用户名: 密码: 验证码:
食烷菌属中的卤代烷烃脱卤酶的生化鉴定和系统发育分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油食烷菌Alcanivorax dieselolei B-5T是本课题组分离鉴定的一株重要的石油降解菌,具有潜在的环境意义和生物学意义。实验发现柴油食烷菌B-5能够利用多种卤代烷烃为唯一的碳源和能量来源进行生长。
     1.柴油食烷菌B-5中的HLDs基因克隆表达与酶学特性分析
     本文中表达、纯化了柴油食烷菌B-5中的两个推定的HLDs,DadA和DadB;检测了这两个酶的底物范围和酶活特性;测定了DadB的稳态动力学常数、最适温度和最适pH;使用动态光散射技术分析了DadB在不同pH的溶液中的稳定性;通过同源建模研究了DadB酶学特征的结构学基础。
     DadA在已鉴定的HLDs中具有最严格的底物选择性,其底物范围明显小于其他已鉴定的HLDs,代表了一个新的酶活特异性亚家族。DadB表达纯化简单高效,具有宽广的底物范围和很高的催化活性,偏爱小分子(C2和C3)底物、溴代底物和氯代烯烃底物,其对不同程度的氯代、溴代、碘代的C:和C3链长的底物的整体酶活是目前已知的HLDs中最高的。DadB对6个卤代底物的稳态动力学常数基本与其他HLDs处于相近的数量级,对3-氯-2-甲基丙烯、4-溴丁腈等多个底物具有较高的转化数Kcat。另外,4-溴丁腈脱溴对DadB具有明显的底物自抑制效果。
     DadB酶活稳定性好。DadB在pH5.0到pH10.0范围内都有明显的活性,最高活性出现在pH8.0处,且在pH8.0-9.0范围内变动不大。DadB在20℃到55℃温度范围内都有酶活,最适温度为50℃。缓冲液pH低于7.5时,DadB易聚集形成不同聚合程度的聚合物。当缓冲液pH≥7.5时,DadB在溶液中以单体形式存在,能保持长时间的结构稳定。
     对DadA和DadB进行同源建模,发现二者采用典型的α,β-水解酶折叠方式,由核心结构域和帽子结构域两部分组成。DadA、DadB的催化五联体、活性位点的拓扑结构与已解析结构的HLDs基本一致。但是DadB具有更大的活性位点进出通道的开口,同时在阻隔主进出通道和狭槽通道的壁垒处采用Ile/Trp的组合,这可能是DadB偏爱小分子底物的重要原因。
     2. HLDs的系统进化分析
     本文对总共37株食烷菌基因组进行了分析,发现其中33株食烷菌中含有一共51条推定的HLDs序列。对食烷菌属中的HLDs序列进行系统发育分析,发现食烷菌属在不同的时间点通过至少4次相对独立的进化事件从其他种属中得到了不同的HLDs进化分支,随后这些HLDs可能还通过基因水平转移在食烷菌属内不同菌株之间进行了传递。
     本文还对目前几乎所有的HLDs进行了整体的系统发育研究。使用已鉴定的17条HLDs序列进行搜索,运用生物信息学技术从NCBI的nr数据库中一共找出421条推定的HLDs序列,加入本课题组获得的53条HLDs序列后进行系统发育分析,发现DadA及另外19条全部来自于食烷菌中的HLDs代表了HLDs家族的一个新的进化分支,这与DadA具有独特的酶活特性的现象相一致。本文对HLDs家族的天然功能及其对微生物和环境的重要作用进行了初步分析,提出海洋环境可能是HLDs序列的一大遗传资源库,并对HLDs的传播和进化起了重要作用。
     总之,本文第一次证明了食烷菌属存在具有脱卤活性的HLDs,分析了这些HLDs对食烷菌利用卤代烷烃作为唯一碳源进行生长的意义,鉴定得到了具有新奇的底物选择性和序列特异性的DadA和具有宽广的底物范围且对难降解的小分子底物具有目前已鉴定的HLDs中最高酶活的DadB。这些研究拓宽了HLDs遗传资源,为HLDs的实践应用提供了选择目标,为通过蛋白工程改造获得更有催化效率或更好的底物选择性的HLDs的研究提供了材料,并且证明了石油降解菌A. dieselolei B-5还具有卤代污染物降解方面的应用潜力。目前发现推定的HLDs在大约120个属中存在,本文以食烷菌属作为优良的模型系统,第一次对某一个种属内的HLDs的来源、进化、传递、扩散等事件进行了分析,对揭示HLDs的天然功能、探讨HLDs在如此之多的不同种属中分布的可能原因、研究HLDs对物种代谢及生存的作用和意义提供了重要的线索和思路。
Alcanivorax dieselolei B-5T is an important oil degradation bacteria strain isolated and identified by our group and has potential meanings in environmental improvement and biological study. Carbon source experiments showed A. dieselolei B-5can use a variety of halogenated alkanes as sole carbon and energy source for growth.
     1. Cloning, expression and enzymatic analysis of HLDs in A. dieselolei B-5.
     We expressed and purified the two putitave HLDs in B-5, DadA and DadB; detected their enzyme activities and substrate specificity, measured the steady-state kinetic constants and the optimum temperature and pH of DadB, checked the stability of DadB in different buffers with different pH by the dynamic light scattering(DLS) methods, discussed the structural basis of DadB's enzymology characteristics by homology modeling.
     DadA has the most stringent substrate selectivity in the identified HLDs, its substrate range significantly smaller than other HLDs identified, representing a new subfamily of specificity. Expression and purification of DadB are simple and efficient. DadB has broad substrates range and high activity profile, preferring small substrates (C2and C3), brominated substrates and chloroalkene substrates. As far as known, DadB has the highest systemic activity towards chlorinated, brominated, iodinated C2and C3substrates in all HLDs identified. Steady-state kinetic constants of DadB with6substrates are basiclly in the similar magnitude, while DadB has higher Kcat values with several substrates such as3-chloro-2-methylpropene and4-bromobutanenitrile. Moreover,4-bromobutanenitrile showed distinct substrate self-inhibition phenomenon.
     DadB has excellent stability of the enzyme acitivity. DadB keeps obvious activity between pH5.0to pH10.0and the peak occurred at pH8.0. DadB has activity from20℃to55℃with the optimum temperature at50℃. DadB aggregates very fast to form large polymers with different size in the buffer has a pH lower than7.5. When the buffer's pH≥7.5, DadB exists in the form of monomer in solution and keep stable in a long time.
     Two structural models were obtained and they have typical α/β-hydrolase structural fold, consisting of the core domain and the cap domain. Topological structures of catalytic pentad amino acids in DadA and DadB are very consistent with the HLDs already had the three dimensional structures. But DadB has an open active cavity with greater access tunnel, also takes Ile/Trp couple as the residue barrier to separate the main tunnel and the slot tunnel. This may be an important cause of the preference of DadB for small substrates.
     2. Phylogenetic analysis of HLDs
     We analyzed genomes of37Alcanivorax and found out51HLDs genes in33Alcanivorax. This paper analyzed the phylogeny of putative HLDs from Alcanivorax, proposed that Alcanivorax bacteria have obtained different evolutionary clades of HLDs from the other species in at least4independent evolutionary events occured at different time and subsequently these HLDs spread between different strains of Alcanivorax maybe through horizontal gene transfer.
     This paper also did the systematic phylogenitic analysis with almost all of HLDs can found now.Through bioinformatics technique,421putative HLDs sequences were found out from non-redundant protein sequences (nr) database of NCBI using17HLDs sequences identified as queries. Phylogenetic analysis with these obtained421HLDs together with53putative HLDs sequenced by our group shows that DadA and other19putative HLDs all from Alcanivorax represents a new evolutionary branch of HLDs. This maybe the reason why DadA has unique enzyme properties of activity. This paper preliminarily analysed the the natural functions and the important role of HLDs in the microorganism and in the environment, proposed that marine environment may be a large genetic resource pool of HLDs sequences and may play an important role in the propagation and evolution process of HLDs.
     In summary, this study proved for the first time there are HLDs with identified dehalogenation activity existing in Alcanivorax, analyzed the role of these HLDs for Alcanivorax to take halogenated compounds as sole carbon source. This paper obtained and identified two HLDs, DadA with novel substrate selectivity and sequence specificity, DadB with the most wide range of substrates and the highest activity in the knowen HLDs identified untill now to small substrates with serious recalcitrance. This paper expanded the genetic resources of HLDs, offered alternative targets for the practical applications of HLDs, provided research materials for improving catalytic efficiency and substrate selectivity of HLDs by protein engineering technique, and also proved oil degrading bacteria A. dieselolei B-5also has potential application in degradation of halogenated pollutants.Putative HLDs sequences has already been found in almost120genuses. Taking Alcanivorax as a good model, this paper for the first time analyzed the origin, evolution, transferring, spreading in a perticular genus, provided important clues and ideas for discussing the natural functions of HLDs and the possible reason of its spread in so many different genuses and for researching the roles and meanings for metabolism and survival.
引文
[1]Chovancova E, Kosinski J, Bujnicki JM et al. Phylogenetic analysis of haloalkane dehalogenases[J]. Proteins.2007,67(2):305-316.
    [2]McConnell G, Ferguson D, Pearson C. Chlorinated hydrocarbons and the environment[J]. Endeavour.1975,34(121):13-18.
    [3]Leisinger T, Brunner W. Poorly degradable substances[M]. New York:VCH Publishers,1986.
    [4]Vogel TM, Criddle CS, McCarty PL. Transformations of halogenated aliphatic compounds[J]. Environmental Science & Technology.1987,21(8):722-736.
    [5]Keith LH. Identification and analysis of organic pollutants in water[M]. United States:Ann Arbor Science, Ann Arbor, MI,1981.
    [6]Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment:biogenic formation of organohalogens[J]. Chemosphere.2003,52(2):313-324.
    [7]Dick B. Janssen FP, Jan R. van der Ploeg. Genetics and biochemistry of dehalogenating enzymes[J]. Annu. Rev. Microbio.1994,48:163-191.
    [8]Oberg M, Stern N, Wesen C et al. Subchronic toxicity of Baltic herring oil and its fractions in the rat I:Fractionation and levels of organohalogen pollutants[J]. Pharmacology & Toxicology.2002,91(5):220-231.
    [9]Gribble GW. Occurrence of Halogenated Alkaloids[J]. The Alkaloids.2012:1.
    [10]Gribble GW. The diversity of naturally produced organohalogens[J]. Chemosphere.2003,52(2):289-297.
    [11]Riget F, Bignert A, Braune B et al. Temporal trends of legacy POPs in Arctic biota, an update[J]. Science of the Total Environment.2010,408(15): 2874-2884.
    [12]Janssen DB, Dinkla IJ, Poelarends GJ et al. Bacterial degradation of xenobiotic compounds:evolution and distribution of novel enzyme activities[J]. Environ Microbiol.2005,7(12):1868-1882.
    [13]Lowe SE, Jain MK, Zeikus JG. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates[J]. Microbiological Reviews.1993, 57(2):451.
    [14]Mohn WW, Tiedje JM. Microbial reductive dehalogenation[J]. Microbiological Reviews.1992,56(3):482-507.
    [15]Fetzener S, Lingens F. Bacterial Dehalogenases:Biochemistry, Genetics, and Biotechnological Applications[J]. Microbiological Reviews.1994,58(4).
    [16]Xun L, Topp E, Orser C. Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from a Flavobacterium sp[J]. Biochemical and Biophysical Research Communications.1992,182(1):361-366.
    [17]Orser C, Dutton J, Lange C et al. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination[J]. Journal of Bacteriology.1993,175(9):2640-2644.
    [18]Xun L, Orser CS. Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA)[J]. Journal of Bacteriology.1991,173(9):2920-2926.
    [19]Xun L, Topp E, Orser C. Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase[J]. Journal of Bacteriology.1992,174(17):5745-5747.
    [20]Xun L, Topp E, Orser C. Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp[J]. Journal of Bacteriology.1992,174(24):8003-8007.
    [21]Stucki G, Galli R, Ebersold HR et al. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2[J]. Archives of Microbiology.1981, 130(5):366-371.
    [22]Kohler-Staub D, Leisinger T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2[J]. Journal of Bacteriology.1985,162(2): 676-681.
    [23]Bagley DM, Gossett JM. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures[J]. Applied and Environmental Microbiology.1990,56(8):2511-2516.
    [24]Bouwer EJ, McCARTY PL. Transformations of halogenated organic compounds under denitrification conditions[J]. Applied and Environmental Microbiology.1983,45(4):1295-1299.
    [25]Vogel TM, McCarty PL. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions[J]. Applied and Environmental Microbiology.1985, 49(5):1080-1083.
    [26]Rasche M, Hicks R, Hyman M et al. Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea[J]. Journal of Bacteriology.1990,172(9):5368-5373.
    [27]Vannelli T, Logan M, Arciero DM et al. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea[J]. Applied and Environmental Microbiology.1990,56(4):1169-1171.
    [28]Stirling DJ, Dalton H. The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath)[J]. FEMS Microbiology Letters.1979,5(4):315-318.
    [29]Oldenhuis R, Vink R, Janssen DB et al. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase[J]. Applied and Environmental Microbiology.1989, 55(11):2819-2826.
    [30]Janssen DB, Grobben G, Hoekstra R et al. Degradation of trans-1, 2-dichloroethene by mixed and pure cultures of methanotrophic bacteria[J]. Applied Microbiology and Biotechnology.1988,29(4):392-399.
    [31]Janssen DB, Scheper A, Dijkhuizen L et al. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10[J]. Applied and Environmental Microbiology.1985,49(3):673-677.
    [32]Janssen D, Scheper A, Witholt B. Biodegradation of 2-chloroethanol and 1, 2-dichloroethane by pure bacterial cultures[M]. Amsterdam:Elsevier Science Publishers,1984.
    [33]Curragh H, Michael J, Larkin, Thomas M. Stafford, John T. G. Hamilton, David B. Harper. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064 [J]. Microbiology.1994,140:1433-1442.
    [34]Nagasawa S, Kikuchi R, Nagata Y et al. Aerobic mineralization of y-HCH by Pseudomonas paucimobilis UT26.[J]. Chemosphere.1993,26(9):1719-1728.
    [35]Imai R, Nagata Y, Fukuda M et al. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HC1 molecules from gamma-hexachlorocyclohexane[J]. Journal of Bacteriology. 1991,173(21):6811-6819.
    [36]Nagata Y, Nariya T, Ohtomo R et al. Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis[J]. J Bacteriol.1993,175(20):6403-6410.
    [37]Miyauchi K, Suh SK, Nagata Y et al. Cloning and sequencing of a 2, 5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of y-hexachlorocyclohexane by Sphingomonas paucimobilis[J]. Journal of Bacteriology.1998,180(6):1354-1359.
    [38]Imai R, Nagata Y, Fukuda M et al. Isolation and Characterization of a Dehydrochlorinase Gene for the Degradation of gamma-Hexachlorocyclohexane in Pseudomonas paucimobilis[M]. Washington, D.C.:American Society for Microbiology,1992.
    [39]Nagata Y, Imai R, Sakai A et al. Isolation and characterization of Tn5-induced mutants of Pseudomonas paucimobilis UT26 defective in gamma-hexachlorocyclohexane dehydrochlorinase (LinA)[J]. Bioscience, Biotechnology, and Biochemistry.1993,57(5):703.
    [40]Anna N. Kulakova, Larkin MJ, Kulakov LA. The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064 [J]. Microbiology.1997,143:109-115.
    [41]Kulakova AN, Larkin MJ, Kulakov LA. The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064[J]. Microbiology.1997,143 (Pt 1):109-115.
    [42]Bernhardt D, Diekmann H. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain[J]. Applied Microbiology and Biotechnology.1991,36(1):120-123.
    [43]Stafford TM. haloalkane degradation by rhodococcus rhodochrous NCIMB 13064:The Queen's University of Belfast; 1993.
    [44]Sallis PJ, Armfield SJ, Bull AT et al. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2[J]. Journal of General Microbiology.1990,136(1):115-120.
    [45]Scholtz R, Wackett LP, Egli C et al. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium[J]. Journal of Bacteriology.1988, 170(12):5698-5704.
    [46]Murphy GL, Perry JJ. Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria[J]. Journal of Bacteriology.1983,156(3): 1158-1164.
    [47]Murphy GL, Perry JJ. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi[J]. Journal of Bacteriology.1984,160(3): 1171-1174.
    [48]Fox A, Gilbart J, Morgan SL. Analytical microbiology:a perspective. In:Fox A, Morgan SL, Larsson L et al, eds. Analytical microbiology methods: chromatography and mass spectrometry. New York, NY:Plenum Press; 1990:1-17.
    [49]Jesenska A, Pavlova M, Strouhal M et al. Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases[J]. Appl Environ Microbiol.2005,71(11):6736-6745.
    [50]Janssen DB. Evolving haloalkane dehalogenases[J]. Current Opinion in Chemical Biology.2004,8:150-159.
    [51]Koudelakova T, Chovancova E, Brezovsky J et al. Substrate specificity of haloalkane dehalogenases[J]. Biochem J.2011,435(2):345-354.
    [52]Chaloupkova R, Prokop Z, Sato Y et al. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110:the effect of pH and temperature[J]. FEBS J.2011,278(15): 2728-2738.
    [53]Hasan K, Fortova A, Koudelakova T et al. Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58[J]. Appl Environ Microbiol.2011,77(5): 1881-1884.
    [54]Keuning S, Janssen DB, Witholt B. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10[J]. J Bacteriol.1985,163(2):635-639.
    [55]Nagata Y, Miyauchi K, Damborsky J et al. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26[J]. Appl Environ Microbiol.1997,63(9):3707-3710.
    [56]Ferrer M, Golyshina OV, Chernikova TN et al. Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin[J]. Chem Biol.2005,12(8): 895-904.
    [57]Lee HS, Kim JS, Shim K et al. Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state[J]. FEBS J.2006,273(1):109-121.
    [58]Politi L, Chiancone E, Giangiacomo L et al. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants[J]. Archaea.2009,2(4):221-231.
    [59]Shima S, Thauer RK, Ermler U. Hyperthermophilic and salt-dependent formyltransferase from Methanopyrus kandleri[J]. Biochem Soc Trans.2004, 32(Pt 2):269-272.
    [60]Jesenska A, Monincova M, Koudelakova T et al. Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, Representatives of a Novel Subfamily[J]. Appl Environ Microbiol.2009,75(15):5157-5160.
    [61]Sato Y, Monincova M, Chaloupkova R et al. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities[J]. Appl Environ Microbiol.2005,71(8):4372-4379.
    [62]Poelarends GJ, Kulakov LA, Larkin MJ et al. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene-and 1, 2-dibromoethane-degradative pathways[J]. Journal of Bacteriology.2000, 182(8):2191-2199.
    [63]Yokota T, Omori T, Kodama T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3[J]. Journal of Bacteriology.1987,169(9):4049-4054.
    [64]Scholtz R, Leisinger T, Suter F et al. Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp[J]. Journal of Bacteriology.1987,169(11):5016-5021.
    [65]Janssen DB, Gerritse J, Brackman J et al. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers[J]. European Journal of Biochemistry.1988,171(2):67-72.
    [66]Poelarends GJ, Wilkens M, Larkin MJ et al. Degradation of 1, 3-dichloropropene by Pseudomonas cichorii 170[J]. Appl Environ Microbiol. 1998,64(8):2931-2936.
    [67]Poelarends GJ, van Hylckama Vlieg JE, Marchesi JR et al. Degradation of 1, 2-Dibromoethane byMycobacterium sp. Strain GP1[J]. Journal of Bacteriology. 1999,181(7):2050-2058.
    [68]Kumari R, Subudhi S, Suar M et al. Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90[J]. Appl Environ Microbiol.2002, 68(12):6021-6028.
    [69]Damborsky J, Koca J. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons[J]. Protein Eng.1999,12(11):989-998.
    [70]Krooshof GH, Kwant EM, Damborsky J et al. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase:effects on stability, kinetics, and structure[J]. Biochemistry.1997,36(31):9571-9580.
    [71]Copley SD. Microbial dehalogenases:enzymes recruited to convert xenobiotic substrates[J]. Current Opinion in Chemical Biology.1998,2(5):613-617.
    [72]Chovancova E, Kosinski J, Janusz M. Bujnicki et al. Phylogenetic Analysis of Haloalkane Dehalogenases[J]. Proteins:Structure, Function, and Bioinformatics.2007,67(2):305-316.
    [73]Pries F, van den Wijngaard AJ, Bos R et al. The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution[J]. J Biol Chem.1994,269(26):17490-17494.
    [74]Kmunicek J, Luengo S, Gago F et al. Comparative binding energy analysis of the substrate specificity of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10[J]. Biochemistry.2001,40(30):8905-8917.
    [75]Pikkemaat MG, Janssen DB. Generating segmental mutations in haloalkane dehalogenase:a novel part in the directed evolution toolbox[J]. Nucleic Acids Res.2002,30(8):E35-35.
    [76]Otyepka M, Damborsky J. Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains[J]. Protein Sci. 2002,11(5):1206-1217.
    [77]Chaloupkova R, Sykorova J, Prokop Z et al. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel[J]. J Biol Chem.2003,278(52): 52622-52628.
    [78]Poelarends GJ, Zandstra M, Bosma T et al. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism[J]. Journal of Bacteriology.2000,182(10):2725-2731.
    [79]Kulakova A, Stafford T, Larkin M et al. Plasmid pRTLl controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB13064[J]. Plasmid.1995,33(3):208-217.
    [80]Song J-S, Lee D-H, Lee K et al. Genetic organization of the dhlA gene encoding 1,2-dichloroethane dechlorinase from Xanthobacter flavus UE15[J]. Journal of Microbiology-Seoul-.2004,42(3):188-193.
    [81]Marek J, Vevodova J, Smatanova IK et al. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26[J]. Biochemistry.2000, 39(46):14082-14086.
    [82]Wiegel J, Wilke D, Baumgarten J et al. Transfer of the Nitrogen-Fixing Hydrogen Bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov[J]. International Journal of Systematic Bacteriology. 1978,28(4):573-581.
    [83]Stucki G, Thueer M. Experiences of a Large-Scale Application of 1,2-Dichloroethane Degrading Microorganisms for Groundwater Treatment[J]. Environmental Science & Technology.1995,29(9):2339-2345.
    [84]Imai R, Nagata Y, Senoo K et al. Dehydrochlorination of gamma-hexachlorocyclohexane(gamma-BHC) by gamma-BHC-assimilating Pseudomonas paucimobilis[J]. Agricultural and Biological Chemistry.1989, 53(7):2015-2017.
    [85]Poelarends GJ, van Hylckama Vlieg JET, Marchesi JR et al. Degradation of 1, 2-Dibromoethane by Mycobacterium sp. Strain GP1[J]. Journal of Bacteriology.1999,181(7):2050-2058.
    [86]Jesenska A, Sedlacek I, Damborsky J. Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria[J]. Appl Environ Microbiol.2000,66(1):219-222.
    [87]Jesenska A, Bartos M, Czernekova V et al. Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobacterium avium N85 and preliminary characterization of DhmA[J]. Appl Environ Microbiol.2002, 68(8):3724-3730.
    [88]Jesenska A, Pavlova M, Strouhal M et al. Cloning, Biochemical Properties, and Distribution of Mycobacterial Haloalkane Dehalogenases[J]. Appl Environ Microbiol.2005,71(11):6736-6745.
    [89]Jesenska A, Sykora J, Olzynska A et al. Nanosecond time-dependent Stokes shift at the tunnel mouth of haloalkane dehalogenases[J]. J Am Chem Soc. 2009,131(2):494-501.
    [90]Rorem E, Schwimmer S. Double pH optima of potato invertase[J]. Experientia. 1963,19(3):150-151.
    [91]Allan D, Thomas P, Gatt S.1,2-diacylglycerol kinase of human erythrocyte membranes. Assay with endogenously generated substrate[J]. Biochemical Journal.1980,191(2):669.
    [92]Reen RK, Jamwal DS, Taneja SC et al. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine[J]. Biochemical Pharmacology.1993,46(2): 229-238.
    [93]Fujiyoshi T, Nakayama J, Anai M. Two pH optima of adenosine 5'-triphosphate dependent deoxyribonuclease from Bacillus laterosporus[J]. Biochemistry.1982,21(17):4159-4164.
    [94]de Kreij A, van den Burg B, Venema G et al. The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease[J]. J Biol Chem.2002,277(18):15432-15438.
    [95]Wood DW, Setubal JC, Kaul R et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58[J]. Science.2001,294(5550): 2317-2323.
    [96]Gehret JJ, Gu L, Geders TW et al. Structure and activity of DmmA, a marine haloalkane dehalogenase[J]. Protein Science.2011.
    [97]Hesseler M, Bogdanovic X, Hidalgo A et al. Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1[J]. Appl Microbiol Biotechnol. 2011,91(4):1049-1060.
    [98]Janssen D, Wijngaard A, Waarde J et al. On-site bioreclamation[M].1st ed. Boston:Butterworth-Heinmann,1991.
    [99]Damborsky J, Rorije E, Jesenska A et al. Structure-specificity relationships for haloalkane dehalogenases[J]. Environ Toxicol Chem.2001,20(12): 2681-2689.
    [100]Sfetsas CC, Milios L, Skopelitou K et al. Characterization of 1, 2-dibromoethane-degrading haloalkane dehalogenase from Bradyrhizobium japonicum USDA110[J]. Enzyme and Microbial Technology.2009,45(5): 397-404.
    [101]Bakermans C, Tsapin Al, Souza-Egipsy V et al. Reproduction and metabolism at-10 C of bacteria isolated from Siberian permafrost[J]. Environmental Microbiology.2003,5(4):321-326.
    [102]Drienovska I, Chovancova E, Koudelakova T et al. Biochemical Characterization of a Novel Haloalkane Dehalogenase from a Cold-Adapted Bacterium[J]. Appl Environ Microbiol.2012,78(14):4995-4998.
    [103]Ollis DL, Cheah E, Cygler M et al. The alpha/beta-hydrolase fold[J]. Protein Eng.1992,5(3):197-211.
    [104]Holmquist M. Alpha/Beta-hydrolase fold enzymes:structures, functions and mechanisms[J]. Curr Protein Pept Sci.2000,1(2):209-235.
    [105]Carr PD, Ollis DL. Alpha/beta hydrolase fold:an update[J]. Protein Pept Lett. 2009,16(10):1137-1148.
    [106]Callebaut I, Poupon A, Bally R et al. The uteroglobin fold[J]. Annals of the New York Academy of Sciences.2000,923(1):90-112.
    [107]Russell RB, Sternberg M. Two new examples of protein structural similarities within the structure-function twilight zone[J]. Protein engineering.1997,10(4): 333-338.
    [108]Franken SM, Rozeboom HJ, Kalk KH et al. Crystal structure of haloalkane dehalogenase:an enzyme to detoxify halogenated alkanes[J]. EMBO J.1991, 10(6):1297-1302.
    [109]Newman J, Peat TS, Richard R et al. Haloalkane dehalogenases:structure of a Rhodococcus enzyme[J]. Biochemistry.1999,38(49):16105-16114.
    [110]Mazumdar PA, Hulecki JC, Chemey MM et al. X-ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579[J]. Biochim Biophys Acta.2007,1784(2):351-362.
    [111]Prokop Z, Sato Y, Brezovsky J et al. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering[J]. Angew Chem Int Ed Engl.2010,49(35):6111-6115.
    [112]Oakley AJ, Prokop Z, Bohac M et al. Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26:evidence for product- and water-mediated inhibition[J]. Biochemistry.2002,41(15): 4847-4855.
    [113]Streltsov VA, Prokop Z, Damborsky J et al. Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26:X-ray crystallographic studies of dehalogenation of brominated substrates[J]. Biochemistry.2003,42(34): 10104-10112.
    [114]Oakley AJ, Klvana M, Otyepka M et al. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution:dynamics of catalytic residues[J]. Biochemistry.2004,43(4): 870-878.
    [115]Prokop Z, Monincova M, Chaloupkova R et al. Catalytic mechanism of the maloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26[J]. J Biol Chem.2003,278(46):45094-45100.
    [116]Damborsky J, Manova K, Kuty M. A mechanistic approach to deriving quantitative structure biodegradability relationships[M]. Dordrecht, The Netherlands:Kluwer Academic,1996.
    [117]Pavlova M, Klvana M, Prokop Z et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate[J]. Nat Chem Biol.2009,5(10):727-733.
    [118]Derewenda ZS, Derewenda U, Dodson GG. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution J]. Journal of Molecular Biology.1992,227(3):818-839.
    [119]Winkler F, d'Arcy A, Hunziker W. Structure of human pancreatic lipase[J]. 1990.
    [120]Faustinella F, Smith LC, Chan L. Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase[J]. Biochemistry.1992, 31(32):7219-7223.
    [121]Dugi K, Dichek H, Talley G et al. Human lipoprotein lipase:the loop covering the catalytic site is essential for interaction with lipid substrates[J]. Journal of Biological Chemistry.1992,267(35):25086-25091.
    [122]Ridder IS, Rozeboom HeJ, Dijkstra BW. Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15 A resolution[J]. Acta Crystallographica Section D:Biological Crystallography.1999,55(7): 1273-1290.
    [123]Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s[J]. Biochimica et biophysica acta.2007,1770(3):390.
    [124]Carmichael AB, Wong LL. Protein engineering of Bacillus megaterium CYP102[J]. European Journal of Biochemistry.2001,268(10):3117-3125.
    [125]Schmitt J, Brocca S, Schmid RD et al. Blocking the tunnel:engineering of Candida rugosa lipase mutants with short chain length specificity [J]. Protein engineering.2002,15(7):595-601.
    [126]Lauble H, Miehlich B, Forster S et al. Structure determinants of substrate specificity of hydroxynitrile lyase from Manihot esculenta[J]. Protein Science. 2002,11(1):65-71.
    [127]Fishman A, Tao Y, Bentley WE et al. Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene[J]. Biotechnology and Bioengineering.2004, 87(6):779-790.
    [128]Fedorov R, Vasan R, Ghosh DK et al. Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design[J]. Proc Natl Acad Sci U S A.2004,101(16): 5892-5897.
    [129]Kotik M, Stepanek V, Kyslik P et al. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering[J]. Journal of Biotechnology.2007,132(1):8-15.
    [130]Feingersch R, Shainsky J, Wood TK et al. Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides[J]. Appl Environ Microbiol. 2008,74(5):1555-1566.
    [131]Bosma T, Pikkemaat MG, Kingma J et al. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase[J]. Biochemistry.2003,42(26):8047-8053.
    [132]Verschueren KH, Kingma J, Rozeboom HJ et al. Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site[J]. Biochemistry.1993,32(35):9031-9037.
    [133]Schanstra JP, Janssen DB. Kinetics of halide release of haloalkane dehalogenase:evidence for a slow conformational change[J]. Biochemistry. 1996,35(18):5624-5632.
    [134]Alcalde M, Ferrer M, Plou FJ et al. Environmental biocatalysis:from remediation with enzymes to novel green processes[J]. Trends in Biotechnology.2006,24(6):281-287.
    [135]Dravis BC, LeJeune KE, Hetro AD et al. Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase[J]. Biotechnology and Bioengineering.2000,69(3):235-241.
    [136]Silberstein M, Damborsky J, Vajda S. Exploring the binding sites of the haloalkane dehalogenase DhlA from Xanthobacter autotrophicus GJ10[J]. Biochemistry.2007,46(32):9239-9249.
    [137]Campbell DW, Muller C, Reardon KF. Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane[J]. Biotechnology Letters.2006,28(12): 883-887.
    [138]Bidmanova S, Chaloupkova R, Damborsky J et al. Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons[J]. Anal Bioanal Chem.2010,398(5):1891-1898.
    [139]Nagata Y, Prokop Z, Sato Y et al. Degradation of beta-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26[J]. Appl Environ Microbiol.2005,71(4):2183-2185.
    [140]Swanson PE. Dehalogenases applied to industrial-scale biocatalysis[J]. Curr Opin Biotechnol.1999,10(4):365-369.
    [141]Prokop Z, Damborsky J, Janssen DB et al. Method of production of optically active halohydrocarbons and alcohols using hydrolytic dehalogenation catalysed by haloalkane dehalogenases. In:US Patent WO/2006/079295; 2009.
    [142]Janssen DB. Biocatalysis by dehalogenating enzymes[J]. Advances in Applied Microbiology.2007,61:233-252.
    [143]Pieters RJ, Lutje Spelberg JH, Kellogg RM et al. The enantioselectivity of haloalkane dehalogenases[J]. Tetrahedron Letters.2001,42(3):469-471.
    [144]Szymanski W, Westerbeek A, Janssen DB et al. A Simple Enantioconvergent and Chemoenzymatic Synthesis of Optically Active a-Substituted Amides[J]. Angewandte Chemie.2011,123(45):10900-10903.
    [145]Prokop Z, Oplustil F, DeFrank J et al. Enzymes fight chemical weapons[J]. Biotechnol J.2006,1(12):1370-1380.
    [146]Prokop Z, Damborsky J, Oplustil F et al. Method of detoxication of yperite by using haloalkane dehalogenases. In:WO Patent WO/2006/128,390; 2006.
    [147]Saito K, Chang Y, Horikawa K et al. Luminescent proteins for high-speed single-cell and whole-body imaging[J]. Nature communications.2012,3: 1262.
    [148]Liu DS, Phipps WS, Loh KH et al. Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single Molecule Imaging on Living Cells[J]. ACS nano.2012.
    [149]Los GV, Wood K. The HaloTag:a novel technology for cell imaging and protein analysis[J]. Methods Mol Biol.2007,356:195-208.
    [150]Los GV, Encell LP, McDougall MG et al. HaloTag:a novel protein labeling technology for cell imaging and protein analysis[J]. ACS Chem Biol.2008, 3(6):373-382.
    [151]Ohana RF, Encell LP, Zhao K et al. HaloTag7:a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification[J]. Protein Expression and Purification.2009,68(1):110-120.
    [152]Peterson SN, Kwon K. The HaloTag:Improving Soluble Expression and Applications in Protein Functional Analysis[J]. Current chemical genomics. 2012, Suppl 1-M2:8-17.
    [153]Mazzucchelli S, Colombo M, Verderio P et al. Orientation-Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells[J]. Angewandte Chemie International Edition.2013.
    [154]van Leeuwen JGE, Wijma HJ, Floor RJ et al. Directed Evolution Strategies for Enantiocomplementary Haloalkane Dehalogenases:From Chemical Waste to Enantiopure Building Blocks[J]. ChemBioChem.2012,13(1):137-148.
    [155]Bornscheuer UT, Pohl M. Improved biocatalysts by directed evolution and rational protein design[J]. Current Opinion in Chemical Biology.2001,5(2): 137-143.
    [156]Van Den Burg B. Extremophiles as a source for novel enzymes[J]. Current Opinion in Microbiology.2003,6(3):213-218.
    [157]Cavicchioli R, Siddiqui KS, Andrews D et al. Low-temperature extremophiles and their applications[J]. Current Opinion in Biotechnology.2002,13(3): 253-261.
    [158]Cavicchioli R. Extremophiles and the search for extraterrestrial life[J]. Astrobiology.2002,2(3):281-292.
    [159]Nagata Y, Prokop Z, Marvanova S et al. Reconstruction of mycobacterial dehalogenase Rv2579 by cumulative mutagenesis of haloalkane dehalogenase LinB[J]. Appl Environ Microbiol.2003,69(4):2349-2355.
    [160]Bosma T, Damborsky J, Stucki G et al. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene[J]. Appl Environ Microbiol.2002,68(7): 3582-3587.
    [161]Schanstra JP, Ridder A, Kingma J et al. Influence of mutations of Va1226 on the catalytic rate of haloalkane dehalogenase[J]. Protein engineering.1997, 10(1):53-61.
    [162]Holloway P, Knoke KL, Trevors JT et al. Alteration of the substrate range of haloalkane dehalogenase by site-directed mutagenesis[J]. Biotechnology and Bioengineering.1998,59(4):520-523.
    [163]Schanstra JP, Ridder IS, Heimeriks GJ et al. Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range[J]. Biochemistry.1996,35(40): 13186-13195.
    [164]Hynkova K, Nagata Y, Takagi M et al. Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26[J]. FEBS Letters.1999,446(1):177-181.
    [165]Schindler JF, Naranjo PA, Honaberger DA et al. Haloalkane dehalogenases: steady-state kinetics and halide inhibition[J]. Biochemistry.1999,38(18): 5772-5778.
    [166]Marvanova S, Nagata Y, Wimmerova M et al. Biochemical characterization of broad-specificity enzymes using multivariate experimental design and a colorimetric microplate assay:characterization of the haloalkane dehalogenase mutants[J]. Journal of Microbiological Methods.2001,44(2):149-157.
    [167]Gray KA, Richardson TH, Kretz K et al. Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase[J]. Advanced Synthesis & Catalysis.2001,343(6-7):607-617.
    [168]Bohac M, Nagata Y, Prokop Z et al. Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis[J]. Biochemistry.2002,41(48):14272-14280.
    [169]Dravis B, Swanson P, Russell A. Haloalkane hydrolysis with an immobilized haloalkane dehalogenase[J]. Biotechnology and Bioengineering.2001,75(4): 416-423.
    [170]Damborsky J, Kuty M, Nemec M et al. A molecular modeling study of the catalytic mechanism of haloalkane dehalogenase:1. quantum chemical study of the first reaction step[J]. Journal of chemical information and computer sciences.1997,37(3):562-568.
    [171]Lightstone FC, Zheng Y-J, Bruice TC. Molecular dynamics simulations of ground and transition states for the Sn2 displacement of Cl-from 1, 2-dichloroethane at the active site of Xanthobacter autotrophicus haloalkane dehalogenase[J]. Journal of the American Chemical Society.1998,120(23): 5611-5621.
    [172]Lau EY, Kahn K, Bash PA et al. The importance of reactant positioning in enzyme catalysis:a hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase[J]. Proceedings of the National Academy of Sciences.2000,97(18):9937-9942.
    [173]Lewandowicz A, Rudzinski J, Tronstad L et al. Chlorine kinetic isotope effects on the haloalkane dehalogenase reaction[J]. Journal of the American Chemical Society.2001,123(19):4550-4555.
    [174]Shurki A, Strajbl M, Villa J et al. How much do enzymes really gain by restraining their reacting fragments?[J]. Journal of the American Chemical Society.2002,124(15):4097-4107.
    [175]Devi-Kesavan LS, Gao J. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase[J]. Journal of the American Chemical Society.2003,125(6): 1532-1540.
    [176]Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria[J]. Current Opinion in Biotechnology.2007,18(3):257-266.
    [177]Golyshin PN, Martins Dos Santos VAP, Kaiser O et al. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems[J]. Journal of Biotechnology.2003,106(2):215-220.
    [178]Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment[J]. International Journal of Systematic and Evolutionary Microbiology.2005,55(3): 1181-1186.
    [179]Liu C, Wang W, Wu Y et al. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5[J]. Environ Microbiol.2011, 13(5):1168-1178.
    [180]Van Beilen JB, Marin MM, Smits THM et al. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis[J]. Environmental Microbiology.2004,6(3): 264-273.
    [181]van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation[J]. Applied Microbiology and Biotechnology.2007,74(1):13-21.
    [182]王建宁,董纯明,赖其良 et al.北极表层海水中氯代十六烷降解菌的多样 性[J].微生物学报.2012,52(8):1011-1020.
    [183]Aslanidis C, de Jong PJ. Ligation-independent cloning of PCR products (LIC-PCR)[J]. Nucleic Acids Research.1990,18(20):6069-6074.
    [184]Iwasaki I, Utsumi S, Ozawa T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion[J]. Bulletin of the Chemical Society of Japan.1952,25(3):226-226.
    [185]Iwasaki I, Utsumi S, Hagino K et al. A new spectrophotometric method for the determination of small amounts of chloride using the mercuric thiocyanate method[J]. Bulletin of the Chemical Society of Japan.1956,29(8):860-864.
    [186]张庭芳.酶通论[M].第三版ed.北京:高等教育出版社,2002:335.
    [187]王万鹏.海洋石油降解菌及烷烃单加氧酶(AlkB与AIMA)基因多样性分析与食烷菌烷烃降解基因的研究.厦门:厦门大学;2010.
    [188]Lai Q, Li W, Shao Z. Complete Genome Sequence of Alcanivorax dieselolei Type Strain B5[J]. JOURNAL OF BACTERIOLOGY.2012,194(23): 6674-6674.
    [189]Altschul SF, Gish W, Miller W et al. Basic local alignment search tool[J]. Journal of Molecular Biology.1990,215(3):403-410.
    [190]Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research.1997,25(17):3389-3402.
    [191]Nagata Y, Hynkova K, Damborsky J et al. Construction and characterization of histidine-tagged haloalkane dehalogenase (LinB) of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26[J]. Protein Expr Purif.1999,17(2):299-304.
    [192]Negri A, Marco E, Damborsky J et al. Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics[J]. J Mol Graph Model.2007, 26(3):643-651.
    [193]Monincova M, Prokop Z, Vevodova J et al. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-Ray crystallography and microcalorimetry[J]. Appl Environ Microbiol.2007,73(6): 2005-2008.
    [194]Kmunicek J, Hynkova K, Jedlicka T et al. Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26[J]. Biochemistry.2005,44(9):3390-3401.
    [195]Ito M, Prokop Z, Klvana M et al. Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205[J]. Arch Microbiol.2007,188(4):313-325.
    [196]Hynkova K, Nagata Y, Takagi M et al. Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26[J]. FEBS Lett.1999,446(1):177-181.
    [197]Hur S, Kahn K, Bruice TC. Comparison of formation of reactive conformers for the SN2 displacements by CH3CO in water and by Aspl24-CO in a haloalkane dehalogenase[J]. Proceedings of the National Academy of Sciences. 2003,100(5):2215-2219.
    [198]Olsson MH, Warshel A. Solute solvent dynamics and energetics in enzyme catalysis:the SN2 reaction of dehalogenase as a general benchmark[J]. Journal of the American Chemical Society.2004,126(46):15167-15179.
    [199]Schneiker S, dos Santos VAM, Bartels D et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis[J]. Nature Biotechnology.2006,24(8):997-1004.
    [200]Lai Q, Shao Z. Genome Sequence of an Alkane-Degrading Bacterium, Alcanivorax pacificus Type Strain W11-5, Isolated from Deep Sea Sediment[J]. Journal of Bacteriology.2012,194(24):6936-6936.
    [201]Shi Y. Molecular Ecology of the NOR5/OM60 Group of Gammaproteobacteria. Bremen Bremen University; 2009
    [202]Introducing Marine Bacteria 2012. (Accessed at http://www.oceansonline.com/pages/marinelife/bacteria.php.)
    [203]刘陈立.海洋石油烃降解菌及其降解酶基因的分子生物学研究.厦门:厦门大学;2005.
    [204]Sorkhoh N, Ghannoum M, Ibrahim A et al. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait[J]. Environmental Pollution.1990,65(1): 1-17.
    [205]Larkin MJ, Kulakov LA, Allen CC. Biodegradation and Rhodococcus-masters of catabolic versatility[J]. Current Opinion in Biotechnology.2005,16(3): 282-290.
    [206]Dogra C, Raina V, Pal R et al. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis:evidence for horizontal gene transfer[J]. Journal of Bacteriology. 2004,186(8):2225-2235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700