用户名: 密码: 验证码:
转化生长因子-β参与调控小鼠卵巢原始卵泡库维持与激活的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正常生理情况下,雌性哺乳动物的每一个动情周期都只有极少数的原始卵泡被募集激活进入到生长卵泡发育阶段,而绝大多数的原始卵泡处于静止状态。然而为什么原始卵泡库每个排卵周期仅仅部分启动仍是未解之谜。虽然近年来的研究表明PTEN/PI3K和TSC/mTROC信号通路协同参与调控原始卵泡库的激活,但是基因敲除的表型并不符合生理状况,因此这一问题有待进一步的研究。本实验主要探讨了生殖细胞分泌的转化生长因子-p(TGF-β)对小鼠原始卵泡库维持与激活的调节机制。
     首先,我们发现在小鼠围产期卵巢中,TGF-β1及其受体TGF-βR1表达于出生前卵巢的合胞体生殖细胞,以及出生后的原始卵泡和初级卵泡的生殖细胞。从初级卵泡开始在颗粒细胞也有表达。而蛋白免疫印迹实验表明出生前卵巢TGF-β1及其受体TGF-βR1是低水平表达,在出生后逐渐上升,在4dpp至7dpp期间又显著下降。
     体外培养的实验结果表明,TGF-β信号通路的激动剂TGF-β1可以显著抑制原始卵泡的生长,并造成生殖细胞总数量的减少。而抑制剂SD208不影响卵巢中生殖细胞的总数,但是却显著促进原始卵泡的生长,更多的原始卵泡激活进入到生长卵泡发育阶段。而RNA干扰TGF-β信号通路的受体TGF-βR1表达的实验也表明,削弱TGF-β信号通路可以显著促进卵巢中原始卵泡的激活,更多数量的原始卵泡被激活进入到生长卵泡阶段。另外拯救实验也表明,卵巢中存在TGF-β信号通路抑制剂SD208的情况下,如果不断向卵巢中添加不同浓度的TGF-β1蛋白纯品,则可以部分逆转SD208造成的促进原始卵泡激活的现象。
     原始卵泡的生长包括了生殖细胞的生长和体细胞的增殖。我们检测了不同处理组卵巢的增殖和凋亡情况。实验结果表明TGF-β1可以显著促进卵巢原始卵泡的凋亡并且抑制卵巢体细胞的增殖,而SD208不影响卵巢生殖细胞的凋亡但是却显著促进卵巢体细胞的增殖。
     同时我们也探讨了TGF-β调节原始卵泡启动生长的相关机制。我们利用蛋白免疫印迹实验检测了TGF-β信号通路对PI3K-AKT-FOXO3a信号通路和TSC/mTROC信号通路下游蛋白的磷酸化水平的影响。实验结果表明TGF-P信号通路不影响AKT、FOXO3a的磷酸化变化,但是TGF-β1可以显著下调TSC/mTROC下游的S6K1/rpS6信号通路中的p-S6K1(T389)、 p-rpS6(S235/6)和p-rpS6(S240/4)的磷酸化水平,而SD208显著上调p-S6K1(T389)、 p-rpS6(S235/6)和p-rpS6(S240/4)的磷酸化水平。这些结果提示我们TGF-β信号通路可能通过调节TSC/mTROC信号通路来参与调控小鼠原始卵泡的激活,并且TSC/mTROC信号通路的特异性抑制剂雷帕霉素(Rapamycin)可以部分逆转TGF-β信号通路抑制剂SD208促进原始卵泡生长激活的作用。
     综上所述,我们发现TGF-β信号通路可以通过调控TSC/mTROC信号通路从而调控小鼠卵巢原始卵泡库的维持与激活。
Naturally, only a few follicles enter the growing follicle pool from primordial follicles each wave in mammalian ovary. However, why only a few follicles enter the growing follicle pool every time remains unknown. Recent studies using knockout mice model have showed that early follicle oocyte growth depends on signaling from the tuberous sclerosis complex (TSC), the mammalian target of rapamycin complex1(mTORCl), phosphatase and tensin homolog deleted on chromosome10(PTEN), and phosphatidylinositol3kinase (PI3K) pathways. However, whether transforming growth factor beta (TGF-β) has function on them is unknown. This study aims to identify the physiological roles of TGF-P signaling during primordial follicle activation.
     First of all, TGF-β1and TGF-P receptor type I (TGF-PR1) expressed in the oocytes of cysts, primordial and primary follicles in18.5days post coitus (dpc),1days post parturition (dpp) and4dpp mouse ovaries and started expressing in the cuboidal granulosa cells of primary follicles. Western blot results revealed that the protein levels of TGF-β1and TGF-βR1sharply decreased between4dpp and7dpp mouse ovaries.
     We found that the growth of primordial follicle oocytes in TGF-β1-treated ovaries was inhibited, while the growth of oocytes in SD208(a specific inhibitor of TGF-βR1)-treated ovaries was accelerated with an in vitro ovary culture system. Furthermore, TGF-β1dose-dependently rescued the abnormal primordial follicle activation in SD208-treated ovaries.
     To determine the cause of rapid oocyte growth, we found that there was dramatically less proliferation of granulosa cells and more TUNEL-positive oocytes in TGF-β1-treated ovaries and significantly more proliferation in SD208-treated ovaries as shown by5-bromo-2'-deoxyuridine (BrdU) incorporation assays and immunohistochemical staining for proliferating cell nuclear antigen (PCNA) and TUNEL assays.
     To investigate the molecular mechanisms underlying the accelerated enlargement of oocytes, we found that the phosphorylation levels of Akt (S473) and FOXO3a (Thr32) in SD208-treated ovaries were similar to control and TGF-β1-treated ovaries. However, the phosphorylation of S6K1at its threonine389(p-S6K1, T389) and the phosphorylation of rpS6at its serine235and236(p-rpS6, S235/6) and at its serine240and244(p-rpS6, S240/4) were elevated in SD208-treated ovaries but reduced in TGF-β1-treated ovaries compared with control ovaries. In other words, TGF-P signaling may regulate primordial follicle growth through activation of p70S6kinase1(S6K1)/ribosomal protein S6(rpS6) signaling in mouse ovaries.
     In conclusion, our results suggest that TGF-P signaling plays an important physiological role in the maintenance of the dormant pool of primordial follicles, which functions through activation of S6K1/rpS6signaling in mouse ovaries.
引文
Abe, T., Furue, M., Kondow, A., Matsuzaki, K., and Asashima, M. (2005). Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A. Mech Dev 122,671-680.
    Accili, D., and Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117,421-426.
    Adams, I.R., and McLaren, A. (2002). Sexually dimorphic development of mouse primordial germ cells:switching from oogenesis to spermatogenesis. Development 129,1155-1164.
    Adhikari, D., Flohr, G., Gorre, N., Shen, Y., Yang, H., Lundin, E., Lan, Z., Gambello, M.J., and Liu, K. (2009). Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15,765-770.
    Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hamalainen, T., Cooney, A.J., Huhtaniemi, I., Lan, Z.J., and Liu, K. (2010). Tsc/mTORCl signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19,397-410.
    Anderson, R.A., Robinson, L.L., Brooks, J., and Spears, N. (2002). Neurotropins and their receptors are expressed in the human fetal ovary. J Clin Endocrinol Metab 87,890-897.
    Andrade, M.A., and Bork, P. (1995). HEAT repeats in the Huntington's disease protein. Nat Genet 11, 115-116.
    Annovazzi, L., Mellai, M., Caldera, V., Valente, G., Tessitore, L., and Schiffer, D. (2009). mTOR, S6 and AKT expression in relation to proliferation and apoptosis/autophagy in glioma. Anticancer Res 29, 3087-3094.
    Asselin, E., Xiao, C.W., Wang, Y.F., and Tsang, B.K. (2000). Mammalian follicular development and atresia:role of apoptosis. Biol Signals Recept 9,87-95.
    Baarends, W.M., Uilenbroek, J.T., Kramer, P., Hoogerbrugge, J.W., van Leeuwen, E.C., Themmen, A.P., and Grootegoed, J.A. (1995). Anti-mullerian hormone and anti-mullerian hormone type Ⅱ receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 136,4951-4962.
    Baker, T.G. (1963). A Quantitative and Cytological Study of Germ Cells in Human Ovaries. Proc R Soc Lond B Biol Sci 158,417-433.
    Baker, T.G., and Franchi, L.L. (1972). The fine structure of oogonia and oocytes in the rhesus monkey (Macaca mulatta). Z Zellforsch Mikrosk Anat 126,53-74.
    Barkley, M.S., Geschwind,Ⅱ, and Bradford, G.E. (1979). The gestational pattern of estradiol, testosterone and progesterone secretion in selected strains of mice. Biol Reprod 20,733-738.
    Blokzijl, A., Dahlqvist, C., Reissmann, E., Falk, A., Moliner, A., Lendahl, U., and Ibanez, C.F. (2003). Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163,723-728.
    Bohnsack, B.L., Szabo, M., Kilen, S.M., Tam, D.H., and Schwartz, N.B. (2000). Follistatin suppresses steroid-enhanced follicle-stimulating hormone release in vitro in rats. Biology of reproduction 62, 636-641.
    Bristol-Gould, S.K., Kreeger, P.K., Selkirk, C.G., Kilen, S.M., Cook, R.W., Kipp, J.L., Shea, L.D., Mayo, K.E., and Woodruff, T.K. (2006). Postnatal regulation of germ cells by activin:the establishment of the initial follicle pool. Dev Biol 298,132-148.
    Broekmans, F.J., Knauff, E.A., te Velde, E.R., Macklon, N.S., and Fauser, B.C. (2007). Female reproductive ageing:current knowledge and future trends. Trends Endocrinol Metab 18,58-65.
    Byskov, A.G. (1974). Does the rete ovarii act as a trigger for the onset of meiosis? Nature 252, 396-397.
    Byskov, A.G. (1975). The role of the rete ovarii in meiosis and follicle formation in the cat, mink and ferret. J Reprod Fertil 45,201-209.
    Byskov, A.G. (1986). Differentiation of mammalian embryonic gonad. Physiol Rev 66,71-117.
    Byskov, A.G., and Lintern-Moore, S. (1973). Follicle formation in the immature mouse ovary:the role of the rete ovarii. J Anat 116,207-217.
    Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W., and DePinho, R.A. (2003). Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301,215-218.
    Chang, H., Brown, C.W., and Matzuk, M.M. (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23,787-823.
    Chen, Y, Jefferson, W.N., Newbold, R.R., Padilla-Banks, E., and Pepling, M.E. (2007). Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148,3580-3590.
    Choi, J., Lee, J.Y., Lee, E., Yoon, B.K., Bae, D., and Choi, D. (2007). Cryopreservation of the mouse ovary inhibits the onset of primordial follicle development. Cryobiology 54,55-62.
    Crisponi, L., Deiana, M., Loi, A., Chiappe, F., Uda, M., Amati, P., Bisceglia, L., Zelante, L., Nagaraja, R., Porcu, S., et al. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27,159-166.
    Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M.E., Pratipanawatr, T., DeFronzo, R.A., Kahn, C.R., and Mandarino, L.J. (2000). Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 105,311-320.
    Davoodian, N., Mesbah, F., and Kafi, M. (2011). Oocyte ultrastructural characteristics in camel (Camelus dromedarius) primordial to large antral follicles. Anat Histol Embryol 40,120-127.
    de Winter, J.P., ten Dijke, P., de Vries, C.J., van Achterberg, T.A., Sugino, H., de Waele, P., Huylebroeck, D., Verschueren, K., and van den Eijnden-van Raaij, A.J. (1996). Follistatins neutralize activin bioactivity by inhibition of activin binding to its type Ⅱ receptors. Molecular and cellular endocrinology 116,105-114.
    DeFalco, T., and Capel, B. (2009). Gonad morphogenesis in vertebrates:divergent means to a convergent end. Annu Rev Cell Dev Biol 25,457-482.
    Dissen, G.A., Romero, C., Hirshfield, A.N., and Ojeda, S.R. (2001). Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology 142,2078-2086.
    Dole, G., Nilsson, E.E., and Skinner, M.K. (2008). Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction 135, 671-682.
    Dong, J.W., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N.F., and Matzuk, M.M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383,531-535.
    Drummond, A.E., Dyson, M., Le, M.T., Ethier, J.F., and Findlay, J.K. (2003). Ovarian follicle populations of the rat express TGF-beta signalling pathways. Molecular and cellular endocrinology 202, 53-57.
    Dumortier, A., Wilson, A, MacDonald, H.R., and Radtke, F. (2005). Paradigms of notch signaling in mammals. Int J Hematol 82,277-284.
    Durlinger, A.L., Gruijters, M.J., Kramer, P., Karels, B., Ingraham, H.A., Nachtigal, M.W., Uilenbroek, J.T., Grootegoed, J.A., and Themmen, A.P. (2002). Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143,1076-1084.
    Durlinger, A.L., Kramer, P., Karels, B., de Jong, F.H., Uilenbroek, J.T., Grootegoed, J.A., and Themmen, A.P. (1999). Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140,5789-5796.
    Eppig, J.J., and O'Brien, M.J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54,197-207.
    Faddy, M.J. (2000). Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 163,43-48.
    Felici, M.D., Carlo, A.D., Pesce, M., Iona, S., Farrace, M.G., and Piacentini, M. (1999). Bcl-2 and Bax regulation of apoptosis in germ cells during prenatal oogenesis in the mouse embryo. Cell Death Differ 6,908-915.
    Forster, C., Makela, S., Warri, A., Kietz, S., Becker, D., Hultenby, K., Warner, M., and Gustafsson, J.A. (2002). Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci U S A 99,15578-15583.
    Gall, L., Boulesteix, C., Ruffini, S., and Germain, G. (2005). EGF-induced EGF-receptor and MAP kinase phosphorylation in goat cumulus cells during in vitro maturation. Molecular reproduction and development 71,489-494.
    Garnett, K., Wang, J., and Roy, S.K. (2002). Spatiotemporal expression of epidermal growth factor receptor messenger RNA and protein in the hamster ovary:follicle stage-specific different'al modulation by follicle-stimulating hormone, luteinizing hormone, estradiol, and progesterone. Biol Reprod 67,1593-1604.
    Glister, C., Groome, N.P., and Knight, P.G. (2003). Oocyte-mediated suppression of follicle-stimulating hormone-and insulin-like growth factor-induced secretion of steroids and inhibin-related proteins by bovine granulosa cells in vitro:possible role of transforming growth factor alpha. Biology of reproduction 68,758-765.
    Glister, C., Groome, N.P., and Knight, P.G. (2006). Bovine follicle development is associated with divergent changes in activin-A, inhibin-A and follistatin and the relative abundance of different follistatin isoforms in follicular fluid. The Journal of endocrinology 188,215-225.
    Glister, C., Tannetta, D.S., Groome, N.P., and Knight, P.G. (2001). Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells. Biology of reproduction 65,1020-1028.
    Godkin, J.D., and Dore, J.J. (1998). Transforming growth factor beta and the endometrium. Rev Reprod 3,1-6.
    Gougeon, A. (1996). Regulation of ovarian follicular development in primates:facts and hypotheses. Endocr Rev 17,121-155.
    Gropp, A., and Ohno, S. (1966). The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle Bos taurus. Z Zellforsch Mikrosk Anat 74,505-528.
    Gueripel, X., Benahmed, M., and Gougeon, A. (2004). Sequential gonadotropin treatment of immature mice leads to amplification of transforming growth factor beta action, via upregulation of receptor-type 1, Smad 2 and 4, and downregulation of Smad 6. Biol Reprod 70,640-648.
    Guo, Q., Kumar, T.R., Woodruff, T., Hadsell, L.A., DeMayo, F.J., and Matzuk, M.M. (1998). Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 12, 96-106.
    Hayashi, M., McGee, E.A., Min, G., Klein, C., Rose, U.M., van Duin, M., and Hsueh, A.J. (1999). Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140,1236-1244.
    Hirshfield, A.N. (1994). Relationship between the supply of primordial follicles and the onset of follicular growth in rats. Biol Reprod 50,421-428.
    Hirshfield, A.N. (1997). Overview of ovarian follicular development:considerations for the toxicologist. Environmental and molecular mutagenesis 29,10-15.
    Huang, H., Potter, C.J., Tao, W., Li, D.M., Brogiolo, W., Hafen, E., Sun, H., and Xu, T. (1999). PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365-5372.
    Huang, H., and Tindall, D.J. (2007). Dynamic FoxO transcription factors. J Cell Sci 120,2479-2487.
    Hubner, K., Fuhrmann, G., Christenson, L.K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J.F.,3rd, Boiani, M., and Scholer, H.R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science 300,1251-1256.
    Hutt, K.J., McLaughlin, E.A., and Holland, M.K. (2006). Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell and tissue research 326,809-822.
    Ingman, W.V., and Robertson, S.A. (2002). Defining the actions of transforming growth factor beta in reproduction. Bioessays 24,904-914.
    Ingman, W.V., Robker, R.L., Woittiez, K., and Robertson, S.A. (2006). Null mutation in transforming growth factor betal disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology 147,835-845.
    Jeon, K.W., and Kennedy, J.R. (1973). The primordial germ cells in early mouse embryos:light and electron microscopic studies. Dev Biol 31,275-284.
    Jiang, J.Y., Cheung, C.K., Wang, Y., and Tsang, B.K. (2003). Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci 8, d222-237.
    John, G.B., Gallardo, T.D., Shirley, L.J., and Castrillon, D.H. (2008). Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321,197-204.
    Jorgez, C.J., Klysik, M., Jamin, S.P., Behringer, R.R., and Matzuk, M.M. (2004). Granulosa cell-specific inactivation of follistatin causes female fertility defects. Mol Endocrinol 18,953-967.
    Jost, A. (1972). A new look at the mechanisms controlling sex differentiation in mammals. Johns Hopkins Med J 130,38-53.
    Jost, A., Gonse-Danysz, P., and Jacquot, R. (1953). [Studies on physiology of fetal hypophysis in rabbits and its relation to testicular function]. J Physiol (Paris) 45,134-136.
    Kaartinen, V., Voncken, J.W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N., and Groffen, J. (1995). Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11,415-421.
    Kaipia, A., and Hsueh, A.J. (1997). Regulation of ovarian follicle atresia. Annu Rev Physiol 59, 349-363.
    Kaivo-Oja, N., Jeffery, L.A., Ritvos, O., and Mottershead, D.G. (2006). Smad signalling in the ovary. Reprod Biol Endocrin 4.
    Kezele, P., and Skinner, M.K. (2003). Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone:endocrine model of follicle assembly. Endocrinology 144, 3329-3337.
    Kimura, F., Bonomi, L.M., and Schneyer, A.L. (2011). Follistatin regulates germ cell nest breakdown and primordial follicle formation. Endocrinology 152,697-706.
    Kimura, F., Sidis, Y., Bonomi, L., Xia, Y., and Schneyer, A. (2010). The follistatin-288 isoform alone is sufficient for survival but not for normal fertility in mice. Endocrinology 151,1310-1319.
    Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y., Kamiirisa, K., et al. (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32,359-369.
    Knight, P.G., and Glister, C. (2003). Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Animal reproduction science 78,165-183.
    Knight, P.G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction (Cambridge, England) 132,191-206.
    Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 357,117-121.
    Kornasio, R., Riederer, I., Butler-Browne, G., Mouly, V, Uni, Z., and Halevy, O. (2009). Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1793,755-763.
    Koubova, J., Menke, D.B., Zhou, Q., Capel, B., Griswold, M.D., and Page, D.C. (2006). Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103,2474-2479.
    Kozma, S.C., and Thomas, G. (2002). Regulation of cell size in growth, development and human disease:PI3K, PKB and S6K. Bioessays 24,65-71.
    Larsen, J.K., Byskov, A.G., and Christensen, I.J. (1986). Flow cytometry and sorting of meiotic prophase cells of female rabbits. J Reprod Fertil 76,587-596.
    Lee, W.S., Otsuka, F., Moore, R.K., and Shimasaki, S. (2001). Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 65,994-999.
    Lei, L., Zhang, H., Jin, S., Wang, F., Fu, M., Wang, H., and Xia, G. (2006). Stage-specific germ-somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol 208,640-647.
    Li, G., Zhang, H., Wang, Y, Wen, J., Teng, Z., Mao, G., Wang, J, Guo, M., Mu, X., and Xia, G. (2011a). Stage-specific mice ovarian somatic cell is involved in primordial folliculogenesis. Front Biosci (Elite Ed) 3,1025-1033.
    Li, Q., Agno, J.E., Edson, M.A., Nagaraja, A.K., Nagashima, T., and Matzuk, M.M. (2011b). Transforming Growth Factor beta Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function. PLoS Genet 7, e1002320.
    Liang, L., Soyal, S.M., and Dean, J. (1997). FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 124,4939-4947.
    Lin, D., Edwards, A.S., Fawcett, J.P., Mbamalu, G., Scott, J.D., and Pawson, T. (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Racl and aPKC signalling and cell polarity. Nat Cell Biol 2,540-547.
    Ling, N., Ying, S.Y., Ueno, N., Esch, F., Denoroy, L., and Guillemin, R. (1985). Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci U S A 82,7217-7221.
    Liu, K., Rajareddy, S., Liu, L., Jagarlamudi, K., Boman, K., Selstam, G., and Reddy, P. (2006). Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway:new roles for an old timer. Dev Biol 299,1-11.
    Liu, L., Rajareddy, S., Reddy, P., Du, C., Jagarlamudi, K., Shen, Y., Gunnarsson, D., Selstam, G., Boman, K., and Liu, K. (2007a). Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134,199-209.
    Liu, L., Rajareddy, S., Reddy, P., Jagarlamudi, K., Du, C., Shen, Y., Guo, Y, Boman, K., Lundin, E., Ottander, U., et al. (2007b). Phosphorylation and inactivation of glycogen synthase kinase-3 by soluble kit ligand in mouse oocytes during early follicular development. J Mol Endocrinol 38,137-146.
    Liu, X., Andoh, K., Abe, Y, Kobayashi, J., Yamada, K., Mizunuma, H., and Ibuki, Y (1999). A comparative study on transforming growth factor-beta and activin A for preantral follicles from adult, immature, and diethylstilbestrol-primed immature mice. Endocrinology 140,2480-2485.
    Liu, Z., Youngquist, R.S., Garverick, H.A., and Antoniou, E. (2009). Molecular mechanisms regulating bovine ovarian follicular selection. Mol Reprod Dev 76,351-366.
    Loffler, K.A., Zarkower, D., and Koopman, P. (2003). Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome:FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144,3237-3243.
    Mackay, S., and Smith, R.A. (1989). Mouse gonadal differentiation in vitro in the presence of fetal calf serum. Cell Differ Dev 27,19-28.
    Magoffin, D.A., and Jakimiuk, A.J. (1998). Inhibin A, inhibin B and activin A concentrations in follicular fluid from women with polycystic ovary syndrome. Human reproduction (Oxford, England) 13,2693-2698.
    Maheshwari, A., and Fowler, P.A. (2008). Primordial follicular assembly in humans--revisited. Zygote (Cambridge, England) 16,285-296.
    Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R., and Capel, B. (1997). Male-specific cell migration into the developing gonad. Curr Biol 7,958-968.
    Martins da Silva, S.J., Bayne, R.A., Cambray, N., Hartley, P.S., McNeilly, A.S., and Anderson, R.A. (2004). Expression of activin subunits and receptors in the developing human ovary:activin A promotes germ cell survival and proliferation before primordial follicle formation. Dev Biol 266, 334-345.
    Martins, F.S., Celestino, J.J., Saraiva, M.V., Matos, M.H., Bruno, J.B., Rocha-Junior, C.M., Lima-Verde, I.B., Lucci, C.M., Bao, S.N., and Figueiredo, J.R. (2008). Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod Fertil Dev 20,916-924.
    Matzuk, M.M., Lu, N., Vogel, H., Sellheyer, K., Roop, D.R., and Bradley, A. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374,360-363.
    Mazaud Guittot, S., Guigon, C.J., Coudouel, N., and Magre, S. (2006). Consequences of fetal irradiation on follicle histogenesis and early follicle development in rat ovaries. Biol Reprod 75, 749-759.
    McGee, E.A., and Hsueh, A.J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21, 200-214.
    McLaren, A. (2003). Primordial germ cells in the mouse. Dev Biol 262,1-15.
    McLaren, A., and Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev Biol 187, 107-113.
    McNatty, K.P., Heath, D.A., Lundy, T., Fidler, A.E., Quirke, L., O'Connell, A., Smith, P., Groome, N., and Tisdall, D.J. (1999). Control of early ovarian follicular development. J Reprod Fertil Suppl 54, 3-16.
    Meeks, J.J., Crawford, S.E., Russell, T.A., Morohashi, K., Weiss, J., and Jameson, J.L. (2003). Daxl regulates testis cord organization during gonadal differentiation. Development 130,1029-1036.
    Meng, Q., Xia, C., Fang, J., Rojanasakul, Y., and Jiang, B.H. (2006). Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 18,2262-2271.
    Merchant, H. (1975). Rat gonadal and ovarioan organogenesis with and without germ cells. An ultrastructural study. Dev Biol 44,1-21.
    Meulmeester, E., and Ten Dijke, P. (2011). The dynamic roles of TGF-beta in cancer. J Pathol 223, 205-218.
    Migeon, B.R., and Jelalian, K. (1977). Evidence for two active X chromosomes in germ cells of female before meiotic entry. Nature 269,242-243.
    Mishina, Y., Rey, R., Finegold, M.J., Matzuk, M.M., Josso, N., Cate, R.L., and Behringer, R.R. (1996). Genetic analysis of the Mullerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 10,2577-2587.
    Moor, R.M., and Warnes, G.M. (1979). Regulation of meiosis in mammalian oocytes. Br Med Bull 35, 99-103.
    Morales Gonzalez, J.A., Gutierrez Salinas, J., Paz Avila, J., Sauceda Gonzalez, L.F., and Montes Balderas, J.L. (2001). [Transforming growth factor alpha (TGF-alpha) and epidermoid growth factor (EGF) in polycystic ovary syndrome:potential role in the decrease of apoptosis mechanisms in the follicle]. Ginecologia y obstetricia de Mexico 69,218-226.
    Mossman, H.W., and Duke, K.L. (1973). Comparative morphology of the mammalian ovary (Madison, University of Wisconsin Press).
    Mu, X., Wen, J., Guo, M., Wang, J., Li, G., Wang, Z., Wang, Y, Teng, Z., Cui, Y., and Xia, G. (2013). Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J Cell Physiol 228, 627-639.
    Murray, A., and Spears, N. (2000). Follicular development in vitro. Seminars in reproductive medicine 18,109-122.
    Myers, M., Middlebrook, B.S., Matzuk, M.M., and Pangas, S.A. (2009). Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Dev Biol 334, 458-467.
    Nation, A., and Selwood, L. (2009). The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial. Reproduction (Cambridge, England) 138,247-255.
    Nilsson, E., Parrott, J.A., and Skinner, M.K. (2001). Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175,123-130.
    Nilsson, E.E., Detzel, C., and Skinner, M.K. (2006). Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction (Cambridge, England) 131,1007-1015.
    Nilsson, E.E., Kezele, P., and Skinner, M.K. (2002). Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188,65-73.
    Nilsson, E.E., Schindler, R., Savenkova, M.I., and Skinner, M.K. (2011). Inhibitory actions of Anti-Mullerian Hormone (AMH) on ovarian primordial follicle assembly. PLoS One 6, e20087.
    Nilsson, E.E., and Skinner, M.K. (2002). Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biol Reprod 67,1018-1024.
    Nilsson, E.E., and Skinner, M.K. (2003). Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 69,1265-1272.
    ODea, L., O'Brien, F., Currie, K., and Hemsey, G. (2008). Follicular development induced by recombinant luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anovulatory women with LH and FSH deficiency:evidence of a threshold effect. Curr Med Res Opin 24,2785-2793.
    Odor, D.L., and Blandau, R.J. (1969). Ultrastructural studies on fetal and early postnatal mouse ovaries. Ⅱ. Cytodifferentiation. Am J Anat 125,177-215.
    Otsuka, F., Yao, Z., Lee, T., Yamamoto, S., Erickson, G.F., and Shimasaki, S. (2000). Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 275, 39523-39528.
    Pangas, S.A., Choi, Y., Ballow, D.J., Zhao, Y., Westphal, H., Matzuk, M.M., and Rajkovic, A. (2006). Oogenesis requires germ cell-specific transcriptional regulators Sohlhl and Lhx8. Proc Natl Acad Sci US A103,8090-8095.
    Parrott, J.A., and Skinner, M.K. (1997). Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology 138,3819-3827.
    Parrott, J.A., and Skinner, M.K. (1999). Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140,4262-4271.
    Patursky-Polischuk, I., Stolovich-Rain, M., Hausner-Hanochi, M., Kasir, J., Cybulski, N., Avruch, J., Ruegg, M.A., Hall, M.N., and Meyuhas, O. (2009). The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor-or rictor-independent manner. Mol Cell Biol 29,640-649.
    Peng, C., Ohno, T., Khorasheh, S., and Leung, P.C. (1996). Activin and follistatin as local regulators in the human ovary. Biological signals 5,81-89.
    Pepling, M.E. (2006). From primordial germ cell to primordial follicle:mammalian female germ cell development. Genesis 44,622-632.
    Pepling, M.E., and Spradling, A.C. (2001). Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234,339-351.
    Peters, H. (1970). Migration of gonocytes into the mammalian gonad and their differentiation. Philos Trans R Soc Lond B Biol Sci 259,91-101.
    Phillips, D.J., Hedger, M.P., McFarlane, J.R., Klein, R., Clarke, I.J., Tilbrook, A.J., Nash, A.D., and de Kretser, D.M. (1996). Follistatin concentrations in male sheep increase following sham castration/castration or injection of interleukin-1 beta. The Journal of endocrinology 151,119-124.
    Pinkerton, J.H., Mc, K.D., Adams, E.C., and Hertig, A.T. (1961). Development of the human ovary--a study using histochemical technics. Obstet Gynecol 18,152-181.
    Rajareddy, S., Reddy, P., Du, C., Liu, L., Jagarlamudi, K., Tang, W., Shen, Y, Berthet, C., Peng, S.L., Kaldis, P., et al. (2007). p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice. Mol Endocrinol 21,2189-2202.
    Rajkovic, A., Pangas, S.A., Ballow, D., Suzumori, N., and Matzuk, M.M. (2004). NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305,1157-1159.
    Reddy, P., Adhikari, D., Zheng, W., Liang, S., Hamalainen, T., Tohonen, V., Ogawa, W., Noda, T., Volarevic, S., Huhtaniemi, I., et al. (2009). PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 18,2813-2824.
    Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K., Rajareddy, S., Shen, Y., Du, C., Tang, W., Hamalainen, T., Peng, S.L., et al. (2008). Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319,611-613.
    Reddy, P., Shen, L., Ren, C., Boman, K., Lundin, E., Ottander, U., Lindgren, P., Liu, Y.X., Sun, Q.Y., and Liu, K. (2005). Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol 281,160-170.
    Reynaud, K., Cortvrindt, R., Smitz, J., and Driancourt, M.A. (2000). Effects of Kit Ligand and anti-Kit antibody on growth of cultured mouse preantral follicles. Mol Reprod Dev 56,483-494.
    Richards, J.S., Fitzpatrick, S.L., Clemens, J.W., Morris, J.K., Alliston, T., and Sirois, J. (1995). Ovarian cell differentiation:a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 50,223-254.
    Richards, J.S., and Pangas, S.A. (2010). The ovary:basic biology and clinical implications. J Clin Invest 120,963-972.
    Rosairo, D., Kuyznierewicz, I., Findlay, J., and Drummond, A. (2008). Transforming growth factor-beta:its role in ovarian follicle development. Reproduction 136,799-809.
    Ruby, J.R., Dyer, R.F., and Skalko, R.G. (1969). The occurrence of intercellular bridges during oogenesis in the mouse. J Morphol 127,307-339.
    Rucker, E.B.,3rd, Dierisseau, P., Wagner, K.U., Garrett, L., Wynshaw-Boris, A., Flaws, J.A., and Hennighausen, L. (2000). Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 14,1038-1052.
    Sanford, L.P., Ormsby, I., Gittenberger-de Groot, A.C., Sariola, H., Friedman, R., Boivin, G.P., Cardell, E.L., and Doetschman, T. (1997). TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124,2659-2670.
    Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307,1098-1101.
    Satoh, M. (1991). Histogenesis and organogenesis of the gonad in human embryos. J Anat 177,85-107.
    Sawyer, H.R., Smith, P., Heath, D.A., Juengel, J.L., Wakefield, S.J., and McNatty, K.P. (2002). Formation of ovarian follicles during fetal development in sheep. Biology of reproduction 66, 1134-1150.
    Schepers, G., Wilson, M., Wilhelm, D., and Koopman, P. (2003). SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J Biol Chem 278, 28101-28108.
    Schindler, R., Nilsson, E., and Skinner, M.K. (2010). Induction of ovarian primordial follicle assembly by connective tissue growth factor CTGF. PLoS One 5, el2979.
    Schmidt, D., Ovitt, C.E., Anlag, K., Fehsenfeld, S., Gredsted, L., Treier, A.C., and Treier, M. (2004). The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131,933-942.
    Sekido, R., Bar, I., Narvaez, V., Penny, G., and Lovell-Badge, R. (2004). SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274,271-279.
    Shah, O J., Wang, Z., and Hunter, T. (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14, 1650-1656.
    Shimasaki, S., Koga, M., Esch, F., Cooksey, K., Mercado, M., Koba, A., Ueno, N., Ying, S.Y., Ling, N., and Guillemin, R. (1988). Primary structure of the human follistatin precursor and its genomic organization. Proc Natl Acad Sci U S A 85,4218-4222.
    Shull, M.M., and Doetschman, T. (1994). Transforming growth factor-beta 1 in reproduction and development. Mol Reprod Dev 39,239-246.
    Sidis, Y., Mukherjee, A., Keutmann, H., Delbaere, A., Sadatsuki, M., and Schneyer, A. (2006). Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology 147, 3586-3597.
    Slomovitz, B.M., and Coleman, R.L. (2012). The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 18,5856-5864.
    Smite, J., Cortvrindt, R., Hu, Y, and Vanderstichele, H. (1998). Effects of recombinant activin A on in vitro culture of mouse preantral follicles. Molecular reproduction and development 50,294-304.
    Soyal, S.M., Amleh, A., and Dean, J. (2000). FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127,4645-4654.
    Spiegelman, M., and Bennett, D. (1973). A light-and electron-microscopic study of primordial germ cells in the early mouse embryo. J Embryol Exp Morphol 30,97-118.
    Srinivasan, S., Anitha, M., Mwangi, S., and Heuckeroth, R.O. (2005). Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci 29,107-119.
    Sugino, H., Sugino, K., Hashimoto, O., Shoji, H., and Nakamura, T. (1997). Follistatin and its role as an activin-binding protein. J Med Invest 44,1-14.
    Sugino, K., Kurosawa, N., Nakamura, T., Takio, K., Shimasaki, S., Ling, N., Titani, K., and Sugino, H. (1993). Molecular heterogeneity of follistatin, an activin-binding protein. Higher affinity of the carboxyl-terminal truncated forms for heparan sulfate proteoglycans on the ovarian granulosa cell. J Biol Chem 268,15579-15587.
    Swain, A, Narvaez, V., Burgoyne, P., Camerino, G., and Lovell-Badge, R. (1998). Daxl antagonizes Sry action in mammalian sex determination. Nature 391,761-767.
    Tajima, K., Orisaka, M., Yata, H., Goto, K., Hosokawa, K., and Kotsuji, F. (2006). Role of granulosa and theca cell interactions in ovarian follicular maturation. Microscopy research and technique 69, 450-458.
    Taurin, S., Sandbo, N., Yau, D.M., Sethakorn, N., and Dulin, N.O. (2008). Phosphorylation of beta-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 294, C1169-1174.
    Tilly, J.L. (2001). Commuting the death sentence:how oocytes strive to survive. Nat Rev Mol Cell Biol 2,838-848.
    Tilly, J.L. (2003). Ovarian follicle counts--not as simple as 1,2,3. Reprod Biol Endocrinol 1,11.
    Tingen, C., Kim, A., and Woodruff, T.K. (2009). The primordial pool of follicles and nest breakdown in mammalian ovaries. Molecular human reproduction 15,795-803.
    Torella, D., Gasparri, C., Ellison, G.M., Curcio, A., Leone, A., Vicinanza, C., Galuppo, V., Mendicino, I., Sacco, W., Aquila, I., et al. (2009). Differential regulation of vascular smooth muscle and endothelial cell proliferation in vitro and in vivo by cAMP/PKA-activated p85alphaPI3K. Am J Physiol Heart Circ Physiol 297, H2015-2025.
    Torrey, T.W. (1947). The development of the urinogenital system of the albino rat; the urinogenital union. Am J Anat 81,139-157.
    Trombly, D.J., Woodruff, T.K., and Mayo, K.E. (2009). Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150,1014-1024.
    Vale, W., Rivier, C., Hsueh, A., Campen, C., Meunier, H., Bicsak, T., Vaughan, J., Corrigan, A., Bardin, W., Sawchenko, P., et al. (1988). Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 44,1-34.
    Vitale, A.M., Gonzalez, O.M., Parborell, F., Irusta, G., Campo, S., and Tesone, M. (2002). Inhibin a increases apoptosis in early ovarian antral follicles of diethylstilbestrol-treated rats. Biology of reproduction 67,1989-1995.
    Vitt, U.A., McGee, E.A., Hayashi, M., and Hsueh, A.J. (2000). In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141,3814-3820.
    Wang, D., Kobayashi, T., Zhou, L., and Nagahama, Y. (2004). Molecular cloning and gene expression of Fox12 in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun 320,83-89.
    Wang, Y., Rippstein, P.U., and Tsang, B.K. (2003). Role and gonadotrophic regulation of X-linked inhibitor of apoptosis protein expression during rat ovarian follicular development in vitro. Biology of reproduction 68,610-619.
    Wartenberg, H. (1978). Human testicular development and the role of the mesonephros in the origin of a dual Sertoli cell system. Andrologia 10,1-21.
    Weenen, C., Laven, J.S., Von Bergh, A.R., Cranfield, M., Groome, N.P., Visser, J.A., Kramer, P., Fauser, B.C., and Themmen, A.P. (2004). Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10,77-83.
    Weiss, J., Crowley, W.F., Jr., Halvorson, L.M., and Jameson, J.L. (1993). Perifusion of rat pituitary cells with gonadotropin-releasing hormone, activin, and inhibin reveals distinct effects on gonadotropin gene expression and secretion. Endocrinology 132,2307-2311.
    Weisz, J., and Ward, I.L. (1980). Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106,306-316.
    Welt, C., Sidis, Y., Keutmann, H., and Schneyer, A. (2002). Activins, inhibins, and follistatins:from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 227, 724-752.
    Wen, J., Zhang, H., Li, G., Mao, G., Chen, X., Wang, J., Guo, M., Mu, X., Ouyang, H., Zhang, M., et al. (2009). PAR6, a potential marker for the germ cells selected to form primordial follicles in mouse ovary. PLoS One 4, e7372.
    Wilhelm, D., Palmer, S., and Koopman, P. (2007). Sex determination and gonadal development in mammals. Physiol Rev 87,1-28.
    Woodgett, J.R., and Cohen, P. (1984). Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta 788,339-347.
    Xia, Y., and Schneyer, A.L. (2009). The biology of activin:recent advances in structure, regulation and function. J Endocrinol 202,1-12.
    Yaba, A., Bianchi, V., Borini, A., and Johnson, J. (2008). A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci 25, 128-138.
    Yamamoto, S., Konishi, I., Nanbu, K., Komatsu, T., Mandai, M., Kuroda, H., Matsushita, K., and Mori, T. (1997). Immunohistochemical localization of basic fibroblast growth factor (bFGF) during folliculogenesis in the human ovary. Gynecol Endocrinol 11,223-230.
    Yang, P., and Roy, S.K. (2001). Epidermal growth factor modulates transforming growth factor receptor messenger RNA and protein levels in hamster preantral follicles in vitro. Biology of reproduction 65,847-854.
    Yang, S., He, X., Niu, Y., Wang, X., Lu, B., Hildebrandt, T.B., Goeritz,F., Jewgenow, K., Zhou, Q., and Ji, W. (2009). Dynamic changes in ovarian follicles measured by ultrasonography during gonadotropin stimulation in rhesus monkeys. Theriogenology 72,560-565.
    Yao, H.H., Whoriskey, W., and Capel, B. (2002). Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16,1433-1440.
    Zavadil, J., Cermak, L., Soto-Nieves, N., and Bottinger, E.P. (2004). Integration of TGF-beta/Smad and Jaggedl/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23,1155-1165.
    Zhu, R., Shen, Z.J., Chen, Y.G., Qiu, Q.C., and Xu, W.X. (2008). [Differences in the expression of inhibin receptors and activin receptors in normal human ovaries and their significance]. Zhonghua fu chan ke za zhi 43,276-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700