:Insight from volcanic gas observations [J].Chem Geol,2009,263(14):99109
    2. Bowman J R, Covert J J, Clark A H, Mathieson G A.1985. The Cantung E zone scheelite skarn orebody,Tungsten, Northwest Territories: oxygen, hydrogen, and carbon isotope studies. Economic Geology,80:1872–1895.
    3. Burnham C W, Ohmoto H. Late-stage processes of felsic magmatism. Mining Geology specialissue,1980,(8):1-11
    4. Burnham C W. Magma and hydrothermal fluids [A].BARNES H L.Geochemistry of Hydrothermal OreDeposits[M]. New York: John Wiley,1997.63-123.
    5. Charvet J, Lapierre H, Yu Y W. Geodynamic significance of the Mesozoic volcanism of southeasternChina. Journal of SoutheastAsian Earth Sciences,1994,9:387~396
    6. E Roedder, DS Coombs. Immiscibility in Granitic Melts, Indicated by Fluid Inclusions inEjected Granitic Blocks fromAscension Island.1967. Journal of Petrology,8(3):417-451.
    7. Frezzotti ML.2001.Silicate-melt inclusions in magmatic rocks: Applications to petrology1Lithos,55(1-4):273-299
    8. Gilder S A, Gill J B, Coe R S, et al.1996. Isotopic and paleomagnetic constraints on the Mesozoictectonic evolution of South China [J].JGeophys Res,101(B7):16137-16154.
    9. Guscher M A, Maury R, Eissen J P, Bourdon E.2000. Can slab melting be caused by flatsubduction?.Geology,28:535-538.
    10. Hide D. the evolution of Western Pacific plate and its margin. Tectonophysics,1977,38:115~165
    11. Hu X Y, Bi X W, Hu R Z, Shang L B, Fan WL. Experimental study on tin partition between graniticsilicate melt and coex-isting aqueous fluid [J]. Geochem J,2008,42(2):141150
    12. Lan C Y, Jahn B M, Mertzman S A, et al. Subduction-related granitic rocks of Taiwan. Journal ofSoutheastAsian Earth Sciences,1996,14:11~28
    13. Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian earthSciences,2000,18:293~305
    14. Lu H Z, Liu Y M, Wang C L, Xu Y Z, and Li H Q.2003. Mineralization and Fluid Inclusion Study of theShizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China. Economic Geology.98:955-974
    15.. Zaw K, and Singoyi B.2000. Formation of Magnetite-Scheelite Skarn Mineralization at Kara,Northwestern Tasmania: Evidence from Mineral Chemistry and Stable Isotopes. Economic Geology,95(6):1215-1230
    16. Zhangzhiwu, Lihui, Yubin. The Mineralization Age of the Gupao Gold Deposit, Guangxi[J].2013.Applied Mechanics and Materials,327:501-504.
    17.蔡明海,刘国庆,战明国.2000.桂东大瑶山地区金矿床成因及成矿时代研究.华南地质与矿产,(3):58-63.
    18.陈柏林.2001.论华南地区金矿床的成矿时代——兼与王秀璋等“华南加里东期金矿床的基本特征”一文的讨论.地质科技情报,20(3):47-52.
    19.陈懋弘,梁金城,张桂林,李文杰,潘罗忠,李容森.2006.桂北-桂东加里东期盆地构造沉降史分析.大地构造与成矿学,30(1)3:9-17.
    20.崔彬,翟裕生,蒙义峰,黄芳芳,树皋,刘光华.2000.广西大瑶山-西大明山金银成矿系统研究.地球科学,25(4):352-361.
    21.黄慧民,和志军,崔彬.2003.广西大瑶山地区花岗岩成矿系列.地质与勘探,39(04):12-16.
    22.黄民智,陈伟十,李蔚铮,许仿实,李先粤.1999.广西龙头山次火山-隐爆角砾岩型金矿床.地球学报,20(1):39-46.
    23.华仁民,张文兰,陈培荣,翟伟,李光来.2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报,30(1)3:9-17.
    24.郭健,覃锋,徐庆生,祁民,孙赫,郑杰,李升福,王泽华,夏柳静,黄晖明,杨昆,莫亚敏.2011.广西昭平县湾岛金矿控矿条件调查研究与靶区预测.地质与勘探,47(2):163-169.
    25.广西昭平昭金矿业有限公司.2012.广西昭平大王顶金矿探矿工程报告:1-40.
    26.黎彤.1976.化学元素的地球丰度.地球化学,3:167-174.
    27.李献华.1999.华南白垩纪岩浆活动与岩石圈伸展——地质年代学与地球化学限制.见:中国科学院地球化学研究所.资源环境与可持续发展.北京:科学出版社,264-275
    28.李晓峰,冯佐海,肖荣,宋慈安,杨锋,王翠云,康志强,毛伟.2012.桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景.地质学报,86(11):1713-1725
    29.李青,段瑞春,凌文黎,胡明安,张军波,杨振.2009.桂东早古生代地层碎屑锆石U-Pb同位素年代学及其对华夏陆块加里东期构造事件性质的约束.地球科学—中国地质大学学报,34(1):189-202.
    30.李小伟,黄雄飞,黄丹峰.2011.花岗岩中常用压力计的应用评述.高校地质学报,17(3):415-422.
    31.李惠.1993.热液金矿床原生叠加晕的理想模式.地质与勘探,(4):46-51
    32.李惠,张文华.1999.金矿床轴向地球化学参数叠加结构的理想模式及其应用准则.地质与勘探,35(6):40-43.
    33.李惠,张文华.1999.大型、特大型金矿盲矿预测的原生叠加晕理想模型.地质找矿论丛,14(3):25-33.
    34.李惠,王支农,上官义宁,赵宗勤,高洪兴.2002.金矿床(体)深部盲矿预测的构造叠加晕前、尾晕共存准则.地质找矿论丛,3:195-197
    35.李惠,张文华,常凤池,郑涛,刘宝林,汤磊.1998.大型、特大型金矿盲矿预测的原生叠加晕模型.冶金工业出版社,北京,0-120.
    36.李惠,张国义,禹斌.2006.金矿区深部盲矿预测的构造叠加晕模型及其找矿效果[M].地质出版社,北京,0-154.
    37.李惠,禹斌,李德亮.2011.构造叠加晕找盲矿新方法及找矿效果.地质出版社,北京,0-234.
    38.刘腾飞.1990.广西东南金矿成矿地质特征及找矿远景.中南冶金地质,1:22-29.
    39.刘国庆,蔡明海.2004.桂东大瑶山地区金矿成矿条件及成因分析.地质科技情报,23(2):37-44.
    40.骆靖中,麦范金.1988.广西古袍金矿床的成因矿物学研究.桂林工学院学报,8(2):125-132.
    41.罗照华,黄忠敏,柯珊.2007.花岗质岩石的基本问题.地质论评,53(supp):180-226.
    42.毛景文,谢桂青,李晓峰,张长青,梅燕雄.2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1):45-55.
    43.毛景文,陈懋弘,袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报85(5):636-658.
    44.农毅平,宁雄荣,刘家华.2000.广西大明山-大瑶山隆起带金银成矿元素地球化学特征.广西地质, l3(3):33-38.
    45.彭松柏,金振民,刘云华,付建明,何龙清,蔡明海,王彦斌.2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景.地球科学,31:110-120.
    46.钱建平.1998.广西六岑金矿矿化类型、成矿阶段和矿床成因.矿床地质,17(增刊):409-412.
    47.盛志华.2005.大瑶山成矿带金矿成矿规律.地质找矿论丛,20(增刊):61-63.48伍磊,李建.2004.大瑶山地区斑岩型金矿地质特征及找矿意义.南方国土资源,11:67-69.49徐克勤,孙鼎,王德滋,等.1963.华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨.地质学报,43(1-2):1-26,141-155.
    50.肖庆辉,邓晋福,马大铨,等.2002.花岗岩研究思维与方法.北京:地质出版社,1-294.
    51.肖庆辉,邢作云,张昱,伍光英,童劲松.当代花岗岩研究的几个重要前沿.地学前缘,2003,03:221-229.
    52.谢桂青,胡瑞忠,赵军红,等.中国东南部地幔柱及其与中生代大规模成矿关系初探.大地构造与成矿,2001,25(2):179~186
    53.徐克勤,刘英俊.1960.江西南部加里东花岗岩的发现.地质论评,20(3):112-114.
    54.徐克勤,孙鼎,王德滋,等.1963.华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨.地质学报,43(1-2):1-26,141-155.
    55.杨策,朱金初,张佩华,谢才富.广西姑婆山里松花岗岩中闪长质包体的地球化学特征及其成因探讨.高校地质学报,2006,14(1):310-318.
    56.张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘,2001,8(3):193-202.
    57.张德会,金旭东,毛世德,王丽丽.成矿热液分类兼论岩浆热液的成矿效率.地学前缘,2011,05:90-102.
    58.张旗,潘国强,李承东,金惟俊,贾秀勤.1997.花岗岩结晶分离作用问题—关于花岗岩研究的思考之二.岩石学报,23(6):1239-1251
    59.张招崇,陈毓川,毛景文.1994.桂北及桂东地区富B和富F花岗质岩石蚀变特征及其与成矿作用的关系.地质与勘探,2:34-38.
    60.张之武,李惠,禹斌.2013.广西大瑶山大王顶金矿成矿地质背景讨论.地质学会文集:364-368.
    61.邓军.2011.广西大瑶山地区铜金多金属矿床成因探讨.地质与资源,20(4):287-291.
    62.邓军.2011.广西大瑶山地区铜金多金属矿床成矿规律研究.地质与资源,21(3):302-307.
    63.朱金初,张佩华,谢才富,张辉,杨策.2006.南岭西段花山-姑婆山A型花岗质杂岩带:岩石学、地球化学和岩石成因.地质学报,80(4),529~542.64朱桂田,徐文忻,李蘅,朱文风.2005.广西古袍金矿区花岗斑岩侵入期后多期热液成矿作用的Ar-Ar年龄证据.地球学报,26(增刊):156-159.
    65.朱桂田,朱文风.2006.广西大瑶山古里脑和龙头山金矿岩浆期后断裂成矿作用及找矿意义.矿产与地质,20(3):214-218.
    66.中国冶金地质总局中南局南宁地质调查所.2008.广西昭平县古袍矿区大王顶矿段金矿详查报告:1-64.
    67.中南大学地球科学与信息物理学院.2013.广西昭平县大王顶金矿控矿构造研究:1-102.
    68.周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社.2007.
    69.朱永峰,曾贻善,艾永富.长英质岩浆中液态不混溶与成矿作用关系的实验研究[J].岩石学报,1995,01:1-8.
    70.朱永峰.热液矿床的石英脉及蚀变─岩浆液态不混溶作用的产物[J].矿物岩石地球化学通报,1995,03:196-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700