用户名: 密码: 验证码:
地下水与陆面蒸散相互作用的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆面蒸散包括植物蒸腾和土面蒸发,与地下水埋深具有显著的关系。同时,地下水的分布和运动方式强烈受到蒸发的影响。因此,研究地下水与陆面蒸散的相互作用对于陆面水文循环、区域水资源评价、协调社会用水和生活用水等具有重要的理论意义和实践意义。
     考虑入渗和线性蒸发,建立单井开采稳定流模型,获得地下水位和对流运移时间的解析解,同时,构建一个假想的例子,运用MODFLOW和MODPATH进行数值模拟,验证了解析解的准确性。将群丼开采概化为理想圆形面状开采,考虑入渗和线性蒸发的垂向通量,分别获得低、中、强抽水速率下水位和蒸发速率分布的解析解,并与数值模拟结果进行对比,两者吻合度很好。考虑抛物线型和指数型蒸发条件,运用Runge-Kutta数值算法获得地下水位和蒸发速率的分布,与线性蒸发相比,三者的水位分布几乎一致,地下水蒸发的重分布形式相似。
     根据鄂尔多斯高原观测孔的地下水位资料,建立解译地下水动态的概念模型,分析周期动态的参数敏感性和气候敏感性,蒸发的极限埋深Dmax和权重值主要改变水位的平均埋深,给水度则主要改变水位埋深的振幅。在此基础上,分别建立单井开采、群井开采和大口井开采的动态叠加模型,运用MODFLOW进行数值模拟,结果表明抽水井开采会同时改变地下水位的埋深、振幅和相位,开采扰动程度主要受距井的距离和开采井类型的影响。
     根据干旱区湖泊主要接受降雨入渗和进行蒸发排泄的特点,分别建立潜水含水层和有越流含水层的湖泊蒸发模型,在数值模拟中将湖泊等效处理为大口井,模拟结果显示含水层结构的改变对湖水位和地下水位分布的影响甚小。同时,将大口井模型和湖泊模型进行类比分析,两者具有一定的相似性,但由于水体规模存在很大的差异,导致地下水动态特征有所不同。
     选取巴丹吉林沙漠的典型湖泊-苏木巴润吉林,野外实测湖泊的温度和盐度,分析了水温和矿化度的空间变化特征,湖底矿化度的异常低值区可能存在深部地下水的集中排泄。建立沙漠湖泊群与地下水流场的耦合模型,集中讨论数值模型中湖泊的处理方法,分析地下水流场特征,总体上沙漠地下水由东南流向西北。
Evapotranspiration, which includes plant transpiration and soil evaporation, has aclose connection to groundwater depth. At the same time, evapotranspiration stronglyinfluences the distribution and movement of groundwater. As a result, study oncoupling between groundwater and evapotranspiration gives theoretical and praticaldirection for analyzing land surface hydrological cycle, evaluating regional waterresources and coordinating the relationship between social and ecological water use.
     A mathematical model of unconfined flow toward a discharge well withredistribution of groundwater evapotranspiration is developed. Analytical solutions ofgroundwater level and travel time are obtained. For a typical hypothetical example,these solutions perfectly agree with the numerical simulation results based onMODFLOW and MODPATH. A mathematical model of steady radial flow toward agroup of wells considering recharge and evapotranspiration is developed. The wellfield is simplified by a circular area with uniformly distributed pumpage. Analyticalsolutions for three cases with low,medium and strong pumpage are obtained, whichsufficiently agree with a numerical model. Runge-Kutta solutions of using nonlinearevapotranspiration formulas are presented and compared with the analytical model.They predict almost the same water table distribution and similar redistributionpatterns of evapotranspiration.
     Based on the data of groundwater level in Ordos Plateau, a concept model whichinterprets the dynamic characters of groundwater is built. The parameter sensitivityand climate sensitivity are analyzed. Among them, Dmax and mainly change theaverage of groundwater depth while mainly changes the amplitude of groundwaterdepth. Then, dynamic superimposed models of a pumping well, large-diameter welland a group of wells are built separately. Based on MODFLOW,the numericalsimulation results show that pumping changes the average, amplitude and phase ofgroundwater level. Furthermore,the magnitudes of the changes are mainly controlledby the distance to the well and the type of the well.
     The concept models of lakes locating in unconfined aquifer and leaky aquifer are developed separately. In arid areas, precipitation and evapotranspiration are mainsources of lakes, so lakes are considered as large-diameter wells in the numericalsimulation. The results show that the change of aquifer settings takes little effect on thedistribution of groundwater. Then, a model of a large-diameter well capturinggroundwater evapotranspiration is developed and compared with the lakeevapotranspiration model. These two models perform similarly in general,but thesignificant differences in water volume lead to different characteristics of groundwaterdistribution.
     In this study, a survey of the depth-dependent temperature and electricconductivity was carried out in the typical salt lake: the Sumu Barun Jaran. Spatialdistributions of temperature and salinity are investigated. Abnormal low TDS zonesdeveloped in the water body near the lake bottom which seem to be influenced bygroundwater and indicate concentrated discharge of groundwater into the lake. Further,a coupling model between desert lakes and groundwater flow is developed. Thesimulation method of lakes is discussed and the character of groundwater flow field isanalyzed. On the whole, groundwater flows from southeast to the northwest.
引文
Anderson, M.P., Hunt, R.J., Krohelski, J.T., et al. Using high hydraulic conductivity nodes tosimulate seepage lakes. Ground Water,2002,40(2):117-122.
    Atkinson, K.E. An Introduction to Numerical Analysis (2nd ed.). New York: John Wiley and Sons,1989.
    Averianov, S. Seepage from irrigation canals and its influence on regime of ground water table. In:Influence of Irrigation Systems on Regime of Ground Water. USSR: Academic Press,1956.140-151.
    Banta, E.R. MODFLOW-2000, the US Geological Survey modular ground-water model-documentation of packages for simulating evapotranspiration with a segmentedfunction(ETS1) and drains with return flow(DRT1). US Geological Survey Open-file Report00-466,2000.
    Boulton, N.S. Analysis of data from non-equilibrium pumping tests allowing for delayed yieldfrom storage. Inst Civil Engineers Proceedings,1963,26(3):469-482.
    Chen, J.S., Li, L., Wang, J.Y., et al. Groundwater maintains dune landscape: A remote watersource helps giant sand their ground in a windy desert. Nature,2004,432:459-460.
    Chen, X.H. Analysis of pumping-induced stream-aquifer interactions for gaining streams, Journalof Hydrology,2003,275:1-11.
    Chen, X.H. Hydrologic connections of a stream-aquifer-vegetation zone in south-central PlatteRiver valley, Nebraska. Journal of Hydrology,2007,333:554-568.
    Chen, X.H., Shu, L.C. Groundwater evapotranspiration captured by seasonally pumped wells inriver valleys. Journal of Hydrology,2006,318:334-347.
    Coelho, M.B., Villalobos, F.J., Mateos L. Modeling root growth and the soil–plant–atmospherecontinuum of cotton crops. Agricultural Water Management,2003,60:99–118.
    Cooper, D.J., Sanderson, J.S., Stannard, D.I., et al. Effects of long-term water table drawdown onevapotranspiration and vegetation in an arid region phreatophyte community. Journal ofHydrology,2006,325:21-34.
    Denis, R.E., Motz, L.H. Drawdowns in coupled aquifers with confining unit storage and ETreduction. Ground Water,1998,36(2):201-207.
    Dupuit, J. études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts età travers les terrains perméables,2nd ed. Dunod, Paris, France,1863.
    Gardner, W.R., Fireman, M. Laboratory studies of evapotranspiration from soil columns in thepresence of a water table. Soil Science,1958,85(5):244-249.
    Gates, J.B., Edmunds, W.M., Darling, W.G., et al. Conceptual model of recharge to southeasternBadain Jaran Desert groundwater and lakes from environmental tracers. AppliedGeochemistry,2008,23:3519-3534.
    Goyette, S., McFarlane, N.A., Flato, G.M. Application of the Canadian Regional Climate Model tothe Laurentian Great Lakes region: Implementation of a lake model, Atmosphere-Ocean,2000,38(3):481-503.
    Gries, D., Zeng, F., Foetzki, A., et al. Growth and water relations of Tamarix ramosissima andPopulus euphraticaon Taklamakan desert dunes in relation to depth to a permanent watertable. Plant, Cell and Environment,2003,26:725-736.
    Grismer, M.E., Gates, T.K. Estimating saline water table contribution to crop water use. CaliforniaAgriculture,1988,42:23-24.
    Hantush, M.S. Analysis of data from pumping tests in leaky aquifers. Transactions of theAmerican Geophysical Union,1956,37(6):702-714.
    Hantush, M.S. Growth and decay of groundwater-mounds in response to uniform percolation.Water Resources research,1967,3(1):227-234.
    Hantush, M.S. Hydraulics of Wells. In: V. T. Chow, editor, Advances in Hydroscience, volume1.New York:Academic Press,1964.281-432.
    Hantush, M.S. Modification of the theory of leaky aquifers. Journal of Geophysical Research,1960,65(11):3713-3725.
    Hantush, M.S., Jacob, C.E. Non-steady radial flow in an infinite leaky aquifer. Transactions of theAmerican Geophysical Union,1955,36(1):95-100.
    Harbaugh, A.W., Banta, E.R., Hill, M.C., et al. MODFLOW-2000, the U.S. Geological Surveymodular ground-water model—User guide to modularization concepts and the ground-waterflow process. U.S. Geological Survey Open-File Report00–92,2000.
    Harbaugh, A.W., McDonald, M.G. User’s documentation for MODFLOW-96, an update to theU.S. Geological Survey modular finite-difference ground-water flow model. U.S. GeologicalSurvey Open-file Report96-485,1996.
    Hayashi, M. Temperature-electrical conductivity relation of water for environmental monitoringand geophysical data inversion. Environmental Monitoring and Assessment,2004,96:119-128.
    Hill, M.C. Preconditioned conjugate-gradient2(PCG2), a computer program for solvingground-water flow equations. U.S. Geological Survey Water-Resources Investigations Report90-4048,1990.
    Horton, J.L., Clark, J.L. Water table decline alters growth and survival of Salix gooddingii andTamarix chinensis seedlings. Forest Ecology andManagement,2001,140:239-247.
    Horton, J.L., Hart, S.C. Hydrauliclift: a potentially important ecosystem process. Trends inEcology and Evolution,1998,13:232-235.
    Horton, J.L., Kolb,T.E., Hart, S.C. Responses of riparian trees to interannual variation in groundwater depth in a semi-arid river basin. Plant, Cell and Environment,2001,24:293-304.
    Hostetler, S.W., Bates, G.T., Giorgi, F. Interactive coupling of a lake thermal model with a regionalclimate model. Journal of Geophysical Research,1993,98(D3):5045-5057.
    Hu, S.J., Tian, C.Y., Song, Y.D., et al. Models for calculating phreatic water evapotranspiration onbare and Tamarix-vegetated lands. Chinese Science Bulletin,2006,51:43-50.
    Jacob, C.E. Radial flow in a leaky artesian aquifer. Transactions of the American GeophysicalUnion27(2),1946:198-205.
    James, E.A. Groundwater control of closed-basin lake levels under steady-state conditions.Journal of Hydrology,1990,122:293-318.
    Jiang, X.W., Wan, L., Ge, S., et al. A quantitative study on accumulation of age mass aroundstagnation points in nested flow systems. Water Resources Research,2012,48, W12502. doi:10.1029/2012WR012509.
    Lautz, L.K. Erratum:Estimating groundwater evapotranspiration rates using diurnal water-tablefluctuations in a semi-arid riparian zone. Hydrogeology Journal,2008,16:483-497.
    Lv, J., Wang, X.-S., Zhou, Y., et al. Groundwater-dependent distribution of vegetation in HailiutuRiver catchment, a semi-arid region in China. Ecohydrology,2013,6(1):142-149.
    Ma, J.Z., Edmunds, W.M. Groundwater and lake evolution in the Badain Jaran Desert ecosystem,Inner Mongolia. Hydrogeology Journal,2006,14:1231-1243.
    Martinet, M.C., Vivoni, E.R., Cleverly, J.R. On groundwater fluctuations, evapotranspiration, andunderstory removal in riparian corridors.Water Resources Research,2009,45:1-19.
    McBride, M.S. Pfannkuch, H.O. The distribution of seepage within lakebeds. U.S. Geol.Surv., J.Res.,1975,3:505-512.
    McDonald, M.G., Harbaugh., A.W. A modular three-dimensional finite-difference ground-waterflow model. Techniques of Water Resources Investigations, Book6. Reston, Virginia: U.S.Geological Survey,1988.
    Mironov, D. V. Parameterization of Lakes in Numerical Weather Prediction. Description of a LakeModel, COSMO Technocal Report11[R]. Deutscher Wetterdienst, Offenbach am Main,Germany,2008.
    Moench, A.F. Double-porosity models for a fissured groundwater reservoir with fracture skin.Water Resources Research,1984,20(7):831-846.
    Motz, L.H. Steady-state drawdowns in coupled aquifers. Journal of the Hydraulics Division,American Society of Civil Engineers,1978,104(7):1061-1074.
    Motz, L.H., Acar, O. Evaluation and Documentation of SJRWMD Groundwater Models SWUPand COUAQ for Use by Permit Applicants (Final Project Report). Special PublicationSJ2012-SP10, St. Johns River Water Management District, Palatka, FL,2012.97.
    Niemann, J.D., Hallberg, N., Gates, T. Characterizing non-beneficial evaporative upflux fromshallow groundwater under uncultivated land in an irrigated river valley. Colorado WaterNewsletter,25(1):13-17.
    Neuman, S.P. Theory of flow in unconfined aquifers considering delayed response of the watertable. Water Resources Research,1972,8(4):1031-1045.
    Philip, J.R. Evapotranspiration, and moisture and heat fields in the soil. Journal of Meteorology,1957,14:354-366.
    Pollock, D.W. User’s guide for MODPATH/MODPATH-PLOT, version3: a particle trackingpost-processing package for MODFLOW, the U.S. Geological Survey finite differencegroundwater flow model. U.S. Geological Survey Open-File Report94-464,1994.
    Quarteroni, A., Saleri,F. Scientific Computing with MATLAB and Octave. Springer.2006.
    Ripple, C.D., Rubin, J., van Hylckama, T.E.A. Estimating steady state evapotranspiration ratesfrom bare soils under conditions of high water table. US Geological Survey Water-SupplyPaper2019-A,1972.
    Saleem, Z.A., Jacob, C.E. Drawdown distribution due to well fields in coupled leaky aquifers:1.Infinite aquifer system. Water Resources Research,1973,9(6):1671–1678.
    Shah, N., Nachabe, M., Ross, M. Extinction depth and evapotranspiration from ground waterunder selected land covers. Ground Water,2007,45(3):329-338.
    Sharma, D.R., Prihar, S.S. Effect of depth and salinity of ground water on evapotranspiration andsoil salinization. Indian Journal Agricultural Science,1973,43(6):582-586.
    Singh, R.K., Prasher, S.O., Chauhan, H.S., et al. An analytical solution of the Boussinesq equationfor subsurface drainage in the presence of evapotranspiration. Transactions of the AmericanSociety of Agricultural Engineers,1996,39(3):953-960.
    Sorensen, J.A., Glass, G.E. Ion and temperature dependence of electrical conductance for naturalwaters. Analytical Chemistry,1987,59:1594-1597.
    Stepanenko, V.M.,Goyette, S., Martynov, A., et al. First steps of a lake model intercomparisonproject: LakeMIP. Boreal Environment Research,2010,15(2):191-202.
    Stromberg, J.C., Tiller, R., Richter, B. Effects of groundwater decline on riparian vegetation ofsemiarid regions: the San Pedro, Arizona. Ecological Applications,1996,6(1):113-131.
    Theis, C.V. The relation between the lowering of the piezometric surface and the rate and durationof discharge of a well using ground water storage. Transactions of the American GeophysicalUnion16,1935,519-524.
    Wang, X.S., Chen, C.X., Jiao, J.J. Modified Theis equation by considering the bending effect ofthe confining unit. Advances in Water Resources,2004,27:981-990.
    Yang, X.P. Chemistry and Late Quaternary evolution of ground and surface waters in the area ofYabulai Mountains, Western Inner Mongolia, China. Catena,2006,66:135-144.
    Yang, X.P., Williams, M. A. J. The ion chemistry of lakes and Late Holocene desiccation in theBadain Jaran Desert, Inner Mongolia, China. Catena,2003,51(1):45-60.
    Yeh, H.D., Chang, Y.C. Recent advances in modeling of well hydraulics. Advances in WaterResources,2013,51:27-51.
    陈建生,赵霞,盛雪芬,等.巴丹吉林沙漠湖泊群与沙山形成机理研究.科学通报,2006,51(23):2789-2796.
    陈亚宁,陈亚鹏,李卫红,等.塔里木河下游胡杨脯氨酸累积对地下水位变化的响应.科学通报,2003,48(9):958~961.
    丁宏伟,王贵玲.巴丹吉林沙漠湖泊形成的机理分析.干旱区研究,2007,24(1):1-7.
    付秋萍,张江辉,王全九. E0值对潜水蒸发计算精度影响分析.干旱区地理,2007,30(6):820-825.
    郭峰,孙怀东,王飞,等.巴丹吉林沙漠地层序列的粒度分布及其组分成因分析.海洋地质与第四纪地质,2014,34(1):165-173.
    胡汝骥,姜逢清,王亚俊,等.论中国干旱区湖泊研究的重要意义.干旱区研究,2007,24(2):137-140.
    胡汝骥,姜逢清,王亚俊,等.亚洲中部干旱区的湖泊.干旱区研究,2005,22(4):424-430.
    黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源:[硕士学位论文].兰州:兰州大学,2007.
    黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给.现代地质,2007,21(4):624-631.
    金晓媚,刘金韬.黑河下游地区地下水与植被生长的关系.水利水电科技进展,2009,29(1):1-4.
    金晓媚,万力,薛忠歧,等.基于遥感方法的银川盆地植被发育与地下水关系研究.干旱区资源与环境,2008,22(1):129-132.
    金晓媚,万力,张幼宽,等.银川平原植被生长与地下水关系研究.地学前缘,2007,14(3):197-203.
    雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    刘昌明,杨胜天,温志群,等.分布式生态水文模型EcoHAT系统开发及应用.中国科学,2009,39(6):1112-1121.
    陆莹.巴丹吉林沙漠湖泊水化学时空分布特征及其成因初探:[硕士学位论文].兰州:兰州大学,2012.
    马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源.地球科学进展,2007,22(9):922-930.
    马龙,刘廷玺.科尔沁沙地植物生态型与地下水位及土壤水分的关系研究.中国沙漠,2007,27(3):391-396.
    马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义.第四纪研究,2008,28(4):702-711.
    秦建甫,张海滨,万伟锋.内蒙古鄂尔多斯市哈头才当水源地水文地质调查报告.郑州:黄河勘测规划设计有限公司,2010.
    任建民,张香台,俞兆权.干旱区非地带性植被生态需水量的研究.沈阳农业大学学报,2007,38(3):383-386.
    尚松浩,毛晓敏,雷志栋,等.计算潜水蒸发系数的反Logistic公式.灌溉排水,1999,18(2):18-21.
    施成熙,牛克源,陈天珠,等.水面蒸发器折算系数研究.地理科学,1986,6(4):305-313.
    苏培玺,张立新,杜明武,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应.植物生态学报,2003,27(1):34-40.
    涂新斌,戴福初.土体一维传热方程解析解及热扩散系数测定.岩土工程学报,2008,30(5):652-657.
    王芳,梁瑞驹,杨小柳,等.中国西北地区生态需水研究Ⅰ.干旱半干旱地区生态需水理论分析.自然资源学报,2002,17(1):1-8.
    王洪道,史复祥.我国湖泊水温状况的初步研究.海洋湖沼通报,1980,3:21-31.
    汪军,朱彤,杜晖.氯化钠水溶液热扩散系数的研究.上海理工大学学报,2001,23(4):328-333.
    王苏民.湖泊沉积的信息原理与研究趋势,见:张兰生,中国生存环境历史演变规律研究.北京:海洋出版社,1993.22-31.
    王涛.巴丹吉林沙漠形成演变的若干问题.中国沙漠,1990,10(1):29-40.
    王银珠,濮培民.抚仙湖水温跃层的初步研究.海洋湖沼通报,1982,4:1-9.
    徐贵泉,宋德蕃,黄士力,等.感潮河网水量水质模型及其数值模拟.应用基础与工程科学学报,1996,4(1):94-105.
    杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变.第四纪研究,2002,22(2):97-104.
    杨泽元,王文科,黄金廷,等.陕北风沙滩地区生态安全地下水位埋深研究.西北农林科技大学学报,2006,34(8):67-74.
    叶水庭,施鑫源,苗晓芳.用潜水蒸发经验公式计算给水度问题的分析.水文地质工程地质,1980,4:46-48.
    张宏锋,陈亚宁,陈亚鹏,等.塔里木河下游植物群落的物种数量变化与生态系统动态研究.生态学杂志,2004,23(4):21-24.
    张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究.中国沙漠,2004,24(1):110-113.
    张蔚榛.地下水非稳定流计算和地下水资源评价.北京:科学出版社,1983.
    赵成义,胡顺军,刘国庆,等.潜水蒸发经验公式分段拟合研究.水土保持学报,2000,14(5):122-126.
    赵磊.梅林庙井田地下水环境影响评价数值模拟研究:[硕士学位论文].北京:中国地质大学,2012.
    赵明,郭志中,王耀琳,等.不同地下水位植物蒸腾耗水特性研究.干旱区研究,2003,20(4):286~291.
    赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系.生态学报,2003,23(6):1138~1146.
    周俊.鄂尔多斯陶利水源地地下水开采的植被生态风险研究:[硕士学位论文].吉林:吉林大学,2008.
    朱震达,吴正,刘恕等.中国沙漠概论.北京:科学出版社,1980:73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700