用户名: 密码: 验证码:
赤潮藻种后向散射特征机理及遥感反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后向散射系数是水色遥感的一个重要基础光学参数,其大小与水体组分有关,是重要的固有光学量之一。目前关于水体后向散射特性的研究主要集中在一类水体和近岸二类浑浊水体中,对于赤潮水体后向散射特性的研究相对较少,这在一定程度上阻碍了水色遥感分析模型的发展。本文从微微型浮游植物、微型浮游植物和小型浮游植物中选取四种我国近岸代表性赤潮藻种(微微藻、中肋骨条藻、强壮强沟藻和海洋原甲藻)进行培养和测量,并获得生物-光学数据,分析了不同藻种后向散射光谱变化特性及其影响因素,同时首次建立了基于MODIS数据的典型赤潮藻种细胞数遥感反演算法。主要内容和成果如下:
     1)对不同类型的赤潮藻种的后向散射光谱变化特性进行研究。通过对现场数据的分析计算,本文获得了四个代表性藻种不同叶绿素浓度下的后向散射系数和后向散射比率光谱,结果表明,各藻种的后向散射系数和后向散射比率均随叶绿素浓度的升高而增大,但是每个藻种都具有自己独特的光谱形状,并且微微型浮游植物和微型浮游植物在蓝光波段420nm-488nm的后向散射系数光谱形状还会随叶绿素浓度改变而发生变化,而小型浮游植物海洋原甲藻的光谱形状则始终保持不变。此外,通过对各藻种单位后向散射系数、单位后向散射比率以及后向散射截面的综合分析得出大颗粒藻种在420-620nm之间具有相对比较平缓的后向散射光谱曲线,尽管不同粒径大小的藻细胞颗粒对水体后向散射的贡献规律很难确定,但后向散射截面与粒径则呈良好的幂函数关系,该结论为日后赤潮藻种粒径分布的遥感反演提供了理论依据。
     2)针对藻类颗粒物蓝光波段后向散射光谱形状的变化特点,探讨了颗粒物吸收对后向散射的影响,并针对各藻种建立了后向散射与吸收的特征响应关系模型,得出微微藻和强壮前沟藻的颗粒吸收对后向散射的影响较大,其决定系数R2分别为0.996和0.93;而对于中肋骨条藻和海洋原甲藻而言,其影响则相对较弱,R2仅为0.57和0.52。
     3)建立水体表征参数与后向散射系数相关关系模型。本研究基于实测数据,分别建立了后向散射系数与叶绿素浓度、细胞数之间的相关关系模型,分析得出线性回归模型和乘幂回归模型均可用来描述各藻种后向散射系数与叶绿素浓度之间的关系;而后向散射系数与细胞数只满足幂指数关系模型,并且微微藻各波段的拟合系数基本相同;强壮前沟藻两者的相关性随着波长的增加而逐渐增强,至红光波段700nm处,两者之间的相关系数R2则高达0.99;海洋原甲藻的最佳拟合波段则出现在蓝光波段和红光波段处,该结论为日后建立典型赤潮藻种的细胞数遥感反演算法奠定良好的理论基础。
     4)建立了基于MODIS卫星的细胞数遥感反演算法,实现了赤潮水体信息的有效提取。本论文利用实验获得的测量数据,建立表观量与固有量之间的关系,并选择特征波段针对海洋原甲藻和微微藻建立了基于MODIS卫星的细胞数遥感反演算法。根据赤潮监测记录,选取2012年6月16日微微藻赤潮的MODIS影像进行提取实验,分别采用多波段遥感反演算法和单波段遥感反演算法进行细胞数反演。结果表明,对于高叶绿素水体,多波段细胞数反演模型的反演精度明显高于单波段细胞数反演模型,但是对于混合像元信号,赤潮检测比较困难,容易导致误判,特别对于悬沙较大的水体,反演的结果也偏大;而对于高悬沙水体,基于488nm的单波段的细胞数反演模型的反演精度则相对更高,尽管监测点位的反演结果比实测细胞数偏低,但从总体对赤潮的识别效果而言,单波段的反演算法明显剔除了悬沙的影响,识别精度更高一些。
Backscattering coefficient is an important parameter in ocean optics, and also is one of the important inherent optical properties, it is determined by the concentration of water constituents. Recently, while considerable research has been conducted on the backscattering properties of water with the development of optical instruments, most of this research is focused on the particle backscattering characteristics of case1water and coastal turbid water. The phytoplankton backscattering coefficient (bbP) and the causes of its variability are still poorly known. This hinders the expansion of the remote sensing model to a considerable extent. Variability of the backscattering characteristics about the alga Aureococcus anophagefferens、Skeletonema costatum、Amphidinium carerae hulburt and Prorocentrum micans which represent for the picophytoplankto、 nanophytoplankton and microphytoplankton respectively are examined. At the same time, the cell density remote sensing inversion model of the red tide alga is first builded. And the main researches contents and achievements were as follows:
     (1) Variability of backscattering properties about different red tide alga. Particulate backscattering coefficients and backscattering ratio are obtained for the experimental cultures by calculating the in-situ measured data, the results show that the backscattering coefficient and the backscattering ratio increase with an increase in the chlorophyll concentration, but every alga has its own spectral shape, and the shape of the particulate backscattering coefficient spectra about the picophytoplankton and nanophytoplankton is also changed with the variation of the chlorophyll concentration, especially at420nm-488nm. Otherwise, the bigger particulate has relatively flattened spectra, it is not regular for the contribution to the water backscattering of different sized alga particles, and a good relationship is observed between the backscattering cross-section and the ESD which provide a good theoretical basis for building the particle size distribution inversion model.
     (2) According to the variation of particulate backscattering spectra shape, the study investigates the influence of absorption on the backscattering signal, and establishes the characteristic response relationship model between backscattering and absorption on every selected alga. The result indicates that the slope of the backscattering spectrum in the blue for Aureococcus anophagefferens and Amphidinium carerae hulburt shows a strong relationship with absorption and the correlation coefficient R2are0.996and0.93respectively. The slope of the backscattering spectra between442nm and488nm for the Skeletonema costatum and Prorocentrum micans has a weaker, positive linear relationship with the relative absorption(R2is equal to0.57and0.52respectively).
     (3) Building correlation model between backscattering coefficients and the water quality characteristic parameters. The relationship between backscattering coefficients and chlorophyll concentration, cell desity is studied respctively. And find that the linear regression and nonlinear regression are both fit for showing the relation between the backscattering coefficients and chlorophyll concentration. While the relationship between backscattering coefficients and cell density only fit the nonlinear regression, the determination coefficient at all bands are the same for the Aureococcus anophagefferens; and the relationship of the Amphidinium carerae hulburt's becomes stronger with the longer wavelengh, especially at the700nm, R2is as much as0.99; moreover, the best fit bands of Prorocentrum micans appears at blue and red, that also lays the good foundation for building cell density distribution inversion model.
     (4)It develops the cell density remote sensing reversion model from MODIS data and retrieves red tide distribution effectively. After analyzing the spectral data and establishing the relation between inherent optical properties and apparent optical properties, the author builds a cell density remote sensing inversion model from MODIS data in allusion to Aureococcus anophagefferens and Prorocentrum micans, then apply this method to MODIS data on June16,2005, of which the red tide alga is Aureococcus anophagefferens. The results shows that multi-bands inversion model is more accurate than the single band inversion model for the high chlorophyll water, but it is difficult to identify the red tide information from the mixed pixel signal, that leads to the inversion results is larger than the monitoring data especially for high suspended sediment water, while the single band inversion model is more useful for such turbid water, although inversion value is lower than the monitoring results, it is available to eliminating the influence of suspended sediments and the recognition accuracy is more higher.
引文
[1]Stumpf R P. Applications of satellite ocean color sensors for monitoring and Predicting harmful algal blooms. Journal of Human and Ecological Risk Assessment,2001(7):1363-1368.
    [2]Chang F H, Uddstrom M, Pinkerton M. Studies of the winter 2000 Gymnodinium catenatum outbreaks in New Zealand using remotely sensed sea surface temperature and chlorophyll a data from satellites. Proceedings of the Marine Biotoxin Science Workshop,2001(15):165-173.
    [3]Gitelson A A, Sehalles J F, Hladik C M. Remote chlorophyll-a retrieval in turbid productive estuaries:Chesapeake Bay case study. Remote Sensing of Environment,2007,109(4):464-472.
    [4]邢小罡,赵冬至,刘玉光,杨建洪等.叶绿素a荧光遥感研究进展.遥感学报,2007,11(1):137-144.
    [5]Stumpf R P, Tyler M A. Satellite detection of bloom and pigment distributions in estuaries. Remote Sensing of Environment,1988,24(3):385-404.
    [6]毛显谋,黄韦良.多波段卫星遥感海洋赤潮水华的方法研究.应用生态学报,2003.14(7):1200-1202.
    [7]赵冬至,杜飞,赵玲,郭皓,张丰收.基于表面反射率的赤潮卫星荧光线高度算法比较.高技术通讯,2004(11):93-97
    [8]徐青娜.基于浮游植物吸收光谱的有害赤潮藻类信息提取方法:(硕士论文).青岛:中国海洋大学,2011.
    [9]王林,赵冬至,杨建洪等.赤潮对近岸水体生物光学特性的影响.环境科学,2011,32(10):2855-2860.
    [10]周雯,孙兆华,曹文熙,王桂芬.浮游植物的吸收-衰减特性及其与粒径间的关系.热带海洋报,2012,32(12):3347-3352
    [11]Stacey McLeroy Etheridge. Ecophysiology and Optical Detection of Harmful Algal Blooms:[dissertation]. Storrs:University of Connecticut,2002.
    [12]Dall'Olmo G, Westberry T K, Behrenfeld M J, et al. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences,2009,6:947-967.
    [13]Babin M, Morel A, Fournier S V, et al. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr.,2003, 48(2):843-859.
    [14]Boss E, Pegau W S, Lee M, et al. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research,2004,109(C0104):1-10.
    [15]Morel A. Optical properties of pure water and pure sea water. In:N. G. Jerlov & E. Steeman-Nielsen, Ed. Optical Aspects of Oceanography,1974:1-24.
    [16]Smith R C, Baker K. Optical properties of the clearest natural waters. Applied Optics, 1981(20):177-184.
    [17]Shifrin K S. Physical optics of ocean water. New York:American Institute of Physics,1988.
    [18]Buiteveld H, Hakvoort J H M, Donze M. The optical properties of pure water. In:J. S. Jaffe, Ed. Ocean optics Ⅻ.Proceedings SPIE,1994,2258:174-183, Bellingham:The Society of Photo-Optical Instrumentation Engineers.
    [19]Stramki D, Boss E, Bogucki D, et al. The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography,2004(61):27-56.
    [20]Stramski D, Kiefer D A. Light scattering by microorganisms in the open ocean. Prog. Oceanogr, 1991(28):343-383.
    [21]Kopelevich O V. Small-parameter model of optical properties of seawater, Chapter 8 in Ocean Optics, vol 1:Physical Ocean Optics. Moscow:Nauka Pub,1983.
    [22]Mobley-Curtis D. Light and Water:Radioactive Transfer in Natural Waters. SanDiego: Academic Press,1994:117-119.
    [23]Lee Zhong Ping, Carder K L, Arnone R A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt,2002,41(27):5 755-5772.
    [24]宋庆君,唐军武.黄海东海海区水体散射特性研究.海洋学报,2006,28(4):56-63.
    [25]Morel A, Bricaud A. Theoretical results concerning light absorption in a discrete medium,and application to specific absorption of phytoplankton. Deep-Sea Research,1981,28(11):1375-1393.
    [26]Bricaud A, Morel A. Light attenuation and scattering by phytoplanktonic cells:a theoretical modeling. Appl. Opt,1986(25):571-580.
    [27]Stramski D, Bricaud A, Morel A. Modeling the light attenuation and scattering by spherical phytoplankton cells:a retrieval of the bulk refractive index[J]. Appl. Opt,1988(27):3954-3956.
    [28]周雯,曹文熙,李彩,王桂芬等.细胞结构对浮游植物光学特性的影响.热带海洋学报,2010,29(2):33-38.
    [29]Bricaud A, Zaneveld J R, Kitchen J C. Backscattering efficiency of cocoolithophorids:use of a three-layered sphere model. Ocean OpticsⅪ. Proc SPIE,1992(1750):27-33.
    [30]Zaneveld J R, Kitchen J S. The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure. J. Geophys. Res, 1995,100(C7):13309-13320.
    [31]Quirantes A, Bernard S. Light scattering by marine algae:two-layer spherical and nonspherical models. J. Quant. Spectrosc. Radiat. Transfer,2004,89(1-4):311-321.
    [32]Volten H, De Haan J F, Hovenier J W, Schreurs R, et al. Laboratory Measurements of Angular Distributions of Light Scattered by Phytoplankton and Silt. Limnol.Oceanogr.,1998, 43(6):1180-1197.
    [33]Vaillancourt R D, Brown C W, Guillard R R L, et al. Light backscattering properties of marine phytoplankton:relationships to cell size chemical composition and taxonomy. J. Plankton Res.,2004, 26(2):191-212.
    [34]Wen Zhou, Guifen Wang, Zhaohua Sun, et al. Variations in the optical scattering properties of phytoplankton cultures. Optics Express,2012,20(10):11189-11206
    [35]Whitmire A B, Pegau W S, Boss L K. Backscattering characteristics of marine phytoplankton Taxa网络文档
    [36]Reynolds R A, Stramski D, Mitchell B G. A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean. J. Geophys. Res.,2001 (106):7125-7138.
    [37]Wozniak S B, Stramski D. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl. Opt.,2004(43):3489-3503.
    [38]Loisel H, Nicolas J M, Sciandra A, Stramski D, Poteau A. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. Journal of Geophysical Research,2006,111, C09024, doi:10.1029/2005JC003367.
    [39]Bricaud A, Morel A, Prieur L. Optical efficiency factors of some phytoplankters. Limnol.Oceanogr.,1983,28(5):816-832.
    [40]Morel A, Ahn Y H. Optical efficiency factors of free-living marine bacteria:Influence of Geophysical Research,1996,101(C7):16631-16648
    [53]唐军武,田国良.水色光谱分析与多成分反演算法.遥感学报,1997,1(4):252-256.
    [54]Gordon H R. Absorption and Scattering Estimates from Irradiance Measurements:Monte Carlo Simulations. Limnology and Oceanography,1991,36(4):769-777.
    [55]Kirk J T O. Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude. Limnology and Oceanography,1984,29(2):350-356.
    [56]Kirk J T O. Monte Carlo modelling of the performance of a reflective tube absorption Meter. Appl. Opt.,1992,31(30),6463-6468.
    [57]Lee Z P, Carder K L, Steward R G, et al. An empirical algorithm for light absorption by ocean water based on color. J Geophys Res,1998,103(C12):27967-27978.
    [58]Morel A, Gordon H R. Report of the working group on water color. Boundary-Layer Meteorology,1980,18(3):343-355.
    [59]Gordon H R, Morel A. Remote assessment of ocean color for interpretation of satellite 15 visible imagery:A review, Lecture notes on coastal and estuarine studies. Springer erlag, Heidelberg, 1983(4):114
    [60]席红艳.香港近海水体光学特性分析及色素浓度反演模式研究:(硕士论文).青岛:中国科学院海洋研究所,2007.
    [61]Gordon H R, Brown J W, Evans R H. Exact Rayleigh Scattering Calculations for use with the Nimbus-7 Coastal Zone Color Scanner. Appl. Opt.,1988(27):862-871.
    [62]Maritorena S, Morel A, Gentili B. Diffuse reflectance of oceanic shallow waters:influence of water depth and bottom albedo. Limnol. Oceanogr.1994(39):1689-1703.
    [63]Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Appl. Opt.,1994,33(12): 2369-2378.
    [64]Garver S A, Siegel D A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation:1. Time series from the Sargasso Sea. Journal of Geophysical Research,1997,102(C8):18607-18625.
    [65]Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters.1.A semianalytical model. Applied Optics,1998(37):6329-6338.
    [66]Carder K L, et al. MODIS ATBD19 Case 2 Chlorophyll a, Version 5.1999a.
    [67]Ruddick K G, Gons H J, Rijkeboer M, Tilstone G. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Applied Optics,2001(40):3575-3585.
    [68]Lee Z P, Carder K L. Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data. Applied Optics,2002(41):2191-2201.
    [69]李铜基,朱建华,陈清莲.黄东海海区春季半经验分析生物-光学算法研究.海洋技术,2006,25(1):83-88.
    [70]郝艳玲,曹文熙,崔廷伟,张杰.基于半分析算法的赤潮水体固有光学性质反演.海洋学报.2011,33(1):52-65
    [71]唐军武,田国良.水色光谱分析与多成分反演算法.遥感学报,1997,1(4):252-256
    [72]邢小罡,赵冬至,刘玉光,杨建洪,王林.渤海非色素颗粒物和黄色物质的吸收特性研究.海洋环境科学,2008,27(6):595-598.
    [73]黄昌春,李云梅,孙德勇,乐成峰,金鑫.太湖水体散射光谱特性及其形成机理研究.光学学报,2011,31(5):0501003-1~9.
    [74]金鑫,李云梅,王桥,等.基于生物光学模型的巢湖悬浮物浓度反演.环境科学,2010,31(12):2882-2889.
    [75]孙德勇,李云梅,乐成峰,等.太湖水体散射特性及其与悬浮物浓度关系模型.环境科学,2007,28(12):2688-2694.
    [76]Carder K L, Chen F R, Lee Z P, et al. Semi-analytical Moderate Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys. Res.,1999(104):5403-5421.
    [77]O'Reilly J E, Maritorena S, Mitchell B G D A, et al. Ocean color chlorophyll algorithms for SeaWiFS. Journal of GeophysicalResearch,1998,103(C11):24937-24953.
    [78]黄韦艮.赤潮光谱特性研究.见:赤潮监测与预报研究论文选编.杭州:国家海洋局第二研究所,2000:44-47.
    [79]赵冬至.渤海赤潮灾害监测与评估研究文集.北京:海洋出版社,2000:117-120.
    [80]崔廷伟,张杰,马毅,等.赤潮光谱特征及其形成机制.光谱学与光谱分析,2006,26(5):884-886.
    [81]Chen C, Zhu J, Beardsley R C, Franks P J S. Physical-biological sources for dense algal blooms near the Changjiang River. GeoPhysical Research Letters,2003,30, doi:10.1029/2002GL016391
    [82]Tang D L, Kester D R, Ni I H, Qi Y Z, Kawamura H. In-situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae News,2003(2):89-99.
    [83]Millie D F, et al. Detection of harmful algal blooms using photopigments:Acase study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnology and Oceanography,1997, 42(5):1240-1251
    [84]Liew S C, Lin 11, Kwoh L K, Holmes M, Teo S, Gin K, Lim H. Spectral reflectance signatures of case Ⅱ waters:potential for tropical algal bloom monitoring using satellite ocean colour sensors. The 10th JSPS/VCC Joint Seminar on Marine and Fisheries Sciences, Melaka, Malaysia,1999.
    [85]丘仲峰.东海赤潮高发区水色遥感算法及赤潮遥感监测研究:(博十论文).青岛:中国科学院海洋研究所,2006
    [86]Groom S B, Holligan P M. Remote Sensing of Coccolithophore Blooms. Advances in Space Research,1987,7(2):73-78.
    [87]Ackleson S G, Holligan P M. AVHRR observations of a Gulf of Maine coccolithophorid bloom, Photogramm. Eng. Remote Sensing,1989(55):473-474.
    [88]Gower J F R. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sensing of Environment,1994(48):309-318.
    [89]Kahru M, Mitchell B G. Spectral reflectance and absorption of a massive red tide off southern California. J Geophys Res,1998(103):21601-21609.
    [90]Holligan P M, Viollier M, Dupouy C, Aiken J. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature,1983(304):339-342.
    [91]Stumpf R P, Tyler M A. Satellite detection of bloom and distributions in estuaries. Remote Sensing of Environment,1988(24):385-404.
    [92]Gower J F R. Bright plankton blooms on the west coast of north america observed with AVHRR imagery. In:Mati K, Christopher W B, ed. Monitoring Algal Blooms:New Techniques for Detecting Large-Scale Environmental Change,1997:25-40.
    [93]Kawamura H. Remote Sensing of Red-Tide Phenomena in Eastern Asian Waters. In Workshop on Red Tide Monitoring in Asian Coastal Waters, JaPan,2005.
    [94]Ahn Y, Shanmugam P. Detecting the red tide algal blooms from Satellite Ocean color observations in optically complex Northeast-sia Coastal waters. Remote Sensing of Environment, 2006,103(4):419-437.
    [95]孙强等.SeaWIFS探测1997年闽南赤潮模型研究.台湾海峡,2000,19(1):70-74.
    [96]毛显谋,黄韦良.多波段卫星遥感海洋赤潮水华的方法研究.应用生态学报,2003,14(7):1200-1202.
    [97]王其茂,等.EOS/MODIS遥感资料探测海洋赤潮信息方法.遥感技术与应用,2006,21(1):6-10.
    [98]李继龙,等.利用MODIS遥感数据探测长江口及邻近海域赤潮的初步研究.海洋渔业,2007,29(1):25-30.
    [99]黄韦艮,毛显谋,张鸿翔.赤潮遥感监测与实时预报.海洋预报,1998(15):111-115.
    [100]林寿仁.赤潮探测方法研究.国家海洋局第二海洋研究所内部技术报告,1999.
    [101]黄韦艮,林寿仁,毛天明.浙江海区赤潮灾害的遥感实时监测.国家海洋局第二海洋研究所内部技术报告,2001.
    [102]周雯.浮游植物光散射特性理论模拟:(博士论文).广州:中国科学院研究生院,2008
    [103]Zhou, J. Spectral sensing technique for water constituents. ProQuest Dissertations and Theses, 2006.
    [104]徐希孺.遥感物理.北京:北京大学出版社,2005.
    [105]Sathyendnoth S, Prieur L, Morel A. A three- component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters. International Journal of Remote Sensing,1989,10(8):1373-1394.
    [106]周方方.水库叶绿素a光学性质及浓度遥感反演模式研究:(硕士论文).杭州:浙江大学,2011.
    [107]Gordon H R, Brown O B, Jaeobs M M. Computed Relationships between the inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Applied Optics,1975,14(2):417-427.
    [108]Gordon H R, Brown O B, Evans R H, Brown J W, et al. A semi-analytic radiance model of ocean color. J Geophys. Res.,1988(93):10909-10924.
    [109]Kirk J T O. Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol.Oceanogr.,1984(29):350-356.
    [110]Lee Z P, Carder K L, Peaeoek T G, Davis C O, Mueller J L. Method to derive ocean absorption coefficients from remote-sensing reflectanee. APPl.OPt.,1996(35):453-462.
    [111]Hoge F E, Lyon P E. Spectral Parameters of inherent optical Property models:methods for satellite retrieval by matrix inversion of an oceanic radiance model. APPl.OPt.,1999(38):1657-1662.
    [112]潘刚,段舜山,徐宁.海洋赤潮水色遥感技术研究进展.生态科学,2007(05):460-465.
    [113]Sieburth J M, Smetacek V, Lenz J. Pelagic ecosystem structure:Heterotrophic components of the plankton and their relationship to plankton size-fractions. Limnology and Oceanography, 1978,23:1256-1263.
    [114]宋庆君,唐军武,马荣华.水体后向散射系数校正方法研究.海洋技术,2008(01):48-52
    [115]Vaillancourt R D, Brown C W, Guillard R R, et al. Light Backscattering Properties of Marine Phytoplankton:Relationships to Cell Size Chemical Composition and Taxonomy. Journal of Plankton Research,2004,26(2):191-212.
    [116]Dupouy C, Neveux J, Dirberg G, et al. Bio-optical properties of the marine cyanobacteria Trichodesmium spp. Journal of Applied Remote Sensing,2008,2(1):1-17.
    [117]王林,赵冬至,杨建洪,王祥.两种水体吸收系数测量方法的比较研究.海洋技术,2012,31(3):52-55.
    [118]乐成峰.基于实测反射率光谱的太湖蓝藻识别与定量估算研究:(博士论文).南京:南京师范大学,2010.
    [119]王林.北黄海水色组分吸收特性研究:(硕士论文).大连:大加海事大学,2008.
    [120]Mitehell BG. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique(QFT). SPIE Proceedings,1990,1302:137-148.
    [121]张彦喆.渤海海域叶绿素浓度反演方法研究:(硕士论文).天津:天津科技大学,2010.
    [122]Kirk J T O. Light and photosynthesis in aquatic ecosystems. Cambridge:Cambridge University Press,1994.
    [123]Stramski D, Reynolds R A, Babin M,et al. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic oceans. Biogeosciences Discuss,2007(4):3453-3530.
    [124]Ahn Y H, Bricaud A, Morel A, Light backscattering efficiency and related properties of some phytoplankters.Deep Sea Research,1992,39(11-12):1835-1855.
    [125]Maritorena S, Siegel D. The GSM Semi-Analytical Bio-Optical Model. IOCCG Report Number 5,2006,81-83.
    [126]Werdell P J. Global bio-optical algorithms for ocean color satellite applications. EOS Trans, 2009(90):4-6.
    [127]Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Opt.,1997(36):8710-8723.
    [128]Bricaud A,Babin M,Morel A,Claustre H. Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton:analysis and parametrization. Journal of Geophysical Research,1995,100(C7):13321-13332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700