用户名: 密码: 验证码:
F81细胞感染水貂肠炎病毒前后microRNA表达谱分析及相关功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒与宿主的相互作用一直以来就是病毒学家们高度关注的重要科学问题。目前,虽然二者互作的一些机制得到阐明,但microRNA (miRNA)参与的相互作用网络还亟待研究和发现。MiRNA是一类内源的长度约为18-23个核苷酸的单链非编码小分子RNA,通过抑制靶基因mRNA的翻译过程或者降解靶基因的mRNA分子,介导转录后基因表达的调控。MiRNA不但可以参与调控细胞增殖、分化、造血等一系列的生理过程,还可以参与调控病毒与宿主细胞的相互作用。目前,在泡沫病毒、丙型肝炎病毒、猪繁殖和呼吸综合征病毒及流感病毒中均存在宿主miRNA调节病毒感染的现象。
     为了便于进行miRNA参与病毒感染过程相应的探索,我们选取了一种简单的细小病毒—水貂肠炎病毒(Mink enteritis virus, MEV)作为模型进行研究。MEV是细小病毒科的一种,普遍认为是猫细小病毒的一个变种。MEV有强大的抵抗力并且传播速度很快,能够造成养貂业的巨大损失。MEV是一种单链DNA病毒,其基因组主要包含两个ORF,一个ORF编码功能性非结构蛋白(None-structural protein, NS),另一个ORF主要编码衣壳蛋白。
     为了探究miRNA在MEV感染过程中的作用,本文利用高通量测序技术和生物信息学手段对F81细胞感染MEV前后miRNA表达谱进行分析研究,从而筛选出可能参与到MEV感染过程中的miRNA,最终通过实验对miRNA的功能进行鉴定。
     我们首先得到F81细胞系感染MEV前后的两个小RNA数据库。经过比对发现,两个数据库有196个成熟体miRNA和97个miRNA*与哺乳动物的已知miRNA是同源的,这些miRNA分属于152个miRNA家族;在F81细胞系感染MEV前后的两个数据库中,分别预测得到384和398个新的miRNA前体。采用实时荧光定量PCR (qPCR)的方法对F81细胞感染MEV前后miRNA的表达差异进行了鉴定,在随机挑选的16个miRNA中,大部分miRNA的差异水平(12/16)与高通量测序结果是相符的。利用miRNA靶标预测软件从数据库中筛选出可能直接作用于MEV mRNA的8个miRNA和可能作用于MEV受体-转铁蛋白受体(Transferrin receptor,TfR)的6个miRNA,这些miRNA可能与MEV感染相关。
     在预测得到的8个有可能直接作用于MEV mRNA的miRNA中,高通量测序结果显示miR-181b的表达量较高,并且预测得到miR-181b的假定靶标为MEV的NS1mRNA,该靶标序列在不同的细小病毒中是高度保守的。分别转染合成的miRNA模拟物mimics和抑制剂inhibitors,测定不同感染时间MEV病毒滴度及其基因组DNA水平,并采用流式细胞术对细胞感染MEV的水平进行测定,然后对MEV造成细胞病变水平及MEV间接免疫荧光进行观察,结果证实miR-181b mimics能够抑制病毒增殖并且miR-181b inhibitors在病毒感染后期能够促进病毒增殖。双荧光素酶报告基因检测实验证明了miR-181b假定靶标的真实性。MiR-181b通过靶向NS1mRNA编码区导致NS1蛋白的翻译抑制。通过检测miR-181b对MEV假定靶标突变株的作用,验证了miR-181b是通过靶向预测靶标抑制MEV增殖的。Argonaute2(Ago2)蛋白的免疫共沉淀实验证明miR-181b能够在RNA诱导沉默复合物(RNA-induced silencing complex, RISC)中与NS1mRNA相互结合。qPCR结果显示MEV感染也会导致宿主F81细胞miRNA表达量发生变化,miR-181b随MEV感染时间的延长其表达量逐渐降低。这些表明F81细胞的miR-181b能够通过靶向MEV NS1mRNA的编码区抑制NS1表达,从而抑制MEV的增殖。
     MEV感染需要转铁蛋白受体TfR介导。通过同源比对,克隆出了猫的TfR mRNA3'非翻译区Untranslated region, UTR),并预测得到6个miRNA可能作用于其上。qPCR和western blot实验鉴定出miR-320a和miR-140能够抑制TfR的表达,流式细胞术测定实验也证明2个miRNA能够降低细胞TfR的表达。MEV感染能够导致2个niRNA表达逐渐上调,而TfR随之逐渐下调。双荧光素酶报告基因检测实验证明了2个miRNA假定靶标的真实性。Ago2蛋白的免疫共沉淀实验证明2个miRNA能够在RISC中与TfR mRNA相互结合。通过对不同病毒感染时间病毒基因组DNA的定量,验证了2个miRNA能够通过阻止病毒进入宿主细胞而控制MEV感染。共转染2个miRNA后对TfR表达水平及病毒基因组DNA水平测定,结果发现二者对TfR表达及MEV感染细胞能起到协同抑制作用。这些结果表明F81细胞的miR-320a和miR-140能够靶向MEV受体TfR mRNA的3'UTR区抑制TfR的表达,从而减少MEV侵入细胞。
     本研究构建了F81细胞感染MEV前后的miRNA数据库;并证实miR-181b能够通过抑制MEV NS1的表达抑制病毒增殖;而miR-320a和miR-140又能够通过抑制MEV受体TfR的表达控制MEV的感染。上述研究结果在miRNA层面上进一步阐明了MEV感染机制,为防治MEV提供了新的思路。
Interaction between virus and host, as a scientific issue, has caused great attention of virologist. Currently, although some mechanisms about their interaction have been elucidated, little is known about a number of interaction networks involving microRNA (miRNA). MiRNAs are endogenous small noncoding RNAs of length18-23nucleotides (nt), which mediate post-transcriptional regulation of target genes through mRNA degradation or translational repression and play critical roles in many biological processes including cell proliferation, differentiation and haematopoiesis. Recent studies have also noted the role of miRNAs as modulators in host-pathogen interaction networks, such as foaming virus, hepatitis C virus, porcine reproductive and respiratory syndrome virus and influenza virus.
     Therefore, a simple parvovirus-mink enteritis virus (MEV) was selected as a model to explore the interaction networks. MEV, a subspecies of the feline parvovirus (FPV) and belonging to the family Parvoviridae, is one of the most important viral pathogens in the mink industry, which causes a highly infectious acute disease and has a high rate of morbidity and mortality in mink, resulting in huge economic losses in the worldwide. MEV is a single-stranded negative sense DNA virus with a genome comprised mainly of2ORFs, one coding for none-structural protein (NS) and another coding for capsid protein.
     To study the involvement of miRNAs in the MEV infection process, we used Illumina's ultra high throughput approach to sequencing miRNA libraries from the feline kidney (F81) cell line before and after infection with MEV and identified miRNAs involved in MEV infection.
     Using this bioinformatics approach we identified196known mammalian miRNA orthologs belonging to152miRNA families in F81cells. Additionally,97miRNA*s of these miRNAs were also detected. Besides known miRNAs,384and398novel miRNA precursor candidates were identified from uninfected F81cells and MEV-infected cells respectively that have not been reported in other mammals. The majority (12of16) of randomly selected miRNAs expression profiles by qRT-PCR were consistent with those by deep sequencing. After target prediction,8miRNAs appeared to target the MEV mRNA coding region; and6to target the3'untranslated region (UTR) of MEV-specific receptor transferring receptor (TfR) mRNAs.
     Among the8miRNAs predicted to target MEV mRNA coding region, miR-181b showing comparatively higher expression level was selected. The potential target of miR-181b in NS1mRNA was highly conserved in different parvoviruses. After transfection with synthetic miRNA mimics and inhibitors, detection the level of viral titer, viral genomic DNA, the quantity of infected cells, cytopathic effect and immunostaining were carried out. The results showed that miR-181b mimics inhibited MEV production and miR-181b inhibitors increased it in the late virus infection. Dual-luciferase reporter assay validated the authenticity of miR-181b potential target. Western blot assay of NS1protein showed the inhibiton of miR-181b in NS1expression. Through detection the effect of miR-181b on the potential target mutated MEV, we confirmed that miR-181b inhibited MEV production through the potential target. Argonaute2(Ago2) co-immunoprecipitation demonstrated that miR-181b bound NS1mRNA in RNA-induced silencing complex (RISC). In the meantime, MEV infection led to the change of miRNA expression including miR-181b. Experiment results presented here show that cellular miR-181b in F81cells inhibits replication of MEV by targeting its NS1mRNA coding region resulting in NS1translational repression.
     MEV infection is dependent on induction of transferrin receptor (TfR). By homologous alignment, TfR mRNA3'UTR was cloned and sequenced. From the6predicted miRNAs, qPCR and western blot assay revealed that miR-320a and miR-140inhibited TfR expression and flow cytometric assay also verified the results. MEV infection led to gradually increase of the2miRNAs and decrease of TfR. Dual-luciferase reporter assay validated the authenticity of the2miRNA potential targets. Ago2co-immunoprecipitation demonstrated that the2miRNAs bound TfR mRNA in RISC. Quantification of MEV genomic DNA level at the indicated times validated the inhibition of the2miRNAs in MEV infection. Additionally, the2miRNAs played the inhibiton roles on TfR and MEV in a synergistic manner. Experiment results also show that miR-320a and miR-140inhibit MEV entry into F81cells by down-regulating its receptor TfR through targeting the3'UTR of TfR mRNA.
     This is the first time to construct the miRNA base of F81cells before and after MEV infection and to describe that cellular miR-181b inhibits replication of MEV by targeting its NS1mRNA coding region resulting in NS1translational repression; and miR-320a and miR-140inhibit MEV entry into F81cells by down-regulating its receptor TfR through targeting the3'UTR of TfR mRNA. These results provide further insight into the mechanisms of viral infection, and may be useful in development of naturally-occurring miRNAs antiviral strategies.
引文
Ahluwalia, J.K., Khan, S.Z., Soni, K., Rawat, P., Gupta, A., Hariharan, M., Scaria, V., Lalwani, M., Pillai, B., Mitra, D., et al. (2008). Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5,117.
    Ahn, H.W., Morin, R.D., Zhao, H., Harris, R.A., Coarfa, C., Chen, Z.J., Milosavljevic, A., Marra, M.A., and Rajkovic, A. (2010). MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol. Hum. Reprod.16,463-471.
    Aisen, P. (2004). Transferrin receptor 1. Int. J. Biochem. Cell B.36,2137-2143.
    Ambros, V. (2004). The functions of animal microRNAs. Nature 431,350-355.
    Amen, M.A., and Griffiths, A. (2011). Identification and expression analysis of Herpes B virus-encoded small RNAs. J.Virol.85,7296-7311.
    Anouja, F., Wattiez, R., Mousset, S., and CailletFauquet, P. (1997). The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J. Virol.71,4671-4678.
    Araujo, F., Koch, M.C., Monteiro, F., and Araujo, A.R. (1999). Parvovirus B19 infection. Acta medica port.12,195-202.
    Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Dev. Cell 5,337-350.
    Astell, C.R., Gardiner, E.M., and Tattersall, P. (1986). DNA-sequence of the lymphotropic variant of minute virus of mice, MVM (i), and comparison with the DNA-sequence of the fibrotropic prototype strain. J. Virol.57,656-669.
    Baldauf, A.Q., Willwand, K., Mumtsidu, E., Nuesch, J.P.F., and Rommelaere, J. (1997). Specific initiation of replication at the right-end telomere of the closed species of minute virus of mice replicative-form DNA. J. Virol.71,971-980.
    Barker, I.K., Povey, R.C., and Voigt, D.R. (1983). Response of mink, skunk, red fox and raccoon to inoculation with mink virus enteritis, feline panleukopenia and canine parvovirus and prevalence of antibody to parvovirus in wild carnivores in Ontario. Canadian J. Com. Med.47,188-197.
    Bartel, D.P. (2004). MicroRNAs:Genomics, biogenesis, mechanism, and function. Cell 116,281-297.
    Bartel, D.P. (2009). MicroRNAs:Target recognition and regulatory functions. Cell 136,215-233.
    Barth, S., Pfuhl, T., Mamiani, A., Ehses, C., Roemer, K., Kremmer, E., Jaker, C., Hock, J., Meister, G, and Grasser, F.A. (2008). Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res.36,666-675.
    Bazzini, A.A., Lee, M.T., and Giraldez, A.J. (2012). Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish. Science 336,233-237.
    Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456,53-59.
    Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C., and Hugenholtz, P. (2007). CRISPR recognition tool (CRT):A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8,209.
    Bolen, J.B., Anders, D.G, Trempy, J., and Consigli, R.A. (1981). Differences in the sub-populations of the structural proteins of polyoma virions and capsids-biological functions of the multiple vp1 species. J. Virol.37,80-91.
    Bonnet, E., Wuyts, J., Rouze, P., and Van de Peer, Y. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20,2911-2917.
    Bouillan.A, and Hanson, R.P. (1965). Epizootiology of mink enteritis.i. stability of virus in feces exposed to natural environmental factors. Canadian J. Com. Med. Vet. Sci.29,125-&.
    Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113,25-36.
    Brown, B.D., Gentner, B., Cantore, A., Colleoni, S., Amendola, M., Zingale, A., Baccarini, A., Lazzari, G, Galli, C., and Naldini, L. (2007). Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol.25, 1457-1467.
    Cai, X.Z., Lu, S.H., Zhang, Z.H., Gonzalez, C.M., Damania, B., and Cullen, B.R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102,5570-5575.
    Cater, J.E., and Pintel, D.J. (1992). The small nonstructural protein-NS2 of the autonomous parvovirus minute virus of mice is required for virus growth in murine cells. J. Gen. Virol.73,1839-1843.
    Caudy, A.A., Myers, M., Hannon, GJ., and Hammond, S.M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16,2491-2496.
    Cerutti, L., Mian, N., and Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins:The novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci.25, 481-482.
    Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147,358-369.
    Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C., Mason, W.S., Moloshok, T., Bort, R., et al. (2004). MiR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 7,106-113.
    Chen, C.F., Ridzon, D.A., Broomer, A.J., Zhou, Z.H., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res.33, e179.
    Cheng, Y., Zak, O., Alsen, P., Harrison, S.C., and Walz, T. (2004). Structure of the human transferrin receptor-transferrin complex. Cell 116,565-576.
    Chitambar, C.R., Massey, E.J., and Seligman, P.A. (1983). Regulation of transferrin receptor expression on human-leukemic cells during proliferation and induction of differentiation-effects of gallium and dimethylsulfoxide. J. Clin. Invest.72,1314-1325.
    Christensen, J., Alexandersen, S., Bloch, B., Aasted, B., and Uttenthal, A. (1994). Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system-a recombinant vaccine for mink enteritis parvovirus in mink. J. Gen. Virol.75,149-155.
    Christensen, J., Cotmore, S.F., and Tattersall, P. (1997a). A novel cellular site-specific DNA-Binding protein cooperates with the viral NS1 polypeptide to initiate parvovirus DNA replication. J. Virol. 71,1405-1416.
    Christensen, J., Cotmore, S.F., and Tattersall, P. (1997b). Parvovirus initiation factor PIF:A novel human DNA-binding factor which coordinately recognizes two ACGT motifs. J. Virol.71, 5733-5741.
    Christensen, J., and Tattersall, P. (2002). Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J. Virol.76,6518-6531.
    Clemens, D.L., and Carlson, J.O. (1989). Regulated expression of the feline panleukopenia virus-p38 promoter on extrachromosomal FPV EBV chimeric plasmids. J. Virol.63,2737-2745.
    Corbau, R., Salome, N., Rommelaere, J., and Nuesch, J.P.F. (1999). Phosphorylation of the viral nonstructural protein NS1 during MVMp infection of A9 cells. Virology 259,402-415.
    Cotmore, S.F., Christensen, J., Nuesch, J.P.F., and Tattersall, P. (1995). The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA-sequences containing the motif ACCA (2-3). J.Virol.69,1652-1660.
    Cotmore, S.F., Dabramo, A.M., Carbonell, L.F., Bratton, J., and Tattersall, P. (1997). The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology 231, 267-280.
    Cotmore, S.F., Gottlieb, R.L., and Tattersall, P. (2007). Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J. Virol.81,13015-13027.
    Cotmore, S.F., and Tattersall, P. (1989). A genome-linked copy of the NS-1 polypeptide is located on the outside of infectious parvovirus particles. J. Virol.63,3902-3911.
    Cotmore, S.F., and Tattersall, P. (1994). An asymmetric nucleotide in the parvoviral 3'hairpin directs segregation of a single active origin of DNA-replication. Embo J.13,4145-4152.
    Cotmore, S.F., and Tattersall, P. (2005). Genome packaging sense is controlled by the efficiency of the nick site in the right-end replication origin of parvoviruses minute virus of mice and LuIII. J. Virol. 79,2287-2300.
    Cziepluch, C, Kordes, E., Poirey, R., Grewenig, A., Rommelaere, J., and Jauniaux, J.C. (1998). Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J. Virol.72,4149-4156.
    Davidson, B.L., and McCray, P.B. (2011). Current prospects for RNA interference-based therapies. Nat. Rev. Genet.12,329-340.
    Deleu, L., Pujol, A., Faisst, S., and Rommelaere, J. (1999). Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection. J. Virol.73,3877-3885.
    Djuranovic, S., Nahvi, A., and Green, R. (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336,237-240.
    Doench, J.G., Petersen, C.P., and Sharp, P.A. (2003). siRNAs can function as miRNAs. Genes. Dev.17, 438-442.
    Doerig, C., Hirt, B., Antonietti, J.P., and Beard, P. (1990). Nonstructural protein of parvoviruses-B19 and minute virus of mice controls transcription. J. Virol.64,387-396.
    Duechting, A., Tschope, C., Kaiser, H., Lamkemeyer, T., Tanaka, N., Aberle, S., Lang, F., Torresi, J., Kandolf, R., and Bock, C.T. (2008). Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J. Virol.82, 7942-7952.
    Eichwald, V, Daeffler, L., Klein, M., Rommelaere, J., and Salome, N. (2002). The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J. Virol.76,10307-10319.
    Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes. Dev.15,188-200.
    Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. (2004). MicroRNA targets in Drosophila. Genome Biol.5, R1.
    Faisst, S., Perros, M., Deleu, L., Spruyt, N., and Rommelaere, J. (1994). Mapping of upstream regulatory elements in the P4 promoter of parvovirus minute virus of mice. Virology 202,466-470.
    Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol.26, 407-415.
    Fu, Y., Ishii, K.K., Munakata, Y., Saitoh, T., Kaku, M., and Sasaki, T. (2002). Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J. Virol.76,5395-5403.
    Gallinella, G, Venturoli, S., Manaresi, E., Musiani, M., and Zerbini, M. (2003). B19 virus genome diversity:Epidemiological and clinical correlations. J. Clin. Virol.28,1-13.
    Garcea, R.L., Ballmerhofer, K., and Benjamin, T.L. (1985). Virion assembly defect of polyomavirus hr-t mutants-underphosphorylation of major capsid protein-VP1 before viral-DNA encapsidation. J. Virol.54,311-316.
    Gatter, K.C., Brown, G, Trowbridge, I.S., Woolston, R.E., and Mason, D.Y. (1983). Transferrin receptors in human-tissues-their distribution and possible clinical relevance. J. Clin. Pathol.36, 539-545.
    Glazov, E.A., Cottee, P.A., Barris, W.C., Moore, R.J., Dalrymple, B.P., and Tizard, M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res.18,957-964.
    Govindasamy, L., Hueffer, K., Parrish, C.R., and Agbandje-McKenna, M. (2003). Structures of host range-controlling regions of the capsids of canine and feline parvoviruses and mutants. J. Virol.77, 12211-12221.
    Grey, F., Tirabassi, R., Meyers, H., Wu, GM., McWeeney, S., Hook, L., and Nelson, J.A. (2010). A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs. PLoS. Pathog.6, e1000967.
    Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404,293-296.
    Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R., and Hannon, GJ. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293,1146-1150.
    Hanson, N.D., and Rhode, S.L. (1991). Parvovirus NS1 stimulates P4 expression by interaction with the terminal repeats and through DNA amplification. J. Virol.65,4325-4333.
    Hauswirth, W.W. (1984). Autonomous parvovirus DNA structure and replication. In The Parvoviruses (New York:Plenum Press), pp.129-152.
    Hofacker, I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res.31,3429-3431.
    Horiuchi, M., Mochizuki, M., Ishiguro, N., Nagasawa, H., and Shinagawa, M. (1997). Epitope mapping of a monoclonal antibody specific to feline panleukopenia virus and mink enteritis virus. J. Vet. Med. Sci.59,133-136.
    Horiuchi, M., Yamaguchi, Y., Gojobori, T., Mochizuki, M., Nagasawa, H., Toyoda, Y., Ishiguro, N., and Shinagawa, M. (1998). Differences in the evolutionary pattern of feline panleukopenia virus and canine parvovirus. Virology 249,440-452.
    Hristov, G, Kramer, M., Li, J.W., El-Andaloussi, N., Mora, R., Daeffler, L., Zentgraf, H., Rommelaere, J., and Marchini, A. (2010). Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J. Virol.84,5909-5922.
    Huang, H.Y., Chien, C.H., Jen, K.H., and Huang, H.D. (2006). RegRNA:An integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res.34, W429-W434.
    Huang, S.L., Wu, S.Q., Ding, J., Lin, J., Wei, L., Gu, J.R., and He, X.H. (2010). MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions. Nucleic Acids Res.38,7211-7218.
    Hueffer, K., Palermo, L.M., and Parrish, C.R. (2004). Parvovirus infection of cells by using variants of the feline transferrin receptor altering clathrin-mediated endocytosis, membrane domain localization, and capsid-binding domains. J. Virol.78,5601-5611.
    Hueffer, K., and Parrish, C.R. (2003). Parvovirus host range, cell tropism and evolution. Curr. Opin. Microbiol.6,392-398.
    Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297,2056-2060.
    Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L., and Struhl, K. (2010). STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer. Mol. Cell 39,493-506.
    Ishizuka, A., Siomi, M.C., and Siomi, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev.16,2497-2508.
    Jindal, H.K., Yong, C.B., Wilson, GM., Tam, P., and Astell, C.R. (1994). Mutations in the NTP-binding motif of minute virus of mice (MVM) NS-1 protein uncouple atpase and DNA helicase functions. J. Biol. Chem.269,3283-3289.
    Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14,787-799.
    Kariatsumari, T., Horiuchi, M., Hama, E., Yaguchi, K., Ishigurio, N., Goto, H., and Shinagawa, M. (1991). Construction and nucleotide-sequence analysis of an infectious DNA clone of the autonomous parvovirus, mink enteritis virus. J. Gen. Virol.72,867-875.
    Karreth, F.A., Tay, Y, Perna, D., Ala, U., Tan, S.M., Rust, A.G, DeNicola, G., Webster, K.A., Weiss, D., Perez-Mancera, P.A., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147,382-395.
    Karsten, P.R.C.H. (2006). A rolling-hairpin strategy:Basic mechanisms of DNA replication in the parvoviruses. In Parvoviruses, S.F.C. Jonathan R Kerr, Marshall E Bloom, R Michael Linden and Colin R Parrish, ed. (Great Britain:Oxford University Press), pp.74.
    Karsten, P.R.C.H. (2006). A rolling-hairpin strategy:Basic mechanisms of DNA replication in the parvoviruses. In Parvoviruses, S.F.C. Jonathan R Kerr, Marshall E Bloom, R Michael Linden and Colin R Parrish, ed. (Great Britain:Oxford University Press), pp.176.
    Karsten, P.R.C.H. (2006). Parvovirus RNA processing strategies. In Parvoviruses, S.F.C. Jonathan R Kerr, Marshall E Bloom, R Michael Linden and Colin R Parrish, ed. (Great Britain:Oxford University Press), pp.254.
    Karsten, P.R.C.H. (2006). Parvovirus host range, cell tropism and evolution-studies of canine and feline parvoviruses, minute virus of mice, porcine parvovirus, and Aleutian mink disease virus. In Parvoviruses, S.F.C. Jonathan R Kerr, Marshall E Bloom, R Michael Linden and Colin R Parrish, ed. (Great Britain:Oxford University Press), pp.344.
    Karsten, P.R.C.H. (2006). Parvovirus host range, cell tropism and evolution-studies of canine and feline parvoviruses, minute virus of mice, porcine parvovirus, and Aleutian mink disease virus. In Parvoviruses, S.F.C. Jonathan R Kerr, Marshall E Bloom, R Michael Linden and Colin R Parrish, ed. (Great Britain:Oxford University Press), pp.345.
    Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and rniRNAs exhibit strand bias. Cell 115,209-216.
    Kilham, L., and Olivier, L.J. (1959). A latent virus of rats isolated in tissue culture. Virology 7,428-437.
    Kim, Y.N., and Ahn, J.K. (1996). Analysis of the MVM P38 promoter distal DNA cis-elements responsible for transactivation by nonstructural proteins. J. Biochem. Mol. Biol.29,468-473.
    Krauskopf, A., and Aloni, Y. (1994). A cellular repressor regulates transcription initiation from the minute virus of mice P38 promoter. Nucleic Acids Res.22,828-834.
    Krauskopf, A., Resnekov, O., and Aloni, Y. (1990). A cis downstream element participates in regulation of invitro transcription initiation from the P38 promoter of minute virus of mice. J. Virol.64, 354-360.
    Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nature Genet.37,495-500.
    Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11,597-610.
    Kruger, J., and Rehmsmeier, M. (2006). RNAhybrid:MicroRNA target prediction easy, fast and flexible. Nucleic Acids Res.34, W451-W454.
    Kuersten, S., and Goodwin, E.B. (2003). The power of the 3'UTR:Translational control and development. Nat. Rev. Genet.4,626-637.
    Kwok, J.C., and Richardson, D.R. (2002). The iron metabolism of neoplastic cells:Alterations that facilitate proliferation? Crit. Rev. Oncol. Hemat.42,65-78.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294,853-858.
    Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003). New microRNAs from mouse and human. RNA.9,175-179.
    Lai, E.C. (2002). MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet.30,363-364.
    Lai, E.C., Tomancak, P., Williams, R.W., and Rubin, G.M. (2003). Computational identification of Drosophila microRNA genes. Genome Biol.4, R42.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129,1401-1414.
    Langeveld, J.P.M., Kamstrup, S., Uttenthal, A., Strandbygaard, B., Vela, C., Dalsgaard, K., Beekman, N., Meloen, R.H., and Casal, J.I. (1995). Full protection in mink against mink enteritis virus with new-generation canine parvovirus vaccines based on synthetic peptide or recombinant protein. Vaccine 13,1033-1037.
    Larrick, J.W., and Cresswell, P. (1979). Modulation of cell-surface iron transferrin receptors by cellular density and state of activation. J. Mol. Struct.11,579-586.
    Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294,858-862.
    Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib, A., and Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308,557-560.
    Lee, I., Ajay, S.S., Yook, J.I., Kim, H.S., Hong, S.H., Kim, N.H., Dhanasekaran, S.M., Chinnaiyan, A.M., and Athey, B.D. (2009). New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. Genome Res.19,1175-1183.
    Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294,862-864.
    Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The c-elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75,843-854.
    Lee, Y., Ahn, C., Han, J.J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature 425,415-419.
    Lee, Y, Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation:Stepwise processing and subcellular localization. Embo J.21,4663-4670.
    Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115,787-798.
    Li, B.J., Tang, Q.Q., Cheng, D., Qin, C., Xie, F.Y., Wei, Q., Xu, J., Liu, Y.J., Zheng, B.J., Woodle, M.C., et al. (2005). Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in rhesus macaque. Nat. Med.11,944-951.
    Li, L., Cotmore, S.F., and Tattersall, P. (2012). Maintenance of the flip sequence orientation of the ears in the parvoviral left-end hairpin is a nonessential consequence of the critical asymmetry in the hairpin stem. J. Virol.86,12187-12197.
    Li, L., Cotmore, S.F., and Tattersall, P. (2013). Parvoviral left-end hairpin ears ase essential during infection for establishing a functional intranuclear transcription template and for efficient progeny genome encapsidation. J. Virol.87,10501-10514.
    Li, R.Q., Li, Y.R., Kristiansen, K., and Wang, J. (2008). SOAP:Short oligonucleotide alignment program. Bioinformatics 24,713-714.
    Li, X., and Rhode, S.L. (1991). Nonstructural protein NS2 of parvovirus H-1 is required for efficient viral protein-synthesis and virus production in rat-cells in vivo and in vitro. Virology 184,117-130.
    Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., and Bartel, D.P. (2003a). Vertebrate microRNA genes. Science 299,1540-1540.
    Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., and Bartel, D.P. (2003b). The microRNAs of Caenorhabditis elegans. Genes. Dev.17,991-1008.
    Lin, G, and Denecke, B. (2013). Profiling pre-microRNA and mature microRNA expressions using a single microarray and avoiding separate sample preparation. Microarrays 2,24-33.
    Lin, S.Y., Johnson, S.M., Abraham, M., Vella, M.C., Pasquinelli, A., Gamberi, C., Gottlieb, E., and Slack, F.J. (2003). The C-elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell 4,639-650.
    Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute2 PAZ domain. Nature 426,465-469.
    Liu, C.G., Calin, G.A., Volinia, S., and Croce, C.M. (2008). MicroRNA expression profiling using microarrays. Nat. Protoc.3,563-578.
    Lochelt, M., Delius, H., and Kaaden, O.R. (1989). A novel replicative form DNA of aleutian disease virus-the covalently closed linear DNA of the parvoviruses. J. Gen. Virol.70,1105-1116.
    Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J., and Pallen, M.J. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol.30,562-562.
    Lorson, C., Burger, L.R., Mouw, M., and Pintel, D.J. (1996). Efficient transactivation of the minute virus of mice P38 promoter requires upstream binding of NS1. J. Virol.70,834-842.
    Lorson, C., and Pintel, D.J. (1997). Characterization of the minute virus of mice P38 core promoter elements. J. Virol.71,6568-6575.
    Lui, W.O., Pourmand, N., Patterson, B.K., and Fire, A. (2007). Patterns of known and novel small RNAs in human cervical cancer. Cancer Res.67,6031-6043.
    Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303,95-98.
    Lung, R.W.M., Tong, J.H.M., Sung, Y.M., Leung, P.S., Ng, D.C.H., Chau, S.L., Chan, A.W.H., Ng, E.K.O., Lo, K.W., and To, K.F. (2009). Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 11,1174-U89.
    Lytle, J.R., Yario, T.A., and Steitz, J.A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc. Natl. Acad. Sci. USA 104, 9667-9672.
    Macpherson, L.W. (1956). Feline enteritis virus-its transmission to mink under natural and experimental conditions. Canadian J. Comp. Med. Vet. Sci.20,197-202.
    Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z.T., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437,376-380.
    Maroto, B., Ramirez, J.C., and Almendral, J.M. (2000). Phosphorylation status of the parvovirus minute virus of mice particle:Mapping and biological relevance of the major phosphorylation sites. J. Virol.74,10892-10902.
    Mi, S.J., Cai, T., Hu, Y.G, Chen, Y, Hodges, E., Ni, F.R., Wu, L., Li, S., Zhou, H., Long, C.Z., et al. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'terminal nucleotide. Cell 133,116-127.
    Miller, C.L., and Pintel, D.J. (2002). Interaction between parvovirus NS2 protein and nuclear export factor Crml is important for viral egress from the nucleus of murine cells. J. Virol.76,3257-3266.
    Moffatt, S., Yaegashi, N., Tada, K., Tanaka, N., and Sugamura, K. (1998). Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J. Virol.72,3018-3028.
    Mohan Raj, J., Mukhopadhyay, H.K., Thanislass, J., Antony, P.X., and Pillai, R.M. (2010). Isolation, molecular characterization and phylogenetic analysis of canine parvovirus. Infect. Genet. Evol.10, 1237-1241.
    Morita, E., Nakashima, A., Asao, H., Sato, H., and Sugamura, K. (2003). Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G(1) phase. J. Virol.77,2915-2921.
    Motsch, N., Pfuhl, T., Mrazek, J., Barth, S., and Grasser, F.A. (2007). Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol.4,131-137.
    Myers, W.L., Alberts, J.D., and Brandly, C.R. (1959). Certain characteristics of the virus of infectious enteritis of mink and observations on pathogenesis of the disease. Preliminary report. Canadian J. Comp. Med. Vet. Sci.23,282-287.
    Naeger, L.K., Cater, J., and Pintel, D.J. (1990). The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA-replication and infectious virus production in a cell-type-specific manner. J. Virol.64,6166-6175.
    Neckers, L.M., and Trepel, J.B. (1986). Transferrin receptor expression and the control of cell-growth. Cancer Invest.4,461-470.
    Niskanen, E.A., Ihalainen, T.O., Kalliolinna, O., Hakkinen, M.M., and Vihinen-Ranta, M. (2010). Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1. J. Virol.84,5391-5405.
    Niskanen, E.A., Kalliolinna, O., Ihalainen, T.O., Hakkinen, M., and Vihinen-Ranta, M. (2013). Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J. Virol.87,11762-11774.
    Nuesch, J.P.F., and Rommelaere, J. (2006). NS1 interaction with CKII alpha:Novel protein complex mediating parvovirus-induced cytotoxicity. J. Virol.80,4729-4739.
    Nuesch, J.P.F., and Rommelaere, J. (2007). A viral adaptor protein modulating casein kinase Ⅱ activity induces cytopathic effects in permissive cells. Proc. Natl. Acad. Sci. USA 104,12482-12487.
    Nykanen, A., Haley, B., and Zamore, P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107,309-321.
    Ohler, U., Yekta, S., Lim, L.P., Bartel, D.P., and Burge, C.B. (2004). Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA.10, 1309-1322.
    Olsen, P.H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216,671-680.
    Op De Beeck, A., and Caillet-Fauquet, P. (1997). Viruses and the cell cycle. Progress in cell cycle research 3,1-19.
    Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008). MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30,460-471.
    Ouyang, Y.B., Lu, Y., Yue, S.B., and Giffard, R.G (2012). miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12, 213-219.
    Paglino, J., Burnett, E., and Tattersall, P. (2007). Exploring the contribution of distal P4 promoter elements to the oncoselectivity of Minute Virus of Mice. Virology 361,174-184.
    Palermo, L.A., Hueffer, K., and Parrish, C.R. (2003). Residues in the apical domain of the feline and canine transferrin receptors control host-specific binding and cell infection of canine and feline parvoviruses. J. Virol.77,8915-8923.
    Palliser, D., Chowdhury, D., Wang, Q.Y., Lee, S.J., Bronson, R.T., Knipe, D.M., and Lieberman, J. (2006). An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439,89-94.
    Park, G.S., Best, S.M., and Bloom, M.E. (2005). Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology 340,1-9.
    Parker, J.S.L., Murphy, W.J., Wang, D., O'Brien, S.J., and Parrish, C.R. (2001). Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol. 75,3896-3902.
    Parker, J.S.L., and Parrish, C.R. (1997). Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid. J. Virol.71,9214-9222.
    Parrish, C.R. (1995). Pathogenesis of feline panleukopenia virus and canine parvovirus. Baillieres Clin. Haematol. S,57-71.
    Parrish, C.R., Carmichael, L.E., and Antczak, D.F. (1982). Antigenic relationships between canine parvovirus type-2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal-antibodies. Arch. Virol.72,267-278.
    Parrish, C.R., Leathers, C.W., Pearson, R., and Gorham, J.R. (1987). Comparisons of feline panleukopenia virus, canine parvovirus, raccoon parvovirus, and mink enteritis virus and their pathogenicity for mink and ferrets. Am. J. Vet. Res.48,1429-1435.
    Pedersen, I.M., Cheng, G., Wieland, S., Volinia, S., Croce, C.M., Chisari, F.V., and David, M. (2007). Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449,919-922.
    Perros, M., Spegelaere, P., Dupont, F., Vanacker, J.M., and Rommelaere, J. (1994). Cruciform structure of a DNA motif of parvovirus minute virus of mice (prototype strain) involved in the attenuation of gene-expression. J. Gen. Virol.75,2645-2653.
    Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M.C., Russo, J.J., Ju, J.Y., John, B., Enright, A.J., Marks, D., Sander, C., et al. (2004). Identification of virus-encoded microRNAs. Science 304,734-736.
    Pintel, D.J., Gersappe, A., Haut, D., and Pearson, J. (1995). Determinants that govern alternative splicing of parvovirus pre-messenger-RNAs. Semin. Virol.6,283-290.
    Pontius, J.U., Mullikin, J.C., Smith, D.R., Lindblad-Toh, K., Gnerre, S., Clamp, M., Chang, J., Stephens, R., Neelam, B., Volfovsky, N., et al. (2007). Initial sequence and comparative analysis of the cat genome. Genome Res.17,1675-1689.
    Pridham, T.J., and Wills, C.G (1959). The prevention of virus enteritis in newly weaned mink kits by the use of an homologous tissue vaccine. J. Am. Vet. Med. Assoc.135,279-282.
    Qiu, D.Y., Pan, X.P., Wilson, I.W., Li, F.L., Liu, M., Teng, W.J., and Zhang, B.H. (2009). High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 436,37-44.
    Reed, A.P., Jones, E.V., and Miller, T.J. (1988). Nucleotide-sequence and genome organization of canine parvovirus. J. Virol.62,266-276.
    Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403,901-906.
    Rhode, S.L. (1985). Trans-activation of parvovirus P38 promoter by the 76K noncapsid protein. J. Virol. 55,886-889.
    Rhode, S.L., and Richard, S.M. (1987). Characterization of the trans-activation-responsive element of the parvovirus H-1 P38 promoter. J. Virol.61,2807-2815.
    Rivera, E., Karlsson, K.A., and Bergman, R. (1987). The propagation of feline panleukopenia virus in microcarrier cell-culture and use of the inactivated virus in the protection of mink against viral-enteritis. Vet. Microbiol.13,371-381.
    Rivera, E., and Sundquist, B. (1984). A non-hemagglutinating isolate of mink enteritis virus. Vet. Microbiol.9,345-353.
    Ruiz, Z., Mihaylov, I.S., Cotmore, S.F., and Tattersall, P. (2011). Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM). Virology 410,375-384.
    Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, PP. (2011). A ceRNA hypothesis:The rosetta stone of a hidden RNA language? Cell 146,353-358.
    Sarasin-Filipowicz, M., Krol, J., Markiewicz, I., Heim, M.H., and Filipowicz, W". (2009). Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat. Med.15,31-33.
    Saxena, L., Kumar, G.R., Saxena, S., Chaturvedi, U., Sahoo, A.P., Singh, L.V., Santra, L., Palia, S.K., Desai, GS., and Tiwari, A.K. (2013). Apoptosis induced by NS1 gene of Canine Parvovirus-2 is caspase dependent and p53 independent. Virus Res.173,426-430.
    Scaria, V, Hariharan, M., Maiti, S., Pillai, B., and Brahmachari, S.K. (2006). Host-virus interaction:A new role for microRNAs. Retrovirology 3,68.
    Schnall-Levin, M., Rissland, O.S., Johnston, W.K., Perrimon, N., Bartel, D.P., and Berger, B. (2011). Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res.21,1395-1403.
    Schofield, F.W. (1949). Virus enteritis in mink. North Amer. Vet.30,651-654.
    Shackelton, L.A., Parrish, C.R., Truyen, U., and Holmes, E.C. (2005). High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc. Natl. Acad. Sci. USA 102,379-384.
    Slack, F.J., Basson, M., Liu, Z.C., Ambros, V, Horvitz, H.R., and Ruvkun, G. (2000). The lin-41 RBCC gene acts in the C-elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5,659-669.
    Smith, D.R., Quinlan, A.R., Peckham, H.E., Makowsky, K., Tao, W., Woolf, B., Shen, L., Donahue, W.F., Tusneem, N., Stromberg, M.P., et al. (2008). Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res.18,1638-1642.
    Song, J.J., Liu, J.D., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J., and Joshua-Tor, L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol.10,1026-1032.
    Song, L.P., Liu, H., Gao, S.J., Jiang, W., and Huang, W.L. (2010). Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol.84,8849-8860.
    Stark, A., Brennecke, J., Russell, R.B., and Cohen, S.M. (2003). Identification of Drosophila microRNA targets. PLoS Biol.1,397-409.
    Steinel, A., Parrish, C.R., Bloom, M.E., and Truyen, U. (2001). Parvovirus infections in wild carnivores. J. Wildlife Dis.37,594-607.
    Strozzi, F., Mazza, R., Malinverni, R., and Williams, J.L. (2009). Annotation of 390 bovine miRNA genes by sequence similarity with other species. Anim. Genet.40,125-125.
    Sumazin, P., Yang, X.R., Chiu, H.S., Chung, W.J., Iyer, A., Llobet-Navas, D., Rajbhandari, P., Bansal, M., Guarnieri, P., Silva, J., et al. (2011). An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147,370-381.
    Tang, GL., Reinhart, B.J., Bartel, D.P., and Zamore, P.D. (2003). A biochemical framework for RNA silencing in plants. Genes. Dev.17,49-63.
    Tattersall, P., and Ward, D.C. (1976). Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature 263,106-109.
    Tay, Y, Kats, L., Salmena, L., Weiss, D., Tan, S.M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147,344-357.
    Tkachev, S.E. (2000). Analysis of fragments of the mink enteritis virus VP2 gene (Novosibirsk:Institute of Cytology and Genetics).
    Tompkins, S.M., Lo, C.Y., Tumpey, T.M., and Epstein, S.L. (2004). Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA 101,8682-8686.
    Trowbridge, I.S., and Shackelford, D.A. (1986). Structure and function of transferrin receptors and their relationship to cell growth. Biochem. Soc. symp.51,117-129.
    Truyen, U., Gruenberg, A., Chang, S.F., Obermaier, B., Veijalainen, P., and Parrish, C.R. (1995). Evolution of the feline-subgroup parvoviruses and the control of canine host-range in-vivo. J. Virol. 69,4702-4710.
    Tsao, J., Chapman, M.S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Smith, T.J., Rossmann, M.G., Compans, R.W., et al. (1991). The 3-dimensional structure of canine parvovirus and its functional implications. Science 251,1456-1464.
    Tullis, G.E., Burger, L.R., and Pintel, D.J. (1993). The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded-DNA but is required for infectivity. J. Virol.67,131-141.
    Vacek, I., Lawson, K.F., and Gregg, W.A.M. (1977). Attenuated mink enteritis virus and its use in a trivalent vaccine-studies on safety and antigenicity. Can. Vet. J.18,301-308.
    Varallyay, E., Burgyan, J., and Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc.3,190-196.
    Wang, B., Hsu, S.H., Majumder, S., Kutay, H., Huang, W., Jacob, S.T., and Ghoshal, K. (2010). TGF beta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29,1787-1797.
    Wang, B.C., Li, W.X., Guo, K., Xiao, Y.T., Wang, Y.Q., and Fan, J.G (2012a). miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem. Bioph. Res. Co.421,4-8.
    Wang, Y.Y., Liu, J., Zheng, Q., Ran, Z.H., Salome, N., Vogel, M., Rommelaere, J., Xiao, S.D., and Wang, Z. (2012b). Effect of the parvovirus H-1 non-structural protein NS1 on the tumorigenicity of human gastric cancer cells. J. Dig. Dis.13,366-373.
    Wills, C.G (1952). Notes on infectious enteritis of mink and its relationship to feline enteritis. Canadian J. Comp. Med. Vet. Sci.16,419-420.
    Wilson, GM., Jindal, H.K., Yeung, D.E., Chen, W., and Astell, C.R. (1991). Expression of minute virus of mice major nonstructural protein in insect cells-purification and identification of atpase and helicase activities. Virology 185,90-98.
    Winans, S.S. (1967). Visual form discrimination after removal of visual cortex in cats. Science 158, 944-&.
    Yan, H., Zhong, G, Xu, G, He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y, Peng, B., Wang, H., et al. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049-e00049.
    Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.-M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426,468-474.
    Yang, C.H., Yue, J.M., Fan, M.Y., and Pfeffer, L.M. (2010). IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res.70,8108-8116.
    Yi, R., Qin, Y, Macara, I.G, and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes. Dev.17,3011-3016.
    Young, P.J., Jensen, K.T., Burger, L.R., Pintel, D.J., and Lorson, C.L. (2002). Minute virus of mice NS1 interacts with the SMN protein, and they colocalize in novel nuclear bodies induced by parvovirus infection. J. Virol.76,3892-3904.
    Zamore, P.D., and Haley, B. (2005). Ribo-gnome:The big world of small RNAs. Science 309, 1519-1524.
    Zeng, Y, and Cullen, B.R. (2003). Sequence requirements for micro RNA processing and function in human cells. RNA.9,112-123.
    Zeng, Y., Wagner, E.J., and Cullen, B.R. (2002). Both natural and designed micro RNAs technique can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9,1327-1333.
    Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P., and Anderson, T.A. (2006). Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci.63,246-254.
    Zhang, D.L. (1997). Studies on isolation, serum-free cultivation and manufacture of mink enteritis virus optimized for vaccine preparation. Biologicals 25,103-111.
    Zhao, Q.H., Gersappe, A., and Pintel, D.J. (1995). Efficient excision of the upstream large intron from P4-generated pre-messenger-RNA of the parvovirus minute virus of mice requires at least one donor and the 3'-splice-site of the small downstream intron. J. Virol.69,6170-6179.
    Zhu, W., Shan, X., Wang, T.S., Shu, Y.Q., and Liu, P. (2010). miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer 127,2520-2529.
    Zuo, J., Rao, J., Xu, H., Ma, L., Li, B., Wang, Y., Cai, X., Han, W., Lei, L., and Liu, B. (2010). Analysis of the vp2 gene sequence of a new mutated mink enteritis parvovirus strain in PR China. Virol. J.7, 124.
    李凤龙.水貂病毒性肠炎的诊断及治疗试验研究:[硕士学位论文].吉林:吉林大学,2013.
    汤海明,陈红,张静,任景怡,徐宁(2012).新一代测序技术应用于microRNA检测.Hereditas (Beijing) 34,784-792.
    徐耀先,周晓峰,刘立德.(2000).分子病毒学(湖北:湖北科学技术出版社).
    杨莘.水貂肠炎细小病毒NS1基因的真核表达与生物学特性分析:[硕士学位论文].吉林:中国农业科学院,2011.
    殷震,刘景华.(1997).动物病毒学(北京:科学出版社).
    张庆明.阻断水貂肠炎细小病毒感染F81细胞的多肽筛选与验证:[硕士学位论文].吉林:吉林大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700