用户名: 密码: 验证码:
Caveolin-1负向调控宿主抵抗HSV-1感染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在漫长的生物进化历史中,病毒也一直和宿主共同进化。在这过程中,宿主发展了多种免疫应答机制以清除病毒,而病毒则共进化出花样繁多的逃逸策略来躲避宿主的免疫应答,保护自身的生存利益。天然免疫包括天然免疫细胞如树突状细胞(Dendritic cells, DCs)、巨噬细胞以及抗病毒因子是宿主抵抗病毒入侵的第一道防线,起到了直接抵抗病毒的作用。对宿主和病毒相互作用的探索将有助于更好地理解病毒感染和发病的机制,也为抗病毒疫苗和药物研发提供新的思路。
     Ⅰ型单纯疱疹病毒(Herpes simplex virus-1, HSV-1),是一种DNA病毒。在长久的进化中,HSV-1也进化出多种策略逃逸宿主的天然免疫,从而造成裂解感染并导致口腔疱疹、脑炎和肺炎等疾病,以及在急性感染粘膜组织后于附近的神经元细胞建立潜伏感染。HSV-1感染进入细胞的机制过去有许多研究,但对于其如何利用细胞内吞途径逃避或抑制免疫反应的机理仍然有许多不清楚的地方。研究发现HSV-1感染会导致DCs的增多和一氧化氮(Nitric Oxide, NO)分泌的增加。而一些病毒,如SV40可以利用细胞膜窖小窝(caveolae)结构作为进入细胞的入口。Caveolin-1(小窝蛋白-1,Cav-1),是caveolae的基本结构蛋白。先前的研究发现Cav-1可能在病毒感染时参与病毒与宿主的相互作用,抑制先天炎症细胞因子,并促进病毒的复制。但是这种相互作用如何影响宿主对病毒的防卫,Cav-1、DCs在HSV-1感染中具有什么作用目前还不清楚。
     本研究发现Caveolin-1缺失的(Caveolin-1knockout, Cav-1KO)小鼠能够更好地抵抗病毒感染。致死剂量病毒感染时,相比于野生型(Wild Type, WT)小鼠,Cav-1KO能更好地保护小鼠,表现为肺部中更低的病毒滴度和较轻的肺部病理损伤。通过气道内过继转移Cav-1knockdown和Cav-1overexpression的DC细胞实验发现,过继转移Cav-1knockdown的DC细胞的WT小鼠具有更高的存活率。除此之外,相比于Cav-1单敲除小鼠,DCs和Cav-1双敲除(CD11c-DTR/Cav-1-/-)小鼠的存活率显著降低。表明DCs在Cav-1KO抵抗HSV-1感染中具有重要作用,暗示HSV-1利用DC细胞上表达的Cav-1促进病毒感染。进一步通过q-PCR筛选实验发现WT小鼠肺细胞和DC细胞中iNOS(诱导性一氧化氮合酶)的表达受到显著抑制。同时发现Cav-1明显抑制了小鼠血清、支气管灌洗液和DCs培养上清中HSV-1诱导的NO水平。而且用SMT (iNOS抑制剂)预处理Cav-1KO小鼠抑制iNOS和NO的表达明显降低了Cav-1单敲除体现的抗病毒能力。表明Cav-1KO对小鼠的保护依赖于DC细胞中NO的分泌。通过激光共聚焦和Co-IP实验进一步揭示在病毒感染的DC细胞中,Cav-1与iNOS、HSV-1在caveolae中存在共定位。这些结果说明病毒可以利用DC细胞上的Cav-1将iNOS束缚在caveolae中从而降低iNOS和NO表达水平,进而帮助病毒逃逸。
     通过以上结果,我们首次阐述了HSV-1利用Cav-1抑制DC细胞中的iNOS的表达并阻碍NO的分泌,从而达到逃逸宿主抗病毒反应的机制。Cav-1的缺失导致caveolae结构的破坏和iNOS表达升高,进而NO的大量分泌保护Cav-1KO小鼠免于HSV-1的致死感染。因此,Cav-1可能是HSV-1用来逃避宿主免疫的一条路径。本研究的发现可能提供一种新的有价值的抗病毒治疗策略。
Viruses coevolve with their host and exploit diverse pathways to evade host immune responses. Host also develops various immune responses to counteract viral infections. In addition, innate immunity contain DCs, macrophages and antiviral cytokines plays a key role in the initiation and modulation of antiviral innate responses. Understanding the interactions of host-virus will provide us new insight for the mechnism of viral infections, viral pathogenesis and vaccines design.
     Herpes simplex virus type1(HSV-1) is a dsDNA virus belongs to the a-herpesvirus family, which causes oral herpes, encephalitis, keratitis, neonatal herpes and pneumonia disease and establishes latency in the neurons after acute infection of mucosal tissues. Previous reports found that HSV-1infection led to DC accumulations and NO productions which play a role in antiviral effects. In addition, Caveolin-1(Cav-1), the principal element of caveolae structure, is implicated in the viral-host interaction. Several viruses, including SV40, exploit caveolae as a gateway to enter cell and suppress host responses to facilitate their infections.The roles of Cav-1, DCs in HSV-1infection have not been fully elucidated.
     Here, we identify that Cav-1KO mice are more resistant to viral infection. Compared to wild type (WT) of animals, Cav-1KO could increase the protection upon HSV-1infection, accompanied with alleviative lung injury and lower viral load. The experiment of Cav-1knockdown and Cav-1overexpression DCs intra-tracheally showed Cav-1kd DC received WT mice increased the survival, indicated that the DCs played a role in Cav-1KO mediated resistant to HSV-1infection. And HSV-1may exploit Cav-1to avoid clearance. In addition, increased survival of Cav-1-/-mice was correlated with augmented iNOS and NO production in lungs and DCs. In turns, DCs and Cav-1deficiencies (CD11c-DTR/Cav-1-1-) or Cav-1-/-mice that were treated with an iNOS inhibitor exhibited a significantly reduced protection as compared to Cav-1single deletion only. Finally, we also observed that Cav-1co-localized with iNOS and HSV-1in caveolae in the viral infected DCs by confocal microscopy and Co-IP analysis.
     Our findings for the first time describe a novel mechanism of interaction of HSV-1with the Cav-1protein to suppress iNOS/NO in DCs and ultimately avoiding anti-viral responses of host. In addition, the disruption of caveolae lead to the increase of iNOS and NO in DCs, resulting in the protection of Cav-1KO against HSV-1infection. Thus, Cav-1could act as a gateway for HSV-1evasion. The data also provide a valuable target for drug design and therapeutic approach against herpes virus infections.
引文
Adler, H., Beland, J.L., Del-Pan, N.C., Kobzik, L., Brewer, J.P., Martin, T.R., and Rimm, I.J. (1997). Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J. Exp. Med.185,1533-1540.
    Agranovich, A., Vider-Shalit, T., and Louzoun, Y. (2011). Optimal viral immune surveillance evasion strategies. Theor. Poul. Biol.80,233-243.
    Alcami, A., and Koszinowski, U.H. (2000). Viral mechanisms of immune evasion. Trends Microbiol.8, 410-418.
    Alcami, A., Symons, J.A., Collins, P.D., Williams, T.J., and Smith, G.L. (1998). Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J. Immunol.160,624-633.
    Alheid, U., Frolich, J.C., and Forstermann, U. (1987). Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb. Res.47,561-571.
    Allen, S.J., Mott, K.R., Chentoufi, A.A., BenMohamed, L., Wechsler, S.L., Ballantyne, C.M., and Ghiasi, H. (2011). CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection. J. Virol.85,9945-9955.
    Altamura, M., Geronimo, M.G., Nappi, L., Ceci, O., Loizzi, P., and Jirillo, E. (1997). Successful treatment of herpes simplex virus (HSV) recurrent genital infection with recombinant human (rh) granulocyte-macrophage colony stimulating factor (GM-CSF):a case report. Immunopharm. Immunot. 19,425-436.
    Anderson, R.G. (1998). The caveolae membrane system. Annu. Rev. Biochem.67,199-225.
    Aquino, S.L., Dunagan, D.P., Chiles, C., and Haponik, E.F. (1998). Herpes simplex virus 1 pneumonia: patterns on CT scans and conventional chest radiographs. J. Comput. Assist. Tomo.22,795-800.
    Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B., and Lanier, L.L. (2002). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296,1323-1326.
    Arduino, P.G., and Porter, S.R. (2006). Oral and perioral herpes simplex virus type 1 (HSV-1) infection: review of its management. Oral Dis.12,254-270.
    Arora, D., Arora, B., and Khetarpal, A. (2010). Seroprevalence of HIV, HBV, HCV and syphilis in blood donors in Southern Haryana. Indian J. Pathol. Micr.53,308-309.
    Barber, M.R., Aldridge, J.R., Jr., Fleming-Canepa, X., Wang, Y.D., Webster, R.G., and Magor, K.E. (2013). Identification of avian RIG-I responsive genes during influenza infection. Mol. Immunol.54,89-97.
    Bartee, E., Mansouri, M., Hovey Nerenberg, B.T., Gouveia, K., and Fruh, K. (2004). Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J. Virol.78,1109-1120.
    Bataille, D., and Epstein, A.L. (1995). Herpes simplex virus type 1 replication and recombination. Biochimie 77,787-795.
    Beer, C., Andersen, D.S., Rojek, A., and Pedersen, L. (2005). Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J. Virol.79,10776-10787.
    Bendelja, K., Vojvoda, V., Aberle, N., Cepin-Bogovic, J., Gagro, A., Mlinaric-Galinovic, G., and Rabatic, S. (2010). Decreased Toll-like receptor 8 expression and lower TNF-alpha synthesis in infants with acute RSV infection. Respir. Res.11,143.
    Bennett, J.J., Tjuvajev, J., Johnson, P., Doubrovin, M., Akhurst, T., Malholtra, S., Hackman, T., Balatoni, J., Finn, R., Larson, S.M., et al. (2001). Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Nat. Med.7,859-863
    Biassoni, R., and Dimasi, N. (2005). Human natural killer cell receptor functions and their implication in diseases. Expert Rev. Clin. Immu.1,405-417.
    Bishop, J.M. (1991). Molecular themes in oncogenesis. Cell 64,235-248.
    Blankson, J.N., Persaud, D., and Siliciano, R.F. (2002). The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med.53,557-593.
    Bloch, K.D., Wolfram, J.R., Brown, D.M., Roberts, J.D., Jr., Zapol, D.G., Lepore, J.J., Filippov, G., Thomas, J.E., Jacob, H.J., and Bloch, D.B. (1995). Three members of the nitric oxide synthase II gene family (NOS2A, NOS2B, and NOS2C) colocalize to human chromosome 17. Gcnomics 27,526-530.
    Boniface, K., Bernard, F.X., Garcia, M., Gurney, A.L., Lecron, J.C., and Morel, F. (2005). IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol.174,3695-3702.
    Born, T.L., Morrison, L.A., Esteban, D.J., VandenBos, T., Thebeau, L.G., Chen, N., Spriggs, M.K., Sims, J.E., and Buller, R.M. (2000). A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol.164,3246-3254.
    Brown, G., Rixon, H.W., and Sugrue, R.J. (2002). Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J. Gen. Virol.83,1841-1850.
    Bruynseels, P., Jorens, P.G., Demey, H.E., Goossens, H., Pattyn, S.R., Elseviers, M.M., Weyler, J., Bossaert, L.L., Mentens, Y., and Ieven, M. (2003). Herpes simplex virus in the respiratory tract of critical care patients:a prospective study. Lancet 362,1536-1541.
    Bucci, M., Gratton, J.P., Rudic, R.D., Acevedo, L., Roviezzo, F., Cirino, G., and Sessa, W.C. (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat. Med.6,1362-1367.
    Bustos, D.E., and Atherton, S.S. (2002). Detection of herpes simplex virus type 1 in human ciliary ganglia. Invest. Ophthalmol. Vis. Sci.43,2244-2249.
    Campadelli-Fiume, G., Cocchi, F., Menotti, L., and Lopez, M. (2000). The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev. Med. Virol.10,305-319.
    Cantoni, C., Bottino, C., Vitale, M., Pessino, A., Augugliaro, R., Malaspina, A., Parolini, S., Moretta, L. Moretta, A., and Biassoni, R. (1999). NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J. Exp. Med. 189,787-796.
    Cao, J., Zhou, Y., and Gong, G.Z. (2006). Effect of HCV NS5A on STAT1 phosphorylation and nuclear translocation induced by IFN alpha-2b. Chin. J. Hepatol.14,894-897.
    Carpenter, L., Cordery, D., and Biden, T.J. (2001). Protein kinase Cdelta activation by interleukin-lbeta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells. J. Biol. Chem.276, 5368-5374.
    Caspary, L., Schindling, B., Dundarov, S., and Falke, D. (1980). Infections of susceptible and resistant mouse strains with herpes simplex virus type 1 and 2. Arch. Virol.65,219-227.
    Chan, E.D., and Riches, D.W. (2001). IFN-gamma+ LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am. J. Physiol. Cell Ph.280, C441-450.
    Chang, W.J., Rothberg, K.G., Kamen, B.A., and Anderson, R.G. (1992). Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J. Cell Biol.118,63-69.
    Chaturvedi, U.C., and Nagar, R. (2009). Nitric oxide in dengue and dengue haemorrhagic fever:necessity or nuisance? FEMS Immunol. Med. Mic.56,9-24.
    Chen, H., Chuai, X., Deng, Y., Wen, B., Wang, W., Xiong, S., Ruan, L., and Tan, W. (2012). Optimisation of prime-boost immunization in mice using novel protein-based and recombinant vaccinia (Tiantan)-based HBV vaccine. PLoS One 7, e43730.
    Chisari, F.V., Klopchin, K., Moriyama, T., Pasquinelli, C., Dunsford, HA., Sell, S., Pinkert, C.A., Brinster, R.L., and Palmiter, R.D. (1989). Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59,1145-1156.
    Chisari, F.V., Pinkert, C.A., Milich, D.R., Filippi, P., McLachlan, A., Palmiter, R.D., and Brinster, R.L. (1985). A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 230, 1157-1160.
    Chou, J., Chen, J.J., Gross, M., and Roizman, B. (1995). Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc. Natl. Acad. Sci. U.S.A.92,10516-10520.
    Ciccia, F., Guggino, G., Rizzo, A., Ferrante, A., Raimondo, S., Giardina, A., Dieli, F., Campisi, G., Alessandro, R., and Triolo, G. (2012). Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren's syndrome. Ann. Rheum. Dis.71,295-301.
    Closs, E.I., Scheld, J.S., Sharafi, M., and Forstermann, U. (2000). Substrate supply for nitric-oxide synthase in macrophages and endothelial cells:role of cationic amino acid transporters. Mol. Pharmacol.57, 68-74.
    Cobleigh, M.A., and Robek, M.D. (2013). Protective and pathological properties of IL-22 in liver disease: implications for viral hepatitis. Am. J. Pathol.182,21-28.
    Cohen, G.B., Gandhi, R.T., Davis, D.M., Mandelboim, O., Chen, B.K., Strominger, J.L., and Baltimore, D. (1999). The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10,661-671.
    Connelly, L., Palacios-Callender, M., Ameixa, C., Moncada, S., and Hobbs, A.J. (2001). Biphasic regulation of NF-kappa B activity underlies the pro-and anti-inflammatory actions of nitric oxide. J. Immunol.166, 3873-3881.
    Contursi, C., Wang, I.M., Gabriele, L., Gadina, M., O'Shea, J., Morse, H.C.,3rd, and Ozato, K. (2000). IFN consensus sequence binding protein potentiates STAT1-dependent activation of IFNgamma-responsive promoters in macrophages. Proc. Natl. Acad. Sci. U.S.A.97,91-96.
    Coscoy, L., Sanchez, D.J., and Ganem, D. (2001). A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol.155, 1265-1273.
    Croen, K.D. (1993). Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest.91,2446-2452.
    de Jong, M.A., de Witte, L., Bolmstedt, A., van Kooyk, Y, and Geijtenbeek, T.B. (2008). Dendritic cells mediate herpes simplex virus infection and transmission through the C-type lectin DC-SIGN. J. Gen. Virol.89,2398-2409.
    de Vera, M.E., Shapiro, R.A., Nussler, A.K., Mudgett, J.S., Simmons, R.L., Morris, S.M., Jr., Billiar, T.R., and Geller, D.A. (1996). Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines:initial analysis of the human NOS2 promoter. Proc. Natl. Acad. Sci. U.S.A.93, 1054-1059.
    Dinapoli, M.R., Calderon, C.L., and Lopez, D.M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J. Exp. Med.183,1323-1329.
    Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293,2449-2452.
    Duan, F., Liao, J., Huang, Q., Nie, Y., and Wu, K. (2012). HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro. Clin. Dev. Immunol.2012,192791.
    Dukes, C.S., Yu, Y, Rivadeneira, E.D., Sauls, D.L., Liao, H.X., Haynes, B.F., and Weinberg, J.B. (1995). Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism. J. Virol.69,4000-4005.
    Eidson, K.M., Hobbs, W.E., Manning, B.J., Carlson, P., and DeLuca, N.A. (2002). Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J. Virol.76, 2180-2191.
    Eizuru, Y. (2003). Development of new antivirals for herpesviruses. Antivir. Chem. Chemoth.14,299-308.
    Evans, A.A., London, W.T., Gish, R.G., Cohen, C., and Block, T.M. (2012). Chronic HBV infection outside treatment guidelines:is treatment needed? Antivir. Ther.18,229-235.
    Everett, H., and McFadden, G. (1999). Apoptosis:an innate immune response to virus infection. Trends Microbiol.7,160-165.
    Eyerich, S., Wagener, J., Wenzel, V., Scarponi, C., Pennino, D., Albanesi, C., Schaller, M., Behrendt, H., Ring, J., Schmidt-Weber, C.B., et al. (2011). IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol.41,1894-1901.
    Farrell, H.E., Vally, H., Lynch, D.M., Fleming, P., Shellam, G.R., Scalzo, A.A., and Davis-Poynter, N.J. (1997). Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386,510-514.
    Felley-Bosco, E., Bender, F., and Quest, A.F. (2002). Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biol. Res.35,169-176.
    Felley-Bosco, E., Bender, F.C., Courjault-Gautier, F., Bron, C., and Quest, A.F. (2000). Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc. Natl. Acad. Sci. U.S.A.97,14334-14339.
    Fletcher, J.M., Prentice, H.G., and Grundy, J.E. (1998). Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J. Immunol.161,2365-2374.
    Frank, G.M., Buela, K.A., Maker, D.M., Harvey, S.A., and Hendricks, R.L. (2012). Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J. Immunol.188,1350-1359.
    Fruh, K., Gruhler, A., Krishna, R.M., and Schoenhals, G.J. (1999). A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol. Rev.168,157-166.
    Fujii, N., Yokota, S., Yokosawa, N., and Okabayashi, T. (2006). Molecular mechanisms for suppression of interferon system by HSV-1 infection. Nippon. Rinsho.64 Suppl 3,171-177.
    Furuchi, T., and Anderson, R.G. (1998). Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem.273,21099-21104.
    Gamba, G., Cavalieri, H., Courreges, M.C., Massouh, E J., and Benencia, F. (2004). Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J. Med. Virol.73,313-322.
    Ganster, R.W., Taylor, B.S., Shao, L., and Geller, D.A. (2001). Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc. Natl. Acad. Sci. U.S.A.98, 8638-8643.
    Garcia-Cardena, G., Martasek, P., Masters, B.S., Skidd, P.M., Couet, J., Li, S., Lisanti, M.P., and Sessa, W.C. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J. Biol. Chem.272,25437-25440.
    Garrean, S., Gao, X.P., Brovkovych, V., Shimizu, J., Zhao, Y.Y., Vogel, S.M., and Malik, A.B. (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J. Immunol.177,4853-4860.
    Gaston, B., Reilly, J., Drazen, J.M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M.E., Sugarbaker, D.J., Chee, C., Singel, D.J., et al. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc. Natl. Acad. Sci. U.S.A.90,10957-10961.
    Gil, J., Rullas, J., Alcami, J., and Esteban, M. (2001). MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaB activation and apoptosis induced by PKR. J. Gen. Virol.82, 3027-3034.
    Graf, G.A., Matveev, S.V., and Smart, E.J. (1999). Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovas. Med.9,221-225.
    Grisham, M.B., Granger, D.N., and Lefer, D.J. (1998). Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen:relevance to ischemic heart disease. Free Radic. Biol. Med. 25,404-433.
    Grunewald, K., Desai, P., Winkler, D.C., Heymann, J.B., Belnap, D.M., Baumeister, W., and Steven, A.C. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302,1396-1398.
    Harris, N., Buller, R.M., and Karupiah, G. (1995). Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J. Virol.69,910-915.
    Hayashi, K., Hooper, L.C., Chin, M.S., Nagineni, C.N., Detrick, B., and Hooks, J.J. (2006). Herpes simplex virus 1 (HSV-1) DNA and immune complex (HSV-1-human IgG) elicit vigorous interleukin 6 release from infected corneal cells via Toll-like receptors. J. Gen. Virol.87,2161-2169.
    Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y, Hayakawa, T., and Hamaguchi, M. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res.61,2361-2364.
    He, B., Gross, M., and Roizman, B. (1997). The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase lalpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. U.S.A.94,843-848.
    Hehlgans, S., and Cordes, N. (2011). Caveolin-1:an essential modulator of cancer cell radio-and chemoresistance. Am. J. Cancer Res.1,521-530.
    Heinrich, T.A., da Silva, R.S., Miranda, K.M., Switzer, C.H., Wink, DA., and Fukuto, J.M. (2013). Biological nitric oxide signalling:chemistry and terminology. Brit. J. Pharmacol.169,1417-1429.
    Hosui, A., Ohkawa, K., Ishida, H., Sato, A., Nakanishi, F., Ueda, K., Takehara, T., Kasahara, A., Sasaki, Y, Hori, M., et al. (2003). Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. J. Biol. Chem.278,28562-28571.
    Hulit, J., Bash, T., Fu, M., Galbiati, F., Albanese, C., Sage, D.R., Schlegel, A., Zhurinsky, J., Shtutman, M., Ben-Ze'ev, A., et al. (2000). The cyclin D1 gene is transcriptionally repressed by caveolin-1. J. Biol. Chem.275,21203-21209.
    Iannello, A., Debbeche, O., Martin, E., Attalah, L.H., Samarani, S., and Ahmad, A. (2006). Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol.79,16-35.
    Iijima, N., Linehan, M.M., Zamora, M., Butkus, D., Dunn, R., Kehry, M.R., Laufer, T.M., and Iwasaki, A. (2008). Dendritic cells and B cells maximize mucosal Thl memory response to herpes simplex virus. J. Exp. Med.205,3041-3052.
    Ishido, S., Wang, C., Lee, B.S., Cohen, G.B., and Jung, J.U. (2000). Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol.74,5300-5309.
    Ito, Y., Yoshida, H., Nakano, K., Kobayashi, K., Yokozawa, T., Hirai, K., Matsuzuka, F., Matsuura, N., Kakudo, K., Kuma, K., et al. (2002). Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br. J. Cancer 86,912-916.
    Jiang, Y., Fang, L., Luo, R., Xiao, S., and Chen, H. (2010). N-acetylpenicillamine inhibits the replication of porcine reproductive and respiratory syndrome virus in vitro. Vet. Res. Commun.34,607-617.
    Jin, Y., Lee, S.J., Minshall, R.D., and Choi, A.M. (2011). Caveolin-1:a critical regulator of lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.300, L151-160.
    Johnson, K.E., Song, B., and Knipe, D.M. (2008). Role for herpes simplex virus 1ICP27 in the inhibition of type I interferon signaling. Virology 374,487-494.
    Johnson, W.E., and Desrosiers, R.C. (2002). Viral persistence:HIV's strategies of immune system evasion. Annu. Rev. Med.53,499-518.
    Jones, R.K., Searle, R.F., Stewart, J.A., Turner, S., and Bulmer, J.N. (1998). Apoptosis, bcl-2 expression, and proliferative activity in human endometrial stroma and endometrial granulated lymphocytes. Biol. Reprod.58,995-1002.
    Karaghiosoff, M., Neubauer, H., Lassnig, C., Kovarik, P., Schindler, H., Pircher, H., McCoy, B., Bogdan, C., Decker, T., Brem, G., et al. (2000). Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13,549-560.
    Karupiah, G., Chen, J.H., Mahalingam, S., Nathan, C.F., and MacMicking, J.D. (1998). Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J. Exp. Med.188,1541-1546.
    Kassim, S.H., Rajasagi, N.K., Zhao, X., Chervenak, R., and Jennings, S.R. (2006). In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J. Virol.80,3985-3993.
    Keckler, M.S. (2007). Dodging the CTL response:viral evasion of Fas and granzyme induced apoptosis. Front. Biosci.12,725-732.
    Kimura, T., Nakayama, K., Penninger, J., Kitagawa, M., Harada, H., Matsuyama, T., Tanaka, N., Kamijo, R., Vilcek, J., Mak, T.W., et al. (1994). Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 264,1921-1924.
    Kleen, T.O., Asaad, R., Landry, S.J., Boehm, B.O., and Tary-Lehmann, M. (2004). Tel effector diversity shows dissociated expression of granzyme B and interferon-gamma in HIV infection. Aids 18,383-392.
    Kleinert, H., Wallerath, T., Fritz, G., Ihrig-Biedert, I., Rodriguez-Pascual, F., Geller, D.A., and Forstermann, U. (1998). Cytokine induction of NO synthase II in human DLD-1 cells:roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br. J. Pharmacol.125,193-201.
    Korhonen, R., Linker, K., Pautz, A., Forstermann, U., Moilanen, E., and Kleinert, H. (2007). Post-transcriptional regulation of human inducible nitric-oxide synthase expression by the Jun N-terminal kinase. Mol. Pharmacol.71,1427-1434.
    Kotenko, S.V., Saccani, S., Izotova, L.S., Mirochnitchenko, O.V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl. Acad. Sci. U.S.A.97, 1695-1700.
    Kristof, A.S., Marks-Konczalik, J., and Moss, J. (2001). Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J. Biol. Chem.276, 8445-8452.
    Krmpotic, A., Busch, D.H., Bubic, I., Gebhardt, F., Hengel, H., Hasan, M., Scalzo, A.A., Koszinowski, U.H., and Jonjic, S. (2002). MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat. Immunol.3,529-535.
    Kubota, A., Kubota, S., Farrell, H.E., Davis-Poynter, N., and Takei, F. (1999). Inhibition of NK cells by murine CMV-encoded class IMHC homologue m144. Cell. Immunol.191,145-151.
    Kwak, J.Y., Han, M.K., Choi, K.S., Park, I.H., Park, S.Y., Sohn, M.H., Kim, U.H., McGregor, J.R., Samlowski, W.E., and Yim, C.Y. (2000). Cytokines secreted by lymphokine-activated killer cells induce endogenous nitric oxide synthesis and apoptosis in DLD-1 colon cancer cells. Cell. Immunol.203, 84-94.
    Lahiri, A., Das, P., and Chakravortty, D. (2008). Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection. Microbes Infect.10,1166-1174.
    Lalani, A.S., Barrett, J.W., and McFadden, G. (2000). Modulating chemokines:more lessons from viruses. Immunol. Today 21,100-106.
    Lan, K.H., Lan, K.L., Lee, W.P., Sheu, M.L., Chen, M.Y., Lee, Y.L., Yen, S.H., Chang, F.Y., and Lee, S.D. (2007). HCV NS5A inhibits interferon-alpha signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J. Hepatol.46,759-767.
    Le Gall, S., Erdtmann, L., Benichou, S., Berlioz-Torrent, C., Liu, L., Benarous, R., Heard, J.M., and Schwartz, O. (1998). Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8,483-495.
    Lee, S.J., Cho, Y.S., Cho, M.C., Shim, J.H., Lee, K.A., Ko, K.K., Choe, Y.K., Park, S.N., Hoshino, T., Kim, S., et al. (2001). Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-gamma production in human peripheral blood mononuclear and NK cells. J. Immunol.167, 497-504.
    Lee, S.W., Reimer, C.L., Oh, P., Campbell, D.B., and Schnitzer, J.E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16,1391-1397.
    Leong, C.C., Chapman, T.L., Bjorkman, P.J., Formankova, D., Mocarski, E.S., Phillips, J.H., and Lanier, L.L. (1998). Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection:the role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med.187, 1681-1687.
    Li, S., Couet, J., and Lisanti, M.P. (1996a). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem.277,29182-29190.
    Li, S., Labrecque, S., Gauzzi, M.C., Cuddihy, A.R., Wong, A.H., Pellegrini, S., Matlashewski, G.J., and Koromilas, A.E. (1999). The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18,5727-5737.
    Li, S., Seitz, R., and Lisanti, M.P. (1996b). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J. Biol. Chem.271, 3863-3868.
    Li, T., Sotgia, F., Vuolo, M.A., Li, M., Yang, W.C., Pestell, R.G., Sparano, J.A., and Lisanti, M.P. (2006). Caveolin-1 mutations in human breast cancer:functional association with estrogen receptor alpha-positive status. Am. J. Pathol.168,1998-2013.
    Liebau, P., Kuse, E., Winkler, M., Schlitt, H.J., Oldhafer, K., Verhagen, W., Flik, J., and Pichlmayr, R. (1996). Management of herpes simplex virus type 1 pneumonia following liver transplantation. Infection 24, 130-135.
    Lin, Y.L., Huang, Y.L., Ma, S.H., Yeh, C.T., Chiou, S.Y., Chen, L.K., and Liao, C.L. (1997). Inhibition of Japanese encephalitis virus infection by nitric oxide:antiviral effect of nitric oxide on RNA virus replication. J. Virol.71,5227-5235.
    Linehan, M.M., Richman, S., Krummenacher, C., Eisenberg, R.J., Cohen, G.H., and Iwasaki, A. (2004). In vivo role of nectin-1 in entry of herpes simplex virus type 1 (HSV-1) and HSV-2 through the vaginal mucosa. J. Virol.78,2530-2536.
    Linssen, C.F., Jacobs, J.A., Stelma, F.F., van Mook, W.N., Terporten, P., Vink, C., Drent, M., Bruggeman, C.A., and Smismans, A. (2008). Herpes simplex virus load in bronchoalveolar lavage fluid is related to poor outcome in critically ill patients. Intensive Care Med.34,2202-2209.
    Liu, J., Razani, B., Tang, S., Terman, B.I., Ware, J.A., and Lisanti, M.P. (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J. Biol. Chem.274,15781-15785.
    Liu, Z., Guan, Y., Sun, X., Shi, L., Liang, R., Lv, X., and Xin, W. (2013). HSV-1 activates NF-kappaB in mouse astrocytes and increases TNF-alpha and IL-6 expression via Toll-like receptor 3. Neurol. Res.35, 755-762.
    Llano, M., Kelly, T., Vanegas, M., Peretz, M., Peterson, T.E., Simari, R.D., and Poeschla, E.M. (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J. Virol.76,9152-9164.
    Looker, K.J., and Garnett, G.P. (2005). A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex. Transm. Infect.81,103-107.
    Lucin, P., Jonjic, S., Messerle, M., Polic, B., Hengel, H., and Koszinowski, U.H. (1994). Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor. J. Gen. Virol.75 (Pt 1),101-110.
    Luyt, C.E., Combes, A., Deback, C., Aubriot-Lorton, M.H., Nieszkowska, A., Trouillet, J.L., Capron, F., Agut, H., Gibert, C., and Chastre, J. (2007). Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am. J. Respir. Crit. Care Med.175,935-942.
    MacLean, A., Wei, X.Q., Huang, F.P., Al-Alem, U.A., Chan, W.L., and Liew, F.Y. (1998). Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Thl cell responses. J. Gen. Virol.79(Pt4),825-830.
    MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Ann. Rev. Immunol.15,323-350.
    Macovei, A., Radulescu, C., Lazar, C., Petrescu, S., Durantel, D., Dwek, R.A., Zitzmann, N., and Nichita, N.B. (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol.84,243-253.
    Malmgaard, L., Melchjorsen, J., Bowie, A.G., Mogensen, S.C., and Paludan, S.R. (2004). Viral activation of macrophages through TLR-dependent and -independent pathways. J. Immunol.173,6890-6898.
    Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T.I., Bushkin, Y, Davis, D.M., Strominger, J.L., Yewdell, J.W., and Porgador, A. (2001). Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409,1055-1060.
    Melchjorsen, J., Siren, J., Julkunen, I., Paludan, S.R., and Matikainen, S. (2006). Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J. Gen. Virol.87,1099-1108.
    Mendes-Ribeiro, A.C., Moss, M.B., Siqueira, M.A., Moraes, T.L., Ellory, J.C., Mann, G.E., and Brunini, T.M. (2008). Dengue fever activates the L-arginine-nitric oxide pathway:an explanation for reduced aggregation of human platelets. Clin. Exp. Pharmacol. Physiol.35,1143-1146.
    Meraz, MA., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84,431-442.
    Mikloska, Z., Bosnjak, L., and Cunningham, A.L. (2001). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J. Virol.75,5958-5964.
    Miles, D.H., Thakur, A., Cole, N., and Willcox, M.D. (2007). The induction and suppression of the apoptotic response of HSV-1 in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci.48,789-796.
    Mirza, M.K., Yuan, J., Gao, X.P., Garrean, S., Brovkovych, V, Malik, A.B., Tiruppathi, C., and Zhao, Y.Y. (2010). Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation. Am. J. Pathol.176,2344-2351.
    Miyawaki-Shimizu, K., Predescu, D., Shimizu, J., Broman, M., Predescu, S., and Malik, A.B. (2006). siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am. J. Physiol. Lung Cell Mol. Physiol.290, L405-413.
    Mossman, K.L., and Smiley, J.R. (2002). Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J. Virol.76,1995-1998.
    Muller, D.B., Raftery, M.J., Kather, A., Giese, T., and Schonrich, G. (2004). Frontline:Induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus. Eur. J. Immunol.34,941-951.
    Murphy, E.A., Davis, J.M., Brown, A.S., Carmichael, M.D., Ghaffar, A., and Mayer, E.P. (2008). Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intrinsic macrophage antiviral resistance. J. Interferon Cytokine Res.28,589-595.
    Murphy, P.M. (2001). Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol.2,116-122.
    Musial, A., and Eissa, N.T. (2001). Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J. Biol. Chem.276,24268-24273.
    Nadaud, S., Bonnardeaux, A., Lathrop, M., and Soubrier, F. (1994). Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem. Biophys. Res. Commun.198, 1027-1033.
    Nanjappa, S.G., Heninger, E., Wuthrich, M., Gasper, D.J., and Klein, B.S. (2012). Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4 T cells. PLoS pathog. 8, e1002771.
    Newcomb, W.W., Trus, B.L., Cheng, N., Steven, A.C., Sheaffer, A.K., Tenney, D.J., Weller, S.K., and Brown, J.C. (2000). Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol.74,1663-1673.
    Noguchi, S., Jianmongkol, S., Bender, A.T., Kamada, Y., Demady, D.R., and Osawa, Y. (2000). Guanabenz-mediated inactivation and enhanced proteolytic degradation of neuronal nitric-oxide synthase. J. Biol. Chem.275,2376-2380.
    Norkin, L.C., and Kuksin, D. (2005). The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum. Virol. J.2,38.
    Oda, Y, Okada, Y, Katsuda, S., and Nakanishi, I. (1994). Immunohistochemical study on the infection of herpes simplex virus, human cytomegalovirus, and Epstein-Barr virus in secondary diffuse interstitial pneumonia. Hum. Pathol.25,1057-1062.
    Oldstone, M.B. (1998). Viral persistence:mechanisms and consequences. Curr. Opin. Microbiol.1,436-441.
    Opitz, B., Rejaibi, A., Dauber, B., Eckhard, J., Vinzing, M., Schmeck, B., Hippenstiel, S., Suttorp, N., and Wolff, T. (2007). IFNbeta induction by influenza A virus is mediated by RIG-Ⅰ which is regulated by the viral NS1 protein. Cell. Microbiol.9,930-938.
    Orange, J.S., Fassett, M.S., Koopman, L.A., Boyson, J.E., and Strominger, J.L. (2002). Viral evasion of natural killer cells. Nat. Immunol.3,1006-1012.
    Otsuka, M., Kato, N., Moriyama, M., Taniguchi, H., Wang, Y., Dharel, N., Kawabe, T., and Omata, M. (2005). Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology 41,1004-1012.
    Owen, R.E., Yamada, E., Thompson, C.I., Phillipson, L.J., Thompson, C., Taylor, E., Zambon, M., Osborn, H.M., Barclay, W.S., and Borrow, P. (2007). Alterations in receptor binding properties of recent human influenza H3N2 viruses are associated with reduced natural killer cell lysis of infected cells. J. Virol.81, 11170-11178.
    Pachler, K., and Vlasak, R. (2011). Influenza C virus NS1 protein counteracts RIG-Ⅰ-mediated IFN signalling. Virol. J.8,48.
    Paludan, S.R., Bowie, A.G., Horan, K.A., and Fitzgerald, K.A. (2011). Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol.11,143-154.
    Pardo, J., Wallich, R., Martin, P., Urban, C., Rongvaux, A., Flavell, R.A., Mullbacher, A., Borner, C., and Simon, M.M. (2008). Granzyme B-induced cell death exerted by ex vivo CTL:discriminating requirements for cell death and some of its signs. Cell Death Differ.15,567-579.
    Parolini, I., Sargiacomo, M., Galbiati, F., Rizzo, G., Grignani, F., Engelman, J.A., Okamoto, T., Ikezu, T., Scherer, P.E., Mora, R., et al. (1999). Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J. Biol. Chem.274, 25718-25725.
    Parr, R.D., Storey, S.M., Mitchell, D.M., McIntosh, A.L., Zhou, M., Mir, K.D., and Ball, J.M. (2006). The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J. Virol.80, 2842-2854.
    Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat. Rev. Mol. Cell Bio.8,185-194.
    Pelkmans, L., Burli, T., Zerial, M., and Helenius, A. (2004). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118,767-780.
    Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol.3,473-483.
    Peters, G.A., Khoo, D., Mohr, I., and Sen, G.C. (2002). Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J. Virol.76,11054-11064.
    Qashqari, H., Al-Mars, A., Chaudhary, A., Abuzenadah, A., Damanhouri, G., Alqahtani, M., Mahmoud, M., El Sayed Zaki, M., Fatima, K., and Qadri, I. (2013). Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance. Infect. Genet. Evol.19,113-119.
    Racine, C., Belanger, M., Hirabayashi, H., Boucher, M., Chakir, J., and Couet, J. (1999). Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem. Biophys. Res. Commun.255, 580-586.
    Rapoport, R.M., Draznin, M.B., and Murad, F. (1983). Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306,174-176.
    Ratovitski, E.A., Bao, C., Quick, R.A., McMillan, A., Kozlovsky, C., and Lowenstein, C.J. (1999). An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. J. Biol. Chem.274,30250-30257.
    Razani, B., Woodman, S.E., and Lisanti, M.P. (2002). Caveolae:from cell biology to animal physiology. Pharmacol. Rev.54,431-467.
    Robinson, N.M., Zhang, H.Y., Bevan, A.L., De Belder, A.J., Moncada, S., Martin, J.F., and Archard, L.C. (1999). Induction of myocardial nitric oxide synthase by Coxsackie B3 virus in mice. Eur. J. Clin. Invest. 29,700-707.
    Rodriguez-Pascual, F., Hausding, M., Ihrig-Biedert, I., Furneaux, H., Levy, A.P., Forstermann, U., and Kleinert, H. (2000). Complex contribution of the 3'-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J. Biol. Chem.275,26040-26049.
    Ruckle, A., Haasbach, E., Julkunen, I., Planz, O., Ehrhardt, C., and Ludwig, S. (2012). The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-kappaB pathway and p52/Re1B-dependent gene expression in lung epithelial cells. J. Virol.86,10211-10217.
    S, J.L., and T, H.L. (2000). Chemical mutational analysis of glucocorticoid receptor. Methods Mol. Med.44, 295-308.
    Saederup, N., Aguirre, S.A., Sparer, T.E., Bouley, D.M., and Mocarski, E.S. (2001). Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J. Virol.75,9966-9976.
    Sargiacomo, M., Scherer, P.E., Tang, Z., Kubler, E., Song, K.S., Sanders, M.C., and Lisanti, M.P. (1995). Oligomeric structure of caveolin:implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U.S.A.92,9407-9411.
    Scheiffele, P., Verkade, P., Fra, A.M., Virta, H., Simons, K., and Ikonen, E. (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol.140,795-806.
    Schlegel, A., and Lisanti, M.P. (2001a). Caveolae and their coat proteins, the caveolins:from electron microscopic novelty to biological launching pad. J. Cell Physiol.186,329-337.
    Schlegel, A., and Lisanti, M.P. (2001b). The caveolin triad:caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev.12,41-51.
    Schlegel, A., Schwab, R.B., Scherer, P.E., and Lisanti, M.P. (1999). A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J. Biol. Chem.274,22660-22667.
    Schuller, D., Spessert, C., Fraser, V.J., and Goodenberger, D.M. (1993). Herpes simplex virus from respiratory tract secretions:epidemiology, clinical characteristics, and outcome in immunocompromised and nonimmunocompromised hosts. Am. J. Med.94,29-33.
    Shaul, P.W., and Anderson, R.G. (1998). Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol.275, L843-851.
    Simmons, G.E., Jr., Taylor, H.E., and Hildreth, J.E. (2012). Caveolin-1 suppresses human immunodeficiency virus-1 replication by inhibiting acetylation of NF-kappaB. Virology 432,110-119.
    Skalsky, R.L., and Cullen, B.R. (2010). Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol.64, 123-141.
    Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. (1999). Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol.19, 7289-7304.
    Smart, M.J. (1996). Showdown over costs of gunshot wounds. CMAJ.154,627; author reply 629-631.
    Smatt, V., Robin, M., Gibeili, Z., Hadjali, C., and Vanzo, L. (1995). A therapeutic approach using dental implants in an irradiated area. The experiences of the Rene Huguenin Center. Rev. Stomatol. Chir. Maxillofac.96,396-400.
    Song, K.S., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M., and Lisanti, M.P. (1996). Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem.271,9690-9697.
    Song, K.S., Tang, Z., Li, S., and Lisanti, M.P. (1997). Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J. Biol. Chem.272,4398-4403.
    Sonnenberg, G.F., Fouser, L.A., and Artis, D. (2010). Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv. Immunol.107,1-29.
    Spiecker, M., Darius, H., Kaboth, K., Hubner, F., and Liao, J.K. (1998). Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J. Leukoc. Biol.63,732-739.
    Stroop, W.G., and Banks, M.C. (1994). Herpes simplex virus type 1 strain KOS-63 does not cause acute or recurrent ocular disease and does not reactivate ganglionic latency in vivo. Acta Neuropathol.87,14-22.
    Stroop, W.G., Banks, M.C., Qavi, H., Chodosh, J., and Brown, S.M. (1994). A thymidine kinase deficient HSV-2 strain causes acute keratitis and establishes trigeminal ganglionic latency, but poorly reactivates in vivo. J. Med. Virol.43,297-309.
    Stuart, E.S., Webley, W.C., and Norkin, L.C. (2003). Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp. Cell Res.287,67-78.
    Sun, L., Hemgard, G.V., Susanto, S.A., and Wirth, M. (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol. J.7,108.
    Suzutani, T., Nagamine, M., Shibaki, T., Ogasawara, M., Yoshida, I., Daikoku, T., Nishiyama, Y., and Azuma, M. (2000). The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J. Gen. Virol.81,1763-1771.
    Tajima, M., Wakita, D., Satoh, T., Kitamura, H., and Nishimura, T. (2011). IL-17/IFN-gamma double producing CD8+T (Tc17/IFN-gamma) cells:a novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int. Immunol.23,751-759.
    Talloczy, Z., Virgin, H.W.t., and Levine, B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2,24-29.
    Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J., and Ploegh, H.L. (2000). Viral subversion of the immune system. Ann. Rev. Immunol.18,861-926.
    Tucker, P.C., Griffin, D.E., Choi, S., Bui, N., and Wesselingh, S. (1996). Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J. Virol.70,3972-3977.
    Uittenbogaard, A., Shaul, P.W., Yuhanna, I.S., Blair, A., and Smart, E.J. (2000). High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem.275,11278-11283.
    Uittenbogaard, A., and Smart, E.J. (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem.275, 25595-25599.
    Umansky, V., Hehner, S.P., Dumont, A., Hofmann, T.G., Schirrmacher, V, Droge, W., and Schmitz, M.L. (1998). Co-stimulatory effect of nitric oxide on endothelial NF-kappaB implies a physiological self-amplifying mechanism. Eur. J. Immunol.28,2276-2282.
    Unkel, B., Hoegner, K., Clausen, B.E., Lewe-Schlosser, P., Bodner, J., Gattenloehner, S., Janssen, H., Seeger, W., Lohmeyer, J., and Herold, S. (2012). Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J. Clin. Invest.122,3652-3664.
    Vollstedt, S., Arnold, S., Schwerdel, C., Franchini, M., Alber, G., Di Santo, J.P., Ackermann, M., and Suter, M. (2004). Interplay between alpha/beta and gamma interferons with B, T, and natural killer cells in the defense against herpes simplex virus type 1. J. Virol.78,3846-3850.
    Wahl, C, Wegenka, U.M., Leithauser, F., Schirmbeck, R., and Reimann, J. (2009). IL-22-dependent attenuation of T cell-dependent (ConA) hepatitis in herpes virus entry mediator deficiency. J. Immunol. 182,4521-4528.
    Wang, H., Peters, N., and Schwarze, J. (2006a). Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol.177,6263-6270.
    Wang, J., Zhao, W., Cheng, L., Guo, M., Li, D., Li, X., Tan, Y., Ma, S., Li, S., Yang, Y., et al. (2010). CD137-mediated pathogenesis from chronic hepatitis to hepatocellular carcinoma in hepatitis B virus-transgenic mice. J. Immunol.185,7654-7662.
    Wang, X.M., Kim, H.P., Song, R., and Choi, A.M. (2006b). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am. J. Respir. Cell Mol. Biol.34,434-442.
    Wilkinson, D.E., and Weller, S.K. (2003). The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55,451-458.
    Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K., and Sabat, R. (2004). IL-22 increases the innate immunity of tissues. Immunity 21,241-254.
    Woodman, S.E., Schlegel, A., Cohen, A.W., and Lisanti, M.P. (2002). Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry 41,3790-3795.
    Wu, Y, Mao, H., Ling, M.T., Chow, K.H., Ho, P.L., Tu, W., and Lau, Y.L. (2011). Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect. Dis.11,201.
    Xiang, X., Gui, H., King, N.J., Cole, L., Wang, H., Xie, Q., and Bao, S. (2012). IL-22 and non-ELR-CXC chemokine expression in chronic hepatitis B virus-infected liver. Immunol. Cell Biol.90,611-619.
    Xu, W., Liu, L., Smith, G.C., and Charles 1, G. (2000). Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat. Cell Biol.2,339-345.
    Xu, W., Zheng, S., Dweik, R.A., and Erzurum, S.C. (2006). Role of epithelial nitric oxide in airway viral infection. Free Radic. Biol. Med.41,19-28.
    Yang, F.Q., Yu, Y.Y., Wang, G.Q., Chen, J., Li, J.H., Li, Y.Q., Rao, G.R., Mo, G.Y., Luo, X.R., and Chen, G.M. (2012). A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J. Viral Hepat.19, 581-593.
    Yeh, N., Glosson, N.L., Wang, N., Guindon, L., McKinley, C., Hamada, H., Li, Q., Dutton, R.W., Shrikant, P., Zhou, B., et al. (2010). Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype. J. Immunol.185,2089-2098.
    Yokota, S., Yokosawa, N., Okabayashi, T., Suzutani, T., and Fujii, N. (2005). Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 confers efficient viral replication. Virology 338, 173-181.
    Yokota, S., Yokosawa, N., Okabayashi, T., Suzutani, T., Miura, S., Jimbow, K., and Fujii, N. (2004). Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J. Virol.78,6282-6286.
    Zell, R., Markgraf, R., Schmidtke, M., Gorlach, M., Stelzner, A., Henke, A., Sigusch, H.H., and Gluck, B. (2004). Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice. Med. Microbiol. Immunol.193, 91-100.
    Zenewicz, L.A., and Flavell, R.A. (2008). IL-22 and inflammation:leukin' through a glass onion. Eur. J. Immunol.38,3265-3268.
    Zhao, Y.Y., Zhao, YD., Mirza, M.K., Huang, J.H., Potula, H.H., Vogel, S.M., Brovkovych, V., Yuan, J.X., Wharton, J., and Malik, A.B. (2009). Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J. Clin. Invest.119, 2009-2018.
    Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J., and Chiu, W. (2000). Seeing the herpesvirus capsid at 8.5 A. Science 288,877-880.
    Zou, Q., Wu, B., He, X., Zhang, Y., Kang, Y., Jin, J., Xu, H., Liu, H., and Wang, B. (2010). Increasing a robust antigen-specific cytotoxic T lymphocyte response by FMDV DNA vaccination with IL-9 expressing construct. J. Biomed. Biotechnol.2010,562356.
    Zou, Q., Yao, X., Feng, J., Yin, Z., Flavell, R., Hu, Y., Zheng, G., Jin, J., Kang, Y., Wu, B., et al. (2011). Praziquantel facilitates IFN-gamma-producing CD8+T cells (Tc1) and IL-17-producing CD8+T cells (Tc17) responses to DNA vaccination in mice. PLoS One 6, e25525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700