用户名: 密码: 验证码:
渤海OBS-2011深地震探测及深部构造成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海湾盆地富含油气资源,地壳深部结构和构造演化控制着盆地的形成,进而控制着盆地内油气的生成、运移和聚集;环渤海湾地区经济发达,人口稠密同时又是地震的多发区域,探明深部构造对于研究地震发震机制、提高地震预报准确性,以减少地震灾害造成的人员、财产、经济损失具有重要意义;渤海是华北克拉通东部地块破坏的关键地区,而这种重大基础地球科学问题的解决也依赖于深部构造的研究。因此本文以国家高新技术研究发展计划海洋技术领域重点项目“海陆联合深部地球物理探测关键技术研究”及国家自然科学基金重点项目“渤海及邻域深部结构及其对华北克拉通破坏的响应”为依托,对渤海地区的深部构造进行研究。
     论文以OBS-2011深地震探测为例,系统总结了深地震探测的原理与技术方法,对深部构造成像进行了研究,主要研究成果如下:
     (1)根据渤海深部构造研究的目的,详细论证了OBS-2011测线观测系统设计的原理和方法。OBS观测系统设计时遵循炮间距与OBS间距为等间隔设计,且OBS间隔与炮间距成倍数关系的基本原则,这种设计使得观测系统设计较为简单,在资料处理时也更加容易和精确。
     (2)总结了OBS-2011测线野外施工的基本情况,对OBS数据质量进行对比分析,在此基础上对OBS记录的有效震相进行分析和识别:2011年OBS道集中记录的震相比较丰富,有效震相包括Ps, Pg, PMP, Pn和Ph,但是其信噪比较低。
     (3)对OBS共反射叠加法和广角反射动校正原理进行研究,利用常速叠加的方式实现对莫霍面的速度分析,渤海地区OBS共反射叠加法成像结果表明:共中心点叠加法在大偏移距和探测目的层很深的情况下获得了较连续的叠加剖面,这也是共反射叠加法在渤海OBS深地震探测中的首次成功应用。
     (4)在震相识别与分析的基础之上,利用层析成像法反演了渤海2011年OBS测线的二维地壳结构模型,并分析了研究区的地壳结构特征。通过震相对比技术解决了在没有多道地震约束的浅水地区震相识别和对比困难的问题,在背景噪音较大的渤海地区获得了较好的浅层构造。利用层析成像反演获得的新生代基底构造较复杂,整体上渤中凹陷从SSW至NNE方向深度逐渐增大,最大深度为5.8km,而石臼陀凸起处埋深变化较大,中间部位还存在明显的凹陷结构。在37-39号OBS位置处存在明显的高速异常体,其层速度明显高于周围速度。结晶基底大致在10km深度,最浅处在石臼陀凸起处,基底埋深大致在9km附近,速度大致为6km/s。莫霍面埋深在渤中凹陷处明显抬升,深度大致在27km附近,而在石臼陀凸起莫霍面埋深变大,最深可达29.5km,在秦南凹陷和秦南凸起处埋深又变浅,最浅处埋深仅有26.3km。而莫霍面速度横向变化较明显,在27号OBS处存在明显的低速异常。
     (5)共反射叠加法最终获得莫霍面反射特征,而层析成像方法获得了莫霍面的深度-速度参数,两者从不同角度反映了莫霍面的构造特征,从两者的对比结果看,两种方法所做的莫霍面的构造形态基本一致。从处理角度讲,共反射叠加法的核心在于对叠加速度的选择,处理的基本原则是“速度连续,构造连续”;层析成像法最重要的工作在于震相的正确拾取,处理中主要工作在于不断“试错”以确保震相拾取正确。共反射叠加法在剖面上识别出比较明显的断层;而层析成像由于算法本身的原因难以获得准确的断裂构造。此外层析成像法可以获得相对复杂的地壳深度-速度模型,但同时工作量也较大;而共反射叠加法可直接对莫霍面成像,相对比较简单,但是只能获得莫霍面的构造特征。两者在实际资料处理中可以进行相互补充。
     (6)3D重力层析成像结果与深地震探测结果趋势上基本一致,但重力层析成像反演结果在精度方面误差较大,深地震探测的方法获得了更为精确的莫霍面构造特征。
     (7)层析成像反演结果表明在39号OBS对应的新生代基底下存在明显的高速异常,此外,33号OBS下方也存在强度稍弱的高速异常。推测岩浆的侵入可能是造成石臼陀凸起处新生代基底隆升的主要原因。此外岩浆活动可能对于此地区的油气生成也具有一定的促进作用。
     (8)共反射叠加法和层析成像法两种方法在CMP700附近都存在低速异常。从低速异常与居里等温面的对比结果看,两者存在高度的相关性,由此推测速度变小的原因在于深部强烈的岩浆或其他地热活动产生的高温使得莫霍面的塑性增强而降低了地震波传播的速度。而地热活动较为剧烈则与盆地拉张及地幔上涌的动力学背景有关,也说明了这一地区莫霍面附近地热流偏高。莫霍面附近的低速异常造成的区域应力分布不均匀以及上地幔隆起活动可能与渤海频繁发生的大地震密切相关。
     (9)莫霍面南北隆起区的对比结果表明北侧隆起区为深部构造活动的稳定区而南部仍旧为现代构造运动比较剧烈的区域。
Bohai Bay basin is rich in oil and gas. Deep crustal structure and tectonic evolution control the formation of the basin, which influences hydrocarbon generation, migration and accumulation of oil-gas. The Bohai Bay area is a populated region with economy developed, where the earthquake occurred frequently. It is very important to detect the deep structure for seismogenic mechanism of earthquake which may improve the accuracy of earthquake forecast for reducing casualties, property and economic losses caused by earthquake. Bohai is the critical area of North China craton breaking, and the solution also relies on the study of deep crustal structure.The paper is based on the national high-tech research and development plan "The research on key technology of offshore-onshore deep seismic exploration" and the Key project of National Natural Science Fund "Bohai and neighboring deep structure and its influence on the destruction of the North China Craton response".
     The paper summarizes the principle and technical method of deep seismic exploration and studies the deep structure imaging which is based on the OBS-2011deep seismic exploration survey.The main research work is as follows:
     (1) The paper demonstrates the principles and methods of the geometry about OBS-2011line, the OBS geometry follows the principle that the shot spacing and OBS spacing are of equal distance and multiples.
     (2) The paper summarizes the data acquisition of OBS-2011line, does the contrast analysis on the quality of OBS data, then recognizes the seismic phase of the recorded data.The main phases which are relatively rich include Ps, Pg, PMP, Pn and Ph. however, the S/N ratio is low.
     (3) The paper demonstrates the CMP stack method and the wide-angle reflection NMO principle. The velocity analysis is based on the constant velocity stack method. Real data processing of Bohai Sea in China demonstrates that this method can depict Moho structure clearly in the condition of large offset and deep target and it is also the first successful application in Bohai Sea.
     (4) After phase recognition, the paper inverses the2D velocity-depth model of the line using travel time tomography. The phase contrast technology is used to control the shallow phase which achieves better shallow structure. The research found that the Cenozoic basement is complex, it deepens from SSW to NNE in Bozhong Depression and the largest depth is5.8km. In Shijiutuo uplift Cenozoic basement rises sharply, however, a depression exists between the uplift areas. The depth of crystalline basement is about10km, where the shallowest depth is about9km located in Shijiutuo uplift and the velocity is about6km/s.The depth of Moho in Bozhong Depression is about27km, it deepens northwards which the largest depth is about29.5km in Shijiutuo uplift. It rises in Qinnan Depression and Qinnan uplift where the shallowest depth is26.3km.
     (5) CMP stack method finally obtains the reflection characteristics of Moho while tomography method obtains the Moho depth-velocity parameters.Compared with the two results, the Moho structures are almost the same. From processing perspective, the core parameter of the CMP stack method is the stack velocity which the selection principle is "velocity continuous, structure continuous", the correct phase is the basic work of the tomography and we have to use trial and error to find the reasonable result. Fault of Moho can be recognized by CMP stack method and it is also interesting to notice that the Bohai earthquake with magnitude of7.5was just in this place in1888, however, it is hard for tomography to obtain the fault structure because of the algorithm itself. In addition, the tomography method which the workload is bigger can obtain relatively complicated crustal depth-velocity model; while the CMP stack method which is relatively simple can only obtain Moho structure. The two methods are complemented in actual data processing.
     (6)3D gravity inversion result and deep seismic exploration results agree basically. However, the gravity inversion result has larger error while deep seismic exploration results obtain more precise Moho structure.
     (7) The result of the tomography shows that the high velocity anomaly exists clearly below the Cenozoic sedimentary formation under OBS39and OBS33within Shijiutuo uplift along the line.It is concluded that the intrusion of magma results in the rise of Cenozoic basement. In addition, the magmatic activities may also have a certain role in promoting the oil and gas generation.
     (8) The low velocity anomal of Moho was found by the CMP stack method and tomography which was well constrained with curie iso-geothermal surface and it may be related with the imbalance among temperature caused by mantle plume. Acute geothermal activity is related with the dynamics background of basin extension and mantle upwelling, which also indicates the high heat flux of Moho in this area. The heterogeneity of regional stress distribution adjacent to Moho which may be caused by the low velocity anomaly and upper mantle uplift activities may be associated with the frequent occurrence of large earthquakes in Bohai Sea.
     (9) Compared with the south uplift area of seismic line, it is concluded that the tectonic activity of the north uplift area is weaker than that of the south uplift area.
引文
[1]Barry K M, Cavers D A, Kneale C W. Report on recommended standards for digital tape formats.Geophysics,1975,40(2):344-352
    [2]Bethoux N, Segovia M, Alvarez V, et al. Seismological study of the central Ecuadorian margin:Evidence of upper plate deformation. Journal of South American Earth Sciences, 2011,31:139-152
    [3]Becel A, Laigle M, Voogd B D, et al. Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEISMARMARA Leg 1 offshore-onshore reflection-refraction survey. Tectonophysics,2009,467:1-21
    [4]Bhattachryya B K, Leu L K. Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J.Geophys.Res., 1975,80(32):4061-4065
    [5]Bohnhoff M, Makris J. Crustal structure of the southeastern Iceland-Faeroe Ridge(TFR) from wide aperture seismic data. Journal of Geodynamics,2004,37:233-252
    [6]Bohnhoff M, Makris J, Papanikolaou D, et al. Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics,2001,343:239-262
    [7]Breivik A J, Mjelde R, Grogan P, et al. A possible Caledonide arm through the Barents Sea imaged by OBS data. Tectonophysics,2002,355:67-97
    [8]Breivik A J, Mjelde R, Grogan P, et al. Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data. Tectonophysics,2003,369: 37-70
    [9]Castle R J. A theory of normal moveout. Geophysics,1994,59(6):983-999
    [10]Charvis P, Operto S. Structure of the Cretaceous Kerguelen Volcanic Province (southern Indian Ocean) from wide-angle seismic data. Geodynamics,1999,28:51-71
    [11]Clement C, Him A, Charvis P, et al. Seismic structure and the active Hellenic subduction in the Ionian islands. Tectonophysics,2000,369:141-156
    [12]Clement C, Sachpazi M, Charvis P, et al. Reflection-refraction seismics in the Gulf of Corinth:hints at deep structure and control of the deep marine basin. Tectonophysics,2004, 391:97-108
    [13]Gerdom M, Trehu A M, Flueh E R, et al. The continental margin off Oregon from seismic investigations. Tectonophysics,2000,329:79-97
    [14]Jaffal M, Klingelhoefer F, Matias L, et al. Crustal structure of the NW Moroccan margin from deep seismic data (SISMAR Cruise). C. R. Geoscience,2009,341:495-503
    [15]Kim H J, Jou H T, Cho H M, et al. Crustal structure of the continental margin of Korea in the East Sea (Japan Sea) from deep seismic sounding data:evidence for rifting affected by the hotter than normal mantle. Tectonophysics,2003,364:25-42
    [16]Klingelhoefer F, Lee C S, Lin J Y, et al. Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data. Tectonophysics,2009a,466:281-288
    [17]Klingelhoefer F, Labails C, Cosquer E, et al. Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the DAKHLA experiment) Part A:Wide-angle seismic models. Tectonophysics,2009b,468:63-82
    [18]Kodaira S, Iwasaki T, Urabe T, et al. Crustal structure across the middle Ryukyu trench obtained from ocean bottom seismographic data. Tectonophysics,1996,263:39-60
    [19]Lee G H, Kim H J, Suh M C, et al. Crustal structure, volcanism, and opening mode of the Ulleung Basin, East Sea (Sea of Japan). Tectonophysics,1999,308:503-525
    [20]Ljones F, Kuwano A, Mjelde R, et al. Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund. Tectonophysics,2004,378:17-41
    [21]Makris J, EgloffF, Rihm R. WARRP (Wide Aperture Reflection and Refraction Profiling): The principle of successful data acquisition where conventional seismic fails.69th Meeting of the Society of Exploration Geophysics(SEG). Extended Abstract,1999,989-992
    [22]Miura S, Suyehiro K, Shinohara M, et al. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data. Tectonophysics,2004,389:191-220
    [23]Miura S, Takahashi N, Nakanishi A, et al. Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics,2005,407:165-188
    [24]Mjelde R, Raum T, Kandilarov A, et al. Crustal structure and evolution of the outer Mere Margin, NE Atlantic. Tectonophysics,2009,468:224-243
    [25]Nakanishi A, Shiobara H, Hino R, et al. Deep crustal structure of the eastern Nankai Trough and Zenisu Ridge by dense airgun-OBS seismic profiling. Marine Geology,2002,187:47-62
    [26]Nishizawa A, Asada A. Deep crustal structure off Akita, eastern margin of the Japan Sea, deduced from ocean bottom seismographic measurements. Tectonophysics,1999,306: 199-216
    [27]Raum T, Mjelde R, Digranes P, et al. Crustal structure of the southern part of the Voring Basin, mid-Norway margin, from wide-angle seismic and gravity data. Tectonophysics,2002, 355:99-126
    [28]Raum T, Mjelde R, Shimamura H, et al. Crustal structure and evolution of the southern Voring Basin and Voring Transform Margin, NE Atlantic. Tectonophysics,2006,415: 167-202
    [29]Sakoulina T S, Telegin AN, Tikhonova I M, et al. The results of deep seismic investigations on geotraverse in the Barents Sea from Kola peninsula to Franz-Joseph Land. Tectonophysics, 2000,329:319-331
    [30]Sheriff R E, Geldart L P. Exploration Sebmology, vol.2:Data Processing and Interpretation, UK, Cambridge University Press,1983
    [31]Shinohara M, Fukano T, Kanazawa T, et al. Upper mantle and crustal seismic structure beneath the Northwestern Pacific Basin using a seafloor borehole broadband seismometer and ocean bottom seismometers. Physics of the earth and planetary interiors,2008,170: 96-106
    [32]Takahashi N, Kodaira S, Park J O, et al. Heterogeneous structure of western Nankai seismogenic zone deduced by multichannel reflection data and wide-angle seismic data. Tectonophysics,2003,364:167-190
    [33]Takahashi N, Kodaira S, Tsuru T, et al. Detailed plate boundary structure off northeast Japan coast. Geophysical Research Letters,2000,27(13):1977-1980
    [34]Taner M T, Koehler F. Velocity spectra-digital computer derivation and applications of velocity functions. Geophysics,1969,34:859-881
    [35]Treitel S. The Complex Weiner Filter. Geophysics,1974,39(2):169-173
    [36]Trey H, Cooper A K, Pellis G, et al. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics,1999,301:61-74
    [37]Voss M, Jokat W. Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modelling of the East Greenland continental margin. Geophys. J. Int., 2007,170,580-604
    [38]Wan Y, He Z D, Shen Z K, et al. On the Consistency of Large Earthquake Moment and Strain Rate Inferred from GPS Data in North China. Earthquake Research in China,2005,19 (3): 249-258
    [39]Wang T K, Chen M K, Lee C S, et al. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics,2006,412:237-254
    [40]Zelt C A, Ellis R M. Practical and efficient ray tracing in two-dimensional media for rapid travel-time and amplitude forward modeling. Can. J. Explor. Geophys.,1988,24:16-31
    [41]Zelt C A, Smith R B. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International,1992,108:16-34
    [42]Zelt C A, Sain K, Naumenko J V, Sawyer D S. Assessment of crustal velocity models using seismic refraction and reflection tomography. Geophysical Journal International,2003,153: 609-626.
    [43]Zhao W J, Zhao X, Jiang Z T, et al. The deep structures and oil-gas prospect evaluation in the QiangTang basin, Tibet. Applied geophysics,2006,3(1):1-12
    [44]Zou H Y, Gong Z S, Teng C Y, et al. Late-stage rapid accumulation of the PL19-3 giant oilfield in an active fault zone during Neotectonism in the Bozhong depression, Bohai Bay. Earth Sciences, (in Chinese),2011,54(3):388-398, doi:10.1007/s11430-010-4144-3
    [45]安玉林,管志宁,阳明.三维磁性层反演方法.地球物理学报,1990,33(专辑Ⅱ):265-277
    [46]蔡东升,罗毓晖,姚长华.渤海莱州湾走滑拉分凹陷的构造研究及其石油勘探意义.石油学报,2001,22(2):19-25
    [47]陈辉,周自立.嵌入式系统实验关于大小端转换方法的探讨.实验室研究与探索,2008,27(5):66-91
    [48]邓起东,闽伟,晁洪太,等.渤海地区新生代构造与地震活动.见:卢演俦等主编.新构造与环境.北京:地震出版社,2001:218-233
    [49]邓起东.张家口-蓬莱断裂带.见:赵国敏主编.天津市防震减灾30年纪念论文集.北京:地震出版社,2006:23-29
    [50]郭绪杰,焦贵浩.华北古生界石油地质.北京:地质出版社,2002
    [51]高战武.张家口-蓬莱断裂带地震地质特征研究:[博士论文].北京:中国地震局地质研究所,2001
    [52]高战武,徐杰,宋长青,等.张家口-蓬莱断裂带的分段特征.华北地震科学,2001,19(1):35-42
    [53]郝书俭,王春华.渤海水域居里面分析.地震地质,1982,4(1):39-43
    [54]郝天珧,游庆瑜.国产海底地震仪研制现状及其在海底结构探测中的应用.地球物理学报,2011,54(12):3352-3361
    [55]洪大卫,王涛,童英,等.华北地台和秦岭-大别-苏鲁造山带的中生代花岗岩与深部地球动力学过程.地学前缘,2003,10(3):231-256
    [56]侯贵廷,钱祥麟.渤海中部磁性层析成像的初步研究.北京大学学报(自然科学版),2003,39(1):112-117
    [57]赖晓玲,李松林,孙译.渤海及邻区3次7级以上地震的深部构造背景.大地测量与地球动力学,2007,27(1):31-33
    [58]李三忠,刘建忠,赵国春,等.华北克拉通东部地块中生代变形的关键时限及其对构造的制约-以胶辽地区为例.岩石学报,2004,20(3):633-646
    [59]李三忠,索艳慧,戴黎明,等.渤海湾盆地形成与华北克拉通破坏.地学前缘,2010,17(4):64-89
    [60]李三忠,索艳慧,周立宏,等.华北克拉通内部的拉分盆地:渤海湾盆地黄骅坳陷结构构造与演化.吉林大学学报(地球科学版),2011,41(5):1362-1379
    [61]李西双.渤海活动构造特征及其与地震活动的关系研究:[博士学位论文].青岛:中国海洋大学,2008
    [62]李绪宣,温书亮,顾汉明,等.海上气枪阵列震源子波数值模拟研究.中国海上油气,2009,21(4):215-220
    [63]李志伟,郝天珧,徐亚.华北克拉通上地幔顶部构造特征:来自台站间Pn波到时差成像的约束.科学通报,2011,56(12):962-970
    [64]李志伟,胥颐,郝天珧,等.环渤海地区的地震层析成像与地壳上地幔结构.地球物理学报,2006,49(3):797-804
    [65]刘光夏.渤海地震是一次地幔地震.华北地震科学,1996,14(1):36-39
    [66]刘光夏,张先,贺为民,等.渤海及其邻区居里等温面的研究.地震地质,1996a,18(4): 398-402
    [67]刘光夏,赵文俊,王敬禹,等.京津及河北省中部的重力三维正反演及其地质意义.地震学报,1988,10(1):39-48
    [68]刘光夏,赵文俊,任文菊,等.渤海地壳厚度研究.物探与化探,1996b,20(4):316-317
    [69]刘光夏,赵文俊,张先.郯庐断裂带渤海段的深部构造特征-地壳厚度和居里面的研究结果.长春地质学院学报,1996c,26(4):388-391
    [70]刘因,汪青,姜枚,等.苏鲁造山带深部构造的接收函数图象.岩石学报,2009,25(7):1658-1662
    [71]刘昭蜀,杨树康,何善谋,等.南海陆缘地堑系及边缘海的演化旋回.热带海洋,1983,2(4):251-259
    [72]刘廷海,李思田,高坤顺,等.渤中凹陷莫霍面特征及盆地形成机制.中国海上油气,2008,20(5):302-304
    [73]林进峰.南海及邻区边缘海的重力异常特征与上地慢结构.热带海洋,1984,3(1):1-9
    [74]吕川川,郝天珧,丘学林,等.南海西南次海盆北缘海底地震仪测线深部地壳结构研究.地球物理学报,2011,54(12):3129-3138
    [75]乔德武,任收麦,邱海峻,等.中国油气资源勘探现状与战略选区.地质通报,2011,30:2-3
    [76]丘学林,赵明辉,敖威等.南海西南次海盆与南沙地块的OBS探测和地壳结构.地球物理学报,2011,54(12):3117-3128
    [77]丘学林,赵明辉,叶春明,等.南海东北部海陆联测与海底地震仪探测.大地构造与成矿学,2003,27(4):295-300
    [78]丘学林,周蒂,夏戡原,等.南海西沙海槽地壳结构的海底地震仪探测与研究.热带海洋,2000,19(2):9-17
    [79]阮爱国,牛雄伟,吴振利,等.潮汕坳陷中生代沉积的折射波2D速度结构和密度.高校地质学报,2009,15(4):522-528
    [80]阮爱国,牛雄伟,丘学林,等.穿越南沙礼乐滩的海底地震仪广角地震试验.地球物理学报,2011,54(12):3139-3149
    [81]膝吉文,张中杰,万志超,等.羌塘盆地及周边地带地球物理场与油气深部构造背景初探.地球物理学进展,1996,11(1):12-27
    [82]邵学钟,张家茹,殷秀华.油气勘探与地壳深部构造研究.石油勘探与开发,1999,26(2): 11-14
    [83]宋国奇.郯庐断裂带渤海段的深部构造与动力学意义.合肥工业大学学报(自然科学版),2007,30(6):663-667
    [84]孙金龙,夏少红,徐辉龙,等.2010年南海北部海陆联测项目简介及初步成果.华南地震,2010,30:45-52
    [85]王华林,王永光,刘希强,等.渤海及周围地区断裂构造与强震活动研究.地震研究,2000,23(1):35-43
    [86]王俊勤,刘育丰,吕悦军,等.渤海海域及邻区地震活动环境分析.中国海上油气(工程),2003,15(2):28-31
    [87]王帅军,张先康,方盛明,等.渤海湾西北缘及其邻近地区地壳结构与构造特征.地球物理学报,2008,51(5):1451-1458
    [88]魏光兴,季同仁.渤海地震的研究综述.地震学刊,1990,3:1-6
    [89]卫小冬,阮爱国,赵明辉,等.穿越东沙隆起和潮汕坳陷的OBS广角地震剖面.地球物理学报,2011,54(12):3325-3335
    [90]卫小冬,赵明辉,阮爱国,等.南海中北部OBS2006-3地震剖面中横波的识别和应用.热带海洋学报,2010,29(5):72-80
    [91]吴振利,阮爱国,李家彪,等.南海南部海底地震仪试验及初步结果.海洋学研究,2010,28(1):55-61
    [92]吴振利,阮爱国,李家彪,等.南海中北部地壳深部结构探测新进展.华南地震,2008,28(1):21-28
    [93]吴振利,李家彪,阮爱国,等.南海西北次海盆地壳结构:海底广角地震实验结果.中国科学:地球科学,2011,41(10):1463-1476
    [94]夏戡原,周蒂,苏达权,等.莺歌海盆地速度结构及其对油气勘探的意义等.科学通报,1998,43(4):361-367
    [95]夏少红,丘学林,赵明辉,等.香港与珠三角地区海陆联合地震探测的数据处理.热带海洋学报,2007,26(1):35-38
    [96]夏少红,丘学林,赵明辉,等.香港地区海陆地震联测及深部地壳结构研究.地球物理学进展,2008,23(5):1389-1397
    [97]夏少红,丘学林,赵明辉,等.南海北部海陆过渡带地壳平均速度及莫霍面深度分析.热带海洋学报,2010,29(4):63-70
    [98]肖骑彬,赵国泽,王继军,等.苏鲁造山带及邻区深部电性结构研究.中国科学D辑:地球科学,2008,38(10):1258-1267
    [99]解秋红.渤海及邻区地应力场分析及构造稳定性评价:[博士学位论文].青岛:中国海洋大学,2011
    [100]徐杰.华北平原新生代裂陷区的伸展构造及与地震活动的关系:[博士论文].北京:国家地震局地质研究所,1986
    [101]徐杰,高战武,宋长青,等.营口-潍坊断裂带新生代活动特征.地震地质,1999,21(4):289-300
    [102]徐杰,冉勇康,单新建,等.渤海海域第四系发育概况.地震地质,2004,26(1):24-32
    [103]徐亚,郝天姚,戴明刚,等.渤海残留盆地分布综合地球物理研究.地球物理学报,2007,50(3):868-881
    [104]徐亚,郝天珧,黄松等.渤海湾地区壳幔结构重磁综合研究.地球物理学报,2011,54(12):3344-3351
    [105]薛彬,阮爱国,李湘云,等SEDIS Ⅳ型短周期自浮式海底地震仪数据校正方法.海洋学研究,2008,26(2):98-102
    [106]阎贫,刘昭蜀,姜绍仁.南海北部地壳的深地震地质结构探测.海洋地质与第四纪地质,1997,17(2):21-26
    [107]阎贫,刘昭蜀,姜绍仁.东沙群岛海域的折射地震探测.海洋地质与第四纪地质,1996,16(4):19-24
    [108]阎贫.海底地震仪记录中的横波.海洋地质与第四纪地质,1998,18(1):115-118
    [109]张成科,张先康,赵金仁,等.渤海湾及其邻区壳幔速度结构研究与综述.地震学报,2002,24(4):428-435
    [110]张春灌.渤海海域重力异常特征及油气分布规律探讨.断块油气田,2010,17(2):169-172
    [111]张景廉,李斌,李相博,等.苏南块体的深部构造及其油气前景.海相油气地质,2006,11(1):40-44
    [112]张景廉,石兰亭,陈启林,等.柴达木盆地地壳深部构造特征及油气勘探新领域.岩性油气藏,2008,20(2):29-36
    [113]赵明辉,丘学林,夏戡原,等.南海东北部海陆联测地震数据处理及初步结果.热带海洋学报,2004a,23(1):58-63
    [114]赵明辉,丘学林,叶春明,等.南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析.地球物理学报,2004b,47(5):845-852
    [115]赵明辉,丘学林,夏少红,等.南海东北部三分量海底地震仪记录中横波的识别和分析.自然科学进展,2007,17(11):1516-1523
    [116]支鹏遥.主动源OBS探测及地壳结构成像研究—以渤海2010测线为例:[博士论文].青岛:中国海洋大学,2012
    [117]中国科学院海洋研究所海洋地质研究室.渤海地质.北京:科学出版社,1985
    [118]钟以章,白云.辽东半岛及两侧海域深部构造、活动构造与地震关系研究.华北地震科学,1999,17(2):59-65
    [119]周心怀,余一欣,汤良杰,等.渤海海域新生代盆地结构与构造单元划分.中国海上油气,2010,22(5):285-289
    [120]周斌,张英凯,李继训.渤海及邻区地震地质、地球物理场和地震活动特征.西北地震学报,2000,22(3):333-337
    [121]朱守彪,张培震,石耀霖.华北盆地强震孕育的动力学机制研究.地球物理学报,2010,53(6):1409-1417
    [122]朱日祥,陈凌,吴福元,等.华北克拉通破坏的时间、范围与机制.中国科学:地球科学,2011,41(5):583-592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700