用户名: 密码: 验证码:
植物激素脱落酸通过诱导乙烯的生物合成抑制拟南芥主根生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在整个生命过程中面临着各种各样的生物及非生物胁迫,其固着生长的特性决定了它们只能通过调节自身的生命活动来应对环境的变化。抗逆性就是植物在对环境逐步适应的过程中形成的。根器官作为植物体的重要组成部分,不仅承担着营养物质的吸收、输送和贮藏的功能,还能感受内源信号和外界环境刺激并作出反应,从而使植物可以更好的生存繁衍。尤其在土壤贫瘠或干旱等恶劣环境中,根的作用更为重要。
     脱落酸(abscisic acid, ABA)作为一种重要的植物激素,参与调控植物生长发育的各个阶段,包括种子的休眠及萌发、幼苗生长、气孔运动及对环境胁迫的响应等。高浓度的ABA具有抑制植物主根生长的作用,但其分子机理目前尚不清晰。
     据文献报道,ABA通过影响乙烯的信号转导抑制拟南芥主根的生长,但不影响乙烯的生物合成。然而,本论文的结果却证明:乙烯合成途径中ACC合酶(ACC synthases, ACSs)的竞争性抑制剂氨基乙氧基乙烯甘氨酸(aminoethoxyvinylglycine, AVG),可以消除ABA对根生长的抑制作用。另外,通过气相色谱分析的方法直接的证明ABA可以诱导乙烯合成。以上结果暗示ABA可能是通过诱导乙烯的合成抑制根的生长,并且ACC合酶可能是ABA作用的靶点。为了进一步验证这一猜想,接下来又检测了ACC合酶T-DNA插入多突变体CS16647(acs1-1acs2-1acs4-1acs5-2acs6-1acs7-1)、CS16649(acs2-1acs4-1acs5-2acs6-1acs7-1acs9-1)和CS16650(acs1-1acs2-1acs4-1acs5-2acs6-1acs7-1acs9-1)对ABA的响应,发现它们主根的生长都具有ABA不敏感的表型。
     ACC合酶是乙烯合成途径中的关键酶和限速酶,一般情况下在植物体内含量很低且蛋白极不稳定。qRT-PCR检测表明转录水平可能不是ABA调控ACC合酶的主要原因,ACC合酶转录后水平的调控至关重要。据文献报道,一型和二型ACC合酶的羧基端含有预测的CDPK磷酸化位点,可能参与其转录后水平的调控。已知两个钙依赖的蛋白激酶CPK4和CPKll的单突变体及双突变体的根生长对ABA反应不敏感,并且本论文发现,在ABA的处理下单突变体及双突变体的乙烯释放量少于野生型。体外磷酸化实验证明,CPK4和CPK1l可以磷酸化ACC合酶,并且其磷酸化活性受ABA诱导。之后利用定点突变的方法,找到ACS6的四个可能的CDPK磷酸化位点。这些磷酸化位点的突变并不影响该酶的活性,而是影响了蛋白的稳定性。
     为了进一步研究CDPK磷酸化位点的生理功能,我们构建了过表达ACS6WT, ACS6AAAA及ACS6DDDD的转基因植株。研究发现,体外模拟CDPK磷酸化状态的ACS6DDDD转基因植株释放出更多的乙烯,并且主根生长及种子萌发变绿都对ABA反应不敏感,这些表型可能是由于乙烯过量合成引起的。
     综上所述,ABA通过蛋白激酶CPK4及CPK1l调控ACSs蛋白的稳定性,影响乙烯的合成,进而调控根的生长。这一研究,有助于进一步了解ABA调控根生长的分子机理,同时对研究ABA和乙烯两大植物激素之间的相互作用也具有重要意义。
Plants are faced with a variety of abiotic and biotic stresses in their entire life cycle. The sessile nature determines that they have to cope with the environmental changes only through adjusting their life activities. The plant resistance is formed in the process of gradually adaption to the environment. As an important organ, root not only bears the functions of absorption, transport and storage of nutrients, but also feels the endogenous signals and exogenous environmental stimuli, so that plants could grow and develop much better. Root morphogenesis directly affects the growth of the whole plant, therefore is closely related to yield. Especially in poor soil or stressful conditions, such as drought, the function of root is more important.
     During the whole life of plants, phytohormones play crucial roles. They interact with each other and co-regulate the physiological processes of plants. Abscisic acid (ABA) as an important phytohormone, regulates the growth and development in plant. Over a long period, it is known that high concentrations of ABA inhibit root growth. However, the molecular mechanism by which ABA regulates root growth remains unclear.
     In Arabidopsis, the previous studies showed that ABA inhibits root growth through ethylene signaling, but not ethylene biosynthesis. In this study, we found that ABA inhibits root growth by regulating ethylene biosynthesis in Arabidopsis. The ethylene biosynthesis inhibitor aminoethoxyvinyl glycine (AVG) reduced the inhibition of root growth by ABA, and multiple ACS (1-aminocyclopropane-1-carboxylate synthase) mutants were more insensitive to ABA in terms of root growth than was the wild type. In addition, it was shown that ABA induced the ethylene biosynthesis by the gas chromatography testing.
     ACC synthases, the key enzymes of ethylene biosynthesis pathway, are less abundant and unstable. Type1and type2ACS isozymes carry the predictive CDPK phosphorylation sites, and previous study showed that phosphorylation at specific sites by CDPKs could stabilize the protein production. Here, we reported that two ABA-activated CDPK protein kinases, CPK4and CPK11, phosphorylated the C-terminus of ACS6and stabilized ACS6protein. The transgenic plants expressing ACS6mutant form that mimics the CDPK phosphorylation produce more ethylene than dose the wild type, moreover, were more insensitive to ABA in terms of root growth and seeds germination greening than was the wild type.
     This study helps us to further understand the molecular mechanism by which ABA regulates root growth. It will also shed more light on the mechanisms of crosstalk between ABA and ethylene signaling.
引文
Abel, S., Nguyen, M.D., Chow, W., and Theologis, A. (1995). ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-l-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem 270,19093-19099.
    Abeles, F.B. (1966). Auxin stimulation of ethylene evolution. Plant Physiol 41,585-588.
    Abo-El-Saad, M., and Wu, R. (1995). A rice membrane calcium-dependent protein kinase is induced by gibberellin. Plant Physiol 108,787-793.
    Adams, D.O., and Yang, S.F. (1979). Ethylene biosynthesis:Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A 76,170-174.
    Agnieszka, L., Agata, C., Anna, K.-M., Filip, M., Malgorzata, T., Lukasz, G., Piotr, K., Arleta, M., Aneta, P., and Marta, S. (2014). Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Molecular Plant, doi:10.1093/mp/ssu025 [Epub ahead of print].
    Allen, G.J., Kwak, J.M., Chu, S.P., Llopis, J., Tsien, R.Y., Harper, J.F., and Schroeder, J.I. (1999). Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. The Plant Journal 19,735-747.
    Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J.R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in. Arabidopsis. Science 284,2148-2152.
    Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301,653-657.
    Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16,3460-3479.
    Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G.A., Fernandez, M.A., De Winne, N., De Jaeger, G., Dietrich, D., Bennett, M.J., et al. (2013). PYRABACTIN RESISTANCE 1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161,931-941.
    Balague, C., Watson, C.F., Turner, A.J., Rouge, P., Picton, S., Pech, J.C., and Grierson, D. (1993). Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme. Eur J Biochem 212, 27-34.
    Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J., and Grierson, D. (1996). Differential expression of the 1-aminocyclopropane-l-carboxylate oxidase gene family of tomato. Plant J 9, 525-535.
    Bartel, B. (1997). Auxin Biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48,51-66.
    Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12,1103-1115.
    Belin, C., Megies, C., Hauserova, E., and Lopez-Molina, L. (2009). Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21, 2253-2268.
    Berrocal-Lobo, M., and Molina, A. (2004). Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17,763-770.
    Bleecker, A.B., Esch, J.J., Hall, A.E., Rodriguez, F.I., and Binder, B.M. (1998). The ethylene-receptor family from Arabidopsis:structure and function. Philos Trans R Soc Lond B Biol Sci 353, 1405-1412.
    Bleecker, A.B., and Kende, H. (2000). Ethylene:a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16,1-18.
    Brady, S.M., Sarkar, S.F., Bonetta, D., and McCourt, P. (2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34,67-75.
    Bray, E.A. (2002). Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant, cell & environment 25,153-161.
    Brisker, H.E., Goldschmidt, E.E., and Goren, R. (1976). Ethylene-induced Formation of ABA in Citrus Peel as Related to Chloroplast Transformations. Plant Physiol 58,377-379.
    Brown, R.L., Kazan, K., McGrath, K.C., Maclean, D.J., and Manners, J.M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132, 1020-1032.
    Burg, S.P., and Burg, E.A. (1965). Ethylene Action And the Ripening Of Fruits. Science 148, 1190-1196.
    Burg, S.P., and Burg, E.A. (1966). The interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci U S A 55,262.
    Bush, D.S. (1995). Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Biol 46, 95-122.
    Camoni, L., Harper, J.F., and Palmgren, M.G. (1998).14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430,381-384.
    Cao, Y.R., Chen, S.Y., and Zhang, J.S. (2008). Ethylene signaling regulates salt stress response:An overview. Plant Signal Behav 3,761-763.
    Capitani, G., Hohenester, E., Feng, L., Storici, P., Kirsch, J.F., and Jansonius, J.N. (1999). Structure of 1-aminocyclopropane-l-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294,745-756.
    Cevik, V., Kidd, B.N., Zhang, P., Hill, C., Kiddle, S., Denby, K.J., Holub, E.B., Cahill, D.M., Manners, J.M., Schenk, P.M., et al. (2012). MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160,541-555.
    Chadwick, A.V., and Burg, S.P. (1967). An explanation of the inhibition of root growth caused by indole-3-acetic Acid. Plant Physiol 42,415-420.
    Chae, H.S., Faure, F., and Kieber, J.J. (2003). The etol, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15,545-559.
    Chae, H.S., and Kieber, J.J. (2005). Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10,291-296.
    Chang, C. (1996). The ethylene signal transduction pathway in Arabidopsis:an emerging paradigm? Trends Biochem Sci 21,129-133.
    Chang, C., Clark, K., Wang, X., and Stewart, R. (1998).'Two-component' ethylene signaling in Arabidopsis. Symp Soc Exp Biol 51,59-64.
    Chang, C., and Stadler, R. (2001). Ethylene hormone receptor action in Arabidopsis. Bioessays 23, 619-627.
    Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker, J.R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89,1133-1144.
    Chen, C.W., Yang, Y.W., Lur, H.S., Tsai, Y.G., and Chang, M.C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47, 1-13.
    Chen, R., Binder, B.M., Garrett, W.M., Tucker, M.L., Chang, C., and Cooper, B. (2011). Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7,2637-2650.
    Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129, 469-485.
    Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Hwang, I., and Kim, S.Y. (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139,1750-1761.
    Choudhury, S.R., Roy, S., and Sengupta, D.N. (2008). Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. J Plant Physiol 165,1865-1878.
    Clark, D.G., Richards, C., Hilioti, Z., Lind-Iversen, S., and Brown, K. (1997). Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium x hortorum L.H. Bailey). Plant Mol Biol 34,855-865.
    Cornforth, J., Milborrow, B., and Ryback, G. (1965). Chemistry and Physiology of'Dormins'In Sycamore:Identity of Sycamore 'Dormin' with Abscisin II. Nature 205,1269-1270.
    Cornish, K., and Zeevaart, J.A. (1988). Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic Acid accumulation in roots and leaflets of reciprocal grafts. Plant Physiol 87,190-194.
    Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid:emergence of a core signaling network. Annual review of plant biology 61,651-679.
    Dodd, A.N., Kudla, J., and Sanders, D. (2010). The language of calcium signaling. Annu Rev Plant Biol 61,593-620.
    Eagles, C., and Wareing, P. (1963). Dormancy Regulators in Woody Plants:Experimental Induction of Dormancy in Betula pubescens. Nature 199,874-875.
    Ecker, J.R. (1995). The ethylene signal transduction pathway in plants. Science 268,667-675.
    Finkelstein, R.R., Gampala, S.S., and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl, S15-45.
    Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12,599-609.
    Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S., and Goodman, H.M. (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054.
    Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494.
    Fujii, H., and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A 106, 8380-8385.
    Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12,393-404.
    Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50,2123-2132.
    Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S., and Vierstra, R.D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 101, 6803-6808.
    Gamble, R.L., Coonfield, M.L., and Schaller, G.E. (1998). Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci U S A 95,7825-7829.
    Gamble, R.L., Qu, X., and Schaller, G.E. (2002). Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128, 1428-1438.
    Gao, Y, Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.G. (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52,1001-1013.
    Gao, Z., Chen, Y.F., Randlett, M.D., Zhao, X.C., Findell, J.L., Kieber, J.J., and Schaller, G.E. (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278,34725-34732.
    Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K.A., Grill, E., et al. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107,8023-8028.
    Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y, and McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12, 1117-1126.
    Gilroy, S., Read, N., and Trewavas, A. (1990). Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346,769-771.
    Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4,1251-1261.
    Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N., and Giraudat, J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11,1897-1910.
    Grennan, A.K. (2008). Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146,1457-1458.
    Gudesblat, G.E., Iusem, N.D., and Morris, P.C. (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173,713-721.
    Guinn, G. (1982). Fruit age and changes in abscisic Acid content, ethylene production, and abscission rate of cotton fruits. Plant Physiol 69,349-352.
    Guo, H., and Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115,667-677.
    Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7,465-471.
    Han, L., Li, G.J., Yang, K.Y., Mao, G., Wang, R., Liu, Y., and Zhang, S. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64,114-127.
    Hao, Q., Yin, P., Yan, C., Yuan, X., Li, W., Zhang, Z., Liu, L., Wang, J., and Yan, N. (2010). Functional mechanism of the abscisic acid agonist pyrabactin. J Biol Chem 285,28946-28952.
    Harmon, A.C. (2003). Calcium-regulated protein kinases of plants. Gravit Space Biol Bull 16,83-90.
    Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci 5,154-159.
    Harmon, A.C., Yoo, B.C., and McCaffery, C. (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33,7278-7287.
    Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55,263-288.
    Harper, J.F., Huang, J.F., and Lloyd, S.J. (1994). Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33,7267-7277.
    Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H., and Harmon, A.C. (1991). A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252,951-954.
    He, J., Duan, Y., Hua, D., Fan, G., Wang, L., Liu, Y., Chen, Z., Han, L., Qu, L.J., and Gong, Z. (2012). DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24, 1815-1833.
    Hentrich, M., Sanchez-Parra, B., Perez Alonso, M.M., Carrasco Loba, V., Carrillo, L., Vicente-Carbajosa, J., Medina, J., and Pollmann, S. (2013). YUCCA8 and YUCCA9 overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signal Behav 8.
    Hua, J., and Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94,261-271.
    Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R., and Meyerowitz, E.M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10,1321-1332.
    Huang, J.F., Teyton, L., and Harper, J.F. (1996). Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 35,13222-13230.
    Huang, S.J., Chang, C.L., Wang, P.H., Tsai, M.C., Hsu, P.H., and Chang, I.F. (2013). A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. J Exp Bot 64, 4343-4360.
    Huang, Y., Li, H., Hutchison, C.E., Laskey, J., and Kieber, J.J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33,221-233.
    Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D., and Schroeder, J.I. (2010). Early abscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions. Genes Dev 24,1695-1708.
    Hubert, O., and Mbeguie, A.M.D. (2012). Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop. AoB Plants 2012, p1sO41.
    Hugouvieux, V., Kwak, J.M., and Schroeder, J.I. (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106,477-487.
    Irigoyen, M.L., Iniesto, E., Rodriguez, L., Puga, M.I., Yanagawa, Y., Pick, E., Strickland, E., Paz-Ares, J., Wei, N., De Jaeger, G., et al. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. Plant Cell.
    Iwai, T., Miyasaka, A., Seo, S., and Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142,1202-1215.
    Ji, Y, and Guo, H. (2013). From endoplasmic reticulum (ER) to nucleus:EIN2 bridges the gap in ethylene signaling. Mol Plant 6,11-14.
    Johnson, P.R., and Ecker, J.R. (1998). The ethylene gas signal transduction pathway:a molecular perspective. Annu Rev Genet 32,227-254.
    Joo, S., Liu, Y, Lueth, A., and Zhang, S. (2008). MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54,129-140.
    Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y, Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., et al. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109,19486-19491.
    Kamiyoshihara, Y, Iwata, M., Fukaya, T., Tatsuki, M., and Mori, H. (2010). Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-l-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J 64,140-150.
    Kidd, B.N., Aitken, E.A., Schenk, P.M., Manners, J.M., and Kazan, K. (2010). Plant mediator: mediating the jasmonate response. Plant Signal Behav 5,718-720.
    Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., and Kazan, K. (2009). The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21,2237-2252.
    Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72,427-441.
    Kim, W.T., and Yang, S.F. (1992). Turnover of 1-aminocyclopropane-l-carboxylic Acid synthase protein in wounded tomato fruit tissue. Plant Physiol 100,1126-1131.
    Konishi, M., and Yanagisawa, S. (2008). Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55,821-831.
    Kutschera, U., and Schopfer, P. (1986). Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta 167,527-535.
    Kwon, S.J., Jin, H.C., Lee, S., Nam, M.H., Chung, J.H., Kwon, S.I., Ryu, C.M., and Park, O.K. (2009). GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58,235-245.
    Lanteri, M.L., Pagnussat, G.C., and Lamattina, L. (2006). Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. J Exp Bot 57,1341-1351.
    Larrainzar, E., Molenaar, J.A., Wienkoop, S., Gil-Quintana, E., Alibert, B., Limami, A.M., Arrese-Igor, C., and Gonzalez, E.M. (2014). Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ.
    Lasserre, E., Bouquin, T., Hernandez, J.A., Bull, J., Pech, J.C., and Balague, C. (1996). Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251,81-90.
    Lee, J.-Y., Yoo, B.-C., and Harmon, A.C. (1998). Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Biochemistry 37,6801-6809.
    Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9,759-771.
    Leung, J., Merlot, S., Gosti, F., Bertauche, N., Blatt, M.R., and Giraudat, J. (1998). The role of ABI1 in abscisic acid signal transduction:from gene to cell. Symp Soc Exp Biol 51,65-71.
    Li, N., and Mattoo, A.K. (1994). Deletion of the carboxyl-terminal region of 1-aminocyclopropane-l-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. J Biol Chem 269,6908-6917.
    Li, N., Parsons, B.L., Liu, D.R., and Mattoo, A.K. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol 18, 477-487.
    Lieberman, M., and Kunishi, A. (1966). Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol 41,376-382.
    Lieberman, M., and Kunishi, A.T. (1965). Ethylene production from methionine. Biochem J 97, 449-459.
    Liese, A., and Romeis, T. (2013). Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta 1833,1582-1589.
    Linkies, A., Muller, K., Morris, K., Tureckova, V., Wenk, M., Cadman, C.S., Corbineau, F., Strnad, M., Lynn, J.R., Finch-Savage, W.E., et al. (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination:a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21,3803-3822.
    Liu, Q., and Wen, C.K. (2012). Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. Plant Physiol 158,1193-1207.
    Liu, W.C., and Carnsdagger, H.R. (1961). Isolation of Abscisin, an Abscission Accelerating Substance. Science 134,384-385.
    Liu, X., Yue, Y, Li, B., Nie, Y, Li, W., Wu, W.H., and Ma, L. (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315,1712-1716.
    Liu, Y., He, J., Chen, Z., Ren, X., Hong, X., and Gong, Z. (2010). ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. Plant J 63,749-765.
    Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16,3386-3399.
    Lu, C., Han, M.H., Guevara-Garcia, A., and Fedoroff, N.V. (2002). Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci U S A 99, 15812-15817.
    Lyzenga, W.J., Booth, J.K., and Stone, S.L. (2012). The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme,1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71,23-34.
    Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y, Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324,1064-1068.
    Martin-Rodriguez, J.A., Leon-Morcillo, R., Vierheilig, H., Ocampo, J.A., Ludwig-Muller, J., and Garcia-Garrido, J.M. (2011). Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190,193-205.
    Merlot, S., Mustilli, A.C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A., and Giraudat, J. (2002). Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30,601-609.
    Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.J., Asano, A., Miyauchi, Y., Takahashi, M., Zhi, Y., Fujita, Y, et al. (2009). Structural basis of abscisic acid signalling. Nature 462, 609-614.
    Morgan, P.W., and Gausman, H.W. (1966). Effects of ethylene on auxin transport. Plant Physiol 41, 45-52.
    Morgan, P.W., and Hall, W.C. (1962). Effect of 2,4-Dichlorophenoxyacetic Acid on the Production of Ethylene by Cotton and Grain Sorghum. Physiol Plant 15,420-427.
    Morgan, P.W., and Hall, W.C. (1964). Accelerated release of ethylene by cotton following application of indolyl-3-acetic acid.
    Mori, I.C., Murata, Y, Yang, Y, Munemasa, S., Wang, Y.-F., Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., and Ecker, J.R. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol 4, e327.
    Moussatche, P., and Klee, H.J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279,48734-48741.
    Muller, J., Beck, M., Mettbach, U., Komis, G., Hause, G., Menzel, D., and Samaj, J. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 61,234-248.
    Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., et al. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50,1345-1363.
    Nishimura, N., Hitomi, K., Arvai, A.S., Rambo, R.P., Hitomi, C., Cutler, S.R., Schroeder, J.I., and Getzoff, E.D. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326,1373-1379.
    Oeller, P.W., Lu, M.W., Taylor, L.P., Pike, D.A., and Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254,437-439.
    Ohkuma, K., Lyon, J.L., Addicott, F.T., and Smith, O.E. (1963). Abscisin II, an Abscission-Accelerating Substance from Young Cotton Fruit. Science 142,1592-1593.
    Olmedo, G., Guo, H., Gregory, B.D., Nourizadeh, S.D., Aguilar-Henonin, L., Li, H., An, F., Guzman, P., and Ecker, J.R. (2006). ETHYLENE-INSENSITIVE5 encodes a 5'-->3'exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci U S A 103, 13286-13293.
    Olson, D.C., White, J.A., Edelman, L., Harkins, R.N., and Kende, H. (1991). Differential expression of two genes for 1-aminocyclopropane-l-carboxylate synthase in tomato fruits. Proc Natl Acad Sci U S A 88,5340-5344.
    Ortega-Martinez, O., Pernas, M., Carol, R.J., and Dolan, L. (2007). Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317,507-510.
    Pandey, S., Nelson, D.C., and Assmann, S.M. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136,136-148.
    Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324,1068-1071.
    Pei, Z.-M., Murata, Y, Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406,731-734.
    Peiser, G.D., Wang, T.T., Hoffman, N.E., Yang, S.F., Liu, H.W., and Walsh, C.T. (1984). Formation of cyanide from carbon 1 of 1-aminocyclopropane-l-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci U S A 81,3059-3063.
    Perochon, A., Aldon, D., Galaud, J.P., and Ranty, B. (2011). Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93,2048-2053.
    Pogson, B.J., Downs, C.G., and Davies, K.M. (1995). Differential expression of two 1-aminocyclopropane-l-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108, 651-657.
    Potuschak, T., Lechner, E., Parmentier, Y, Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins:EBF1 and EBF2. Cell 115,679-689.
    Potuschak, T., Vansiri, A., Binder, B.M., Lechner, E., Vierstra, R.D., and Genschik, P. (2006). The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18,3047-3057.
    Prasad, M.E., Schofield, A., Lyzenga, W., Liu, H., and Stone, S.L. (2010). Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153,1587-1596.
    Qiao, H., Chang, K.N., Yazaki, J., and Ecker, J.R. (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23, 512-521.
    Qiao, H., Shen, Z., Huang, S.S., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R. (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338,390-393.
    Rahman, A., Amakawa, T., Goto, N., and Tsurumi, S. (2001). Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42,301-307.
    Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature 439,290-294.
    Rehm, M.M., and Cline, M.G. (1973). Inhibition of Low pH-induced Elongation in Avena Coleoptiles by Abscisic Acid. Plant Physiol 51,946-948.
    Risk, J.M., Macknight, R.C., and Day, C.L. (2008). FCA does not bind abscisic acid. Nature 456, E5-6.
    Rottmann, W.H., Peter, G.F., Oeller, P.W., Keller, J.A., Shen, N.F., Nagy, B.P., Taylor, L.P., Campbell, A.D., and Theologis, A. (1991).1-aminocyclopropane-l-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222,937-961.
    Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.H., Santiago, J., Flexas, J., Schroeder, J.I., and Rodriguez, P.L. (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150,1345-1355.
    Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., and Benkova, E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19,2197-2212.
    Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., and Rodriguez, P.L. (2004). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37, 354-369.
    Saez, A., Robert, N., Maktabi, M.H., Schroeder, J.I., Serrano, R., and Rodriguez, P.L. (2006). Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141, 1389-1399.
    Sagee, O., Goren, R., and Riov, J. (1980). Abscission of Citrus Leaf Explants: INTERRELATIONSHIPS OF ABSCISIC ACID, ETHYLENE, AND HYDROLYTIC ENZYMES. Plant Physiol 66,750-753.
    Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., and Meyerowitz, E.M. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 95,5812-5817.
    Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11, 691-706.
    Sanders, D., Pelloux, J., Brownlee, C., and Harper, J.F. (2002). Calcium at the crossroads of signaling. Plant Cell 14 Suppl, S401-417.
    Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.Y., Jamin, M., Cutler, S.R., Rodriguez, P.L., and Marquez, J.A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668.
    Schaller, G.E., and Bleecker, A.B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270,1809-1811.
    Schlagnhaufer, C.D., Arteca, R.N., and Pell, E.J. (1997). Sequential expression of two 1-aminocyclopropane-l-carboxylate synthase genes in response to biotic and abiotic stresses in potato(Solanum tuberosum L.) leaves. Plant Mol Biol 35,683-688.
    Schopfer, P., and Plachy, C. (1985). Control of Seed Germination by Abscisic Acid:Ⅲ. Effect on Embryo Growth Potential (Minimum Turgor Pressure) and Growth Coefficient (Cell Wall Extensibility) in Brassica napus L. Plant Physiol 77,676-686.
    Schulz, P., Herde, M., and Romeis, T. (2013). Calcium-dependent protein kinases:hubs in plant stress signaling and development. Plant Physiol 163,523-530.
    Shang, Y., Yan, L., Liu, Z.Q., Cao, Z., Mei, C., Xin, Q., Wu, F.Q., Wang, X.F., Du, S.Y., Jiang, T., et al. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22,1909-1935.
    Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance:evidence for an interaction with ethylene. J Exp Bot 51,1575-1584.
    Shen, X., Liu, H., Yuan, B., Li, X., Xu, C., and Wang, S. (2011). OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ 34,179-191.
    Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y, Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., et al. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443,823-826.
    Shi, H., and Zhu, J.K. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant molecular biology 50,543-550.
    Skottke, K.R., Yoon, G.M., Kieber, J.J., and DeLong, A. (2011). Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7, e1001370.
    Smith, J.J., Ververidis, P., and John, P. (1992). Characterization of the ethylene-forming enzyme partially purified from melon. Phytochemistry 31,1485-1494.
    Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. (1998). Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12,3703-3714.
    Spanu, P., Grosskopf, D.G., Felix, G., and Boller, T. (1994). The Apparent Turnover of 1-Aminocyclopropane-1-Carboxylate Synthase in Tomato Cells Is Regulated by Protein Phosphorylation and Dephosphorylation. Plant Physiol 106,529-535.
    Stepanova, A.N., Hoyt, J.M., Hamilton, A.A., and Alonso, J.M. (2005). A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17,2230-2242.
    Strader, L.C., Chen, G.L., and Bartel, B. (2010). Ethylene directs auxin to control root cell expansion. Plant J 64,874-884.
    Su, W., and Howell, S.H. (1992). A Single Genetic Locus, Ckrl, Defines Arabidopsis Mutants in which Root Growth Is Resistant to Low Concentrations of Cytokinin. Plant Physiol 99,1569-1574.
    Suttle, J.C. (1986). Cytokinin-induced ethylene biosynthesis in nonsenescing cotton leaves. Plant Physiol 82,930-935.
    Suttle, J.C., and Hultstrand, J.F. (1993). Involvement of Abscisic Acid in Ethylene-Induced Cotyledon Abscission in Cotton Seedlings. Plant Physiol 101,641-646.
    Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M.J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19,2186-2196.
    Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., and Hasezawa, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138,2337-2343.
    Tatsuki, M., and Mori, H. (2001). Phosphorylation of tomato 1-aminocyclopropane-l-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276,28051-28057.
    Trewavas, A. (1999). Le calcium, C'est la vie:calcium makes waves. Plant Physiol 120,1-6.
    Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport. Plant Cell Physiol 51,1821-1839.
    Umezawa, T., Okamoto, M., Kushiro, T., Nambara, E., Oono, Y., Seki, M., Kobayashi, M., Koshiba, T., Kamiya, Y., and Shinozaki, K. (2006). CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. The Plant journal:for cell and molecular biology 46,171-182.
    Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y, Hirayama, T., and Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106, 17588-17593.
    Van Der Straeten, D., Anuntalabhochai, S., Van Caeneghem, W., Zhou, Z., Gielen, J., and Van Montagu, M. (1997). Expression of three members of the ACC synthase gene family in deepwater rice by submergence, wounding and hormonal treatments. Plant Science 124,79-87.
    Ververidis, P., and John, P. (1991). Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30,725-727.
    Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., Leung, J., Rodriguez, P.L., Lauriere, C., and Merlot, S. (2009). Protein phosphatases 2C regulate the activation of the Snfl-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21,3170-3184.
    Vogel, J.P., Schuerman, P., Woeste, K., Brandstatter, I., and Kieber, J.J. (1998a). Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149, 417-427.
    Vogel, J.P., Woeste, K.E., Theologis, A., and Kieber, J.J. (1998b). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci U S A 95,4766-4771.
    Wagstaff, C., Chanasut, U., Harren, F.J., Laarhoven, L.J., Thomas, B., Rogers, H.J., and Stead, A.D. (2005). Ethylene and flower longevity in Alstroemeria:relationship between tepal senescence, abscission and ethylene biosynthesis. J Exp Bot 56,1007-1016.
    Wang, H., Qi, Q., Schorr, P., Cutler, A.J., Crosby, W.L., and Fowke, L.C. (1998). ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15,501-510.
    Wang, K.L., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl, S131-151.
    Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428,945-950.
    Wang, L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X., and Gong, Z. (2011). Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7, e1002172.
    Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56,909-920.
    Wen, X., Zhang, C., Ji, Y., Zhao, Q., He, W., An, F., Jiang, L., and Guo, H. (2012). Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22,1613-1616.
    White, C.N., Proebsting, W.M., Hedden, P., and Rivin, C.J. (2000). Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122,1081-1088.
    White, M.F., Vasquez, J., Yang, S.F., and Kirsch, J.F. (1994). Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli:kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci U S A 91,12428-12432.
    Woeste, K.E., Vogel, J.P., and Kieber, J.J. (1999). Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105,478-484.
    Woodson, W.R., Park, K.Y., Drory, A., Larsen, P.B., and Wang, H. (1992). Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol 99,526-532.
    Xing, Y., Jia, W., and Zhang, J. (2008). AtMKKl mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54,440-451.
    Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A. (2003). Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278,49102-49112.
    Yoo, B.C., and Harmon, A.C. (1996). Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 35,12029-12037.
    Yoshida, H., Nagata, M., Saito, K., Wang, K.L., and Ecker, J.R. (2005). Arabidopsis ETO1 specifically interacts with and negatively regulates type 21-aminocyclopropane-l-carboxylate synthases. BMC Plant Biol 5,14.
    Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J.R., and Shinozaki, K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43,1473-1483.
    Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006a). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281, 5310-5318.
    Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T. (2006b). ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140,115-126.
    Yu, Y.B., and Yang, S.F. (1980). Biosynthesis of wound ethylene. Plant Physiol 66,281-285.
    Zhang, H., Han, W, De Smet, I., Talboys, P., Loya, R., Hassan, A., Rong, H., Jurgens, G., Paul Knox, J., and Wang, M.H. (2010). ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64, 764-774.
    Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., Yi, C., and Guo, H. (2014). Jasmonate-Activated MYC2 Represses ETHYLENE INSENSITIVE3 Activity to Antagonize Ethylene-Promoted Apical Hook Formation in Arabidopsis. Plant Cell.
    Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R., Zhang, X.F., Wang, X.F., and Zhang, D.P. (2011). The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192,61-73.
    Zheng, Z., Xu, X., Crosley, R.A., Greenwalt, S.A., Sun, Y., Blakeslee, B., Wang, L., Ni, W., Sopko, M.S., Yao, C., et al. (2010). The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153,99-113.
    Zhu, J., Gong, Z., Zhang, C., Song, C.P., Damsz, B., Inan, G., Koiwa, H., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2002). OSM1/SYP61:a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant cell 14,3009-3028.
    Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., Fan, R.C., Shang, Y., Du, S.Y., Wang, X.F., Wu, F.Q., et al. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19,3019-3036.
    Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., et al. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108,12539-12544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700