用户名: 密码: 验证码:
光泵浦VECSELs设计理论、制备工艺与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光泵浦VECSELs是一种以半导体增益结构材料为激光介质的半导体激光泵浦半导体增益介质的全固态激光器。它结合了半导体泵浦固体激光器和传统电泵浦VCSELs的构造方法,具有高输出功率、高转换效率、高光束质量及宽光谱调谐范围等优点。正是由于这些突出优点而使得光泵浦VECSELs在高速激光打印、光信息存储、激光通信与目标探测、刑事侦查、生物化学与材料分析、临床医疗及影像显示等诸多领域具有广泛的应用前景。
     本文在综述光泵浦VECSELs的产生和发展过程的基础上,详细介绍了光泵浦VECSELs的基本原理和典型结构,系统阐述了VECSEL芯片制备的材料体系,对其中的核心部件-半导体增益介质VECSEL芯片的设计理论和设计过程开展了深入研究;基于VECSEL芯片的设计结构和光泵浦VECSELs的工作特性,研究了VECSEL芯片的外延生长和芯片封装制备工艺;基于有限元计算分析方法,深入研究了光泵浦VECSELs的热特性;基于速率方程理论,建立了光泵浦VECSELs的理论模型,分析了光泵浦VECSELs谐振腔结构,开展了光泵浦VECSELs的实验研究。
     从半导体能带理论出发,介绍了不同半导体材料设计和生长过程中的晶格失配度及厚度加权和零应变平衡方法。给出了半导体增益介质VECSEL芯片的典型结构,基于多光束干涉理论和光学传播矩阵,建立了布拉格反射镜反射率和反射镜带宽的方程,分析了反射镜对数和材料折射率差对布拉格反射镜反射率的影响;采用((HL)DH)N排列形式,设计了808nm和980nm双反射带反射镜,分别获得99.991%和99.959%的反射率。研究了In组份、P组份和量子阱宽对输出波长的影响,从模型固体理论出发,结合k.p理论、Pikus-Bir理论和驻波条件,提出一种应变量子阱对称补偿方法,通过在InGaAs量子阱两侧对称生长GaAsP材料层实现对量子阱压应变的良好补偿,设计了13周期应变对称补偿InGaAs量子阱结构的980nm VECSEL外延片。给出了VECSEL芯片制备工艺过程,基于分子束外延生长技术,开展了980nmVECSEL外延片的结构生长,经过对所生长VECSEL外延片的性能参数进行测试,结果表明达到了预期的设计要求。采用机械抛光和化学腐蚀相结合的减薄方式,研究了VECSEL外延片减薄工艺,研究了VECSEL芯片和散热片金属化及铟焊封装工艺。
     从光泵浦VECSELs的废热产生机理出发,建立了光泵浦VECSELs的热分析模型。从速率方程理论出发,建立了光泵浦VECSELs的理论模型,给出了光泵浦VECSELs的阈值条件和输出功率特性,并进行了数值模拟。基于等价腔分析方法,建立了光泵浦VECSELs的谐振腔模型,给出了VECSEL芯片和输出镜表面的基模光斑随谐振腔腔长的变化情况。首次建立了双反射带反射镜结构VECSEL芯片有源区内部热载荷的分布方程,分别对比研究了单、双反射带反射镜反射率和厚度相同情况下VECSEL芯片的热特性,结果表明双反射带反射镜结构VECSEL芯片的热特性明显优于单反射带反射镜结构VECSEL芯片的热特性。
     针对VECSEL芯片封装方式差异对芯片热特性的影响,提出VECSEL芯片双面键合散热片封装工艺及方法,研究了双面键合散热片结构VECSEL芯片的热特性,并从实验上进行了验证,结果表明双面键合散热片芯片封装方式有效改善了激光器的热特性。开展了泵浦光入射方向、芯片热管理方式、芯片工作温度等差异的实验研究,在工作温度为10℃时,最大获得了4.6W978nm光泵浦VECSELs激光输出,光光转换效率达到29.7%。为了从泵浦光束分布的角度来提高对光泵浦VECSELs的热管理,首次将环形光束的应用引入到激光器的泵浦领域,深入研究了环形光束参数对VECSEL芯片热特性的影响,通过光泵浦实验,在室温下获得4.64W激光输出。研究结果表明:在同等工作条件下,与高斯光束泵浦VECSELs相比,环形光束泵浦VECSELs的阈值较高,但其出现热翻转效应相对延迟,允许注入更大的有效泵浦功率,最大输出功率相应得到提高。研究了光泵浦VECSELs声光调Q激光器的输出功率特性,通过在腔内置入倍频晶体开展了连续运转和准连续运转情况下的腔内倍频实验研究,最大分别获得了0.61W和0.86W489nm激光输出。
Optically pumped vertical-external-cavity surface emitting semiconductor lasers (OPS-VECSELs) is a novel all solid state laser, which with semiconductor gain structure material to be laser material.To be an outstanding member in laser family, OPS-VECSELs combined the manufacture structure of the diode pumped solid state laser and the traditional electrically pumped vertical-cavity surface emitting semiconductor lasers (EPS-VCSELs), and possessed high power, high conversion efficiency, good beam quality, wide range of tunable wavelength, etc. Today, OPS-VECSELs is widely used in many fields for its prominent advantages, such as high speed laser printing, optical data storage, laser communication, target detection, criminal investigation, biochemistry and material analysis, clinical medical, image display, etc.
     The emergence and development process of OPS-VECSELs is reviewed in the paper at first, then the basic principle and typical structure of OPS-VECSELs are introduced in detail. The semiconductor material system of VECSEL chip is elaborated systematically, and the gain material of the design theory and design process of VECSEL chip is studied deeply. The epitaxial growth and the packaging preparation technology process of VECSEL chip is studied based on the structure designed of VECSEL chip and the working characteristics of OPS-VECSELs. The thermal characteristics of OPS-VECSELs is studied deeply via finite element method, the theoretical model of OPS-VECSELs is set up based on the rate equation theory, the cavity structure of OPS-VECSELs is analyzed. Finally, a series of OPS-VECSELs experiments are carried out.
     The lattice mismatched between the two adjacent layer, the thickness weighted and the zero-stress method of strain balance are introduced based on the semiconductor energy band theory. The traditional structure of VECSEL chip is introduced, and each layer in the chip is designed one after another. The equations of Bragg reflector's reflectivity and band width are set up based on the theory of multiple-beam interference and optical matrix, the influence of the number of Bragg layer and the refractivity difference of two materials on Bragg reflector's reflectivity are analyzed.808nm and980nm double band mirror is designed based on the pattern of ((HL)DH)N, the reflectivity of99.991%and9.959%are obtained respectively. The influence of Indium composition in the InGaAs quantum well layer, P composition in the GaAsP and the width of InGaAs quantum well layer on laser wavelength are studied respectively. The method of multiple InGaAs strain quantum wells compensated symmetrically by GaAsP in double side of InGaAs layer is presented based on model solid theory, k.p theory, Pikus-Bir theory and standing wave condition, and the structure of980nm VECSEL wafer with13RPG InGaAs is designed. The preparation process of VECSEL wafer is given out. and the980nm VECSEL wafer is grown on GaAs substrate by Molecular Beam Epitaxy (MBE). The wafer's characteristic parameters are measured, and the result show that the VECSEL wafer designed is very good. The GaAs substrate in the VECSEL wafer is removed by mechanical polishing and chemical etching, then the metallization on Surface of VECSEL chip and heat spreader, the heat spreader or VECSEL chip is welded to the heatsink via Indium solder at higher temperature. The heat spreader is bonded to the VECSELchip via liquid capillary bonding at last.
     The thermal model is set up based on the mechanism of waste heat generated in the OPS-VECSELs. The theory model of OPS-VECSELs is set up based on the rate equation theory, the laser threshold condition and the characteristics of output power are given out. then the numerical simulation is carried out. The cavity model of OPS-VECSELs is set up based on the equivalent resonator method, then the curves that the spot size of fundamental mode in the VECSEL chip and on the output mirror changes as the distance of laser cavity are given out in the paper. The equation of thermal load distribution in the active layer of VECSEL chip with DBM is set up firstly, the thermal characteristics of VECSEL chip with DBR and DBM are analyzed comparatively at the condition of same reflectivity and same thickness. The result show that thermal characteristics of VECSEL chip with DBM is better than VECSEL chip with DBR clearly.
     In order to study the influence of the difference chip packaging way to the thermal characteristics of VECSEL chip, VECSEL chip with double side bonding heat spreader is presented in the paper. The thermal characteristics of VECSEL chip with double side bonding heat spreader is studied theoretically and experimentally. The results show that the thermal characteristics of VECSEL chip is improved clearly. A series experiments of OPS-VECSELs are carried out at the different incidence of pump light, the different thermal management way and the different working temperature of VECSEL chip,4.6W978nm OPS-VECSELs is obtained and the max optical-to-optical conversion efficiency is29.7%at10℃.In order to study the influence of different pump beam distribution to thermal management of OPS-VECSELs. Annular beam is introduced into the laser pumping field firstly, and the influence of annular beam's parameters on the thermal characteristics of OPS-VECSELs are analyzed via finite element method deeply.Then the experiment of annular beam pumped VECSELs is carried out, and4.64W978nm OPS-VECSELs is obtained at room temperature. At the same operating conditions, compared to VECSELs pumped by Gaussian beam, annular beam pumped VECSELs poccessed higher threshold, good thermal effect, permitting higher efficient pump power, and higher maximum output power. At last, the acousto-optical q switched OPS-VECSELs and the double frequency intracavity experiment are also shown in the paper,0.61W and0.86W489nm laser are obtained in CW and QCW laser cavity respectively.
引文
[1]P. Kreuter.B-Witzigmann,D.J.H.C.Maas.et al.On the design of electrically pumped vertical-external-cavity surface-emitting lasers[J]. Appl. Phys.B,2008,91:257-264
    [2]R. S. Putnam, C. B. Roxlo, M. M. Salour. S. H. Groves, and M. C.Plonko. Optically pumped mode-locked InGaAsP lasers[J]..Appl. Phys. Lett.,1982.40(8):660-662
    [3]Kuznetsov M, Hakim I F, Sprague R.et al. High power(>0.5W CW) diode pumped vertical-external-cavity surface emitting semiconductor lasers with circular TEM00 beams [J]. IEEE Photon. Techn. Lett.,1997,9 (8):1063-1065
    [4]Hall,R.N.,Fenner.G.E..Kinhsley,J.D..and et al.Coherent light emission from GaAs junctions[J].Phys. Rev.Lett.,1962,9(9):366-368
    [5]Nathan,M.I.,Dumke,W.P.,Burns,G.,and et al.Stimulated emission of radiation from GaAs p-n junctions[J]. Appl. Phys. Lett.,1962,1(3):62-64
    [6]Holonyak,N. and Bevacqua,S-F.,Coherent(Visible) light emission from Ga(As1-xPx) junctions[J]. Appl. Phys. Lett.,1962,1(4):82-83
    [7]Quist,T. M.,Rediker,R. H.,Keyes,R.J., and et al.Semiconductor maser of GaAs[J]. Appl. Phys. Lett., 1962,1(4):91-92
    [8]M. B. Panish,1. Hayashi, and S. Sumski. Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm2[J]Appl. Phys. Left.,1970,16:326
    [9]K. Iga:Laboratory Notebook (March 22,1977).
    [10]H.Soda, K. Iga, C. Kitahara, and Y. Suematsu. Jpn. J. Appl. Phys.,18(1979) 2329.
    [11]K. Iga, F. Koyama and S. Kinoshita. IEEE J. Quantun Electron.,24 (1988) 1845
    [12]J G McInerney, A Mooradian, A Lewis,et al.High brightness 980 nm pump lasers based on the Novalux Extended Cavity Surface-Emitting Laser (NECSEL) concept. Proc. of SPIE,2003,4947:240-251
    [13]E. U. Rafailov,W. Sibbett,A. Mooradian,et al.Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal[J].Opt. Lett.,2003.28(21):2091-2093
    [14]M. Nakamura, A. Yariv, H.W. Yen.et al.Optically pumped GaAs surface laser with corrugation feedback[J]. Appl. Phys. Lett.,1973.22(10):515-516
    [15]J. L. Jewell, K. F. Huang, K. Tai,and et al.Vertical cavity single quantum well laser[J]. Appl. Phys. Lett.,55 (5)1989:424-426
    [16]W.B.Jiang,S.R.Friberg.H.Iwamura,and et al.High powers and sub-picosecond pulses from an external-cavity surface-emitting InGaAs/InP multiple quantum well laser[J]. Appl. Phys. Lett.,1991,58(8): 807-809
    [17]H.Q. Le,S.D.Cecca,and A.Mooradian.Scalable high power optically pumped GaAs laser[J]. Appl. Phys.Lett.,1991,58(18):1961-1969
    [18]Wang-hua Xiang,et al.Femtosecond external-cavity surface-emitting InGaAs/InP multiple-quantum-well laser[J].Opt. Let.,1991.16(18):1394-1396
    [19]H.Q.Le,W D Goodhue,P A'Maki,et al.Diode-laser pumped InGaAs/GaAs/AlGaAs heterostructure lasers with low internal loss and 4-W average power[J].Appl. Phys. Lett.,1993,63:1465-1467
    [20]于广友,范希武,张吉英等ZnSe0.93Te0.07-ZnSe多量子阱的光泵受激发射[J].发光学报.1997,18(1):81-83
    [21]Luis Gigueroa,Dan Botez and Shyh Wang.Analysis of Mode Broadening Due to Transient Heating of Optically Pumped Semiconductor Lasers[J].IEEE J.of Q.E.,1977,QE-13(8):612-615
    [22]T.E.Sale.Cavity and reflector design for vertical cavity surface emitting lasers[J].IEE Pro-Optoelectron,1995.142(1):37-43
    [23]M. Hilpert,H. Klann,M. Hofmann,et al.Influence of carrier relaxation on the dynamics of stimulated emission in microcavity lasers[J]. Appl. Phys. Lett.,1997,71 (26):3761-3763
    [24]Mark Kuznetsov,Robert Sprague,and A. Mooradian.Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams[J]. IEEE J. Sel. Top. Q. E.,1999,5(3):561-573
    [25]J. Hader,S.W. Koch.J.V. Moloney.Microscopic theory of gain and spontaneous emission in GalnNAs laser material[J].Solid-State Electron.,2003,47:513-521
    [26]Jung-Tang Chu.Tien-Chang Lu, Min You.et al.Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers[J].Appl. Phys. Lett.,2006,89:121112
    [27]Zakharian A.R., Hader J.,Moloney J.V.,et al VECSEL threshold and output power-shutoff dependence on the carrier recombination rates[J]. IEEE Photon. Techn. Lett.,2005.17(12):2511-2513.
    [28]J. Geske, Kian-Giap Gan,Yae L. Okuno,et al.Vertical-cavity surface-emitting laser active regions for enhanced performance with optical pumping[J]. IEEE J. Q. E.,2004,40(9):1155-1162
    [29]M. Yu. Morozov, Yu. A. Morozov and V. V. Popov. Effect of Pump Wave Reflections on the Excitation of a Dual-Wavelength Vertical-Cavity Surface-Emitting Laser[J].Semiconductors,2009.43(3): 382-386
    [30]Zhang Peng,Yanrong Song.Tian Jinrong.et al.Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers[J].J. of Appl. Phys.,2009,105(5):053103-053103-8
    [31]Christina Buckers,Eckhard Kuhn,Christoph Schlichenmaier.et al.Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems[J]. Phys. Status Solidi B,2010,247(4):789-808
    [32]华玲玲,宋晏蓉,张鹏等.光抽运半导体激光器增益特性研究[J].光学学报,2010,30(6):1702-1708
    [33]M. Mangold, Valentin J. Wittwer, Oliver D. Sieber et al.VECSEL gain characterization[J]. Opt. Exp.,2012,20 (4),4136-4148
    [34]M. E. Barnes,Z. Mihoubi,K. G. Wilcox,et al.Gain bandwidth characterization of surface emitting quantum well laser gain structures for femtosecond operation[J].Opt.Exp..2010,18(20):21330-2134
    [35]何春凤,路国光,单肖楠等.高功率980nm垂直外腔面发射激光器的理论研究[J].光学精密工程.2005,13(3):247-252
    [36]Hailong Zhou, M. Diagne, E. Makarona.et al.Near ultraviolet optically pumped vertical cavity laser[J]. Eletron. Lett.,2000,36(21):1777-1779
    [37]Rui Chen,Sun H.D.,Wang, T.,et al.Optically pumped ultraviolet lasing from nitride nanopillars at room temperature[J]. Appl. Phys. Lett.,2010,96(24):241101
    [38]Zeng X.,Boiko D. L.,Cosendey G..et al.Optically pumped long external cavity InGaN/GaN surface-emitting laser with injection seeding from a planar microcavity[J]Appl. Phys. Lett.,2012,101(14):141120
    [39]Shing-Chung WANG,Tien-Chang LU,Chih-Chiang KAO,et al.Optically Pumped GaN-based Vertical Cavity Surface Emitting Lasers:Technology and Characteristics[J].Jpn. J. Appl. Phys..2007,46(8B): 5397-5407
    [40]Chih-Chiang Kao, T. C. Lu. H.W. Huang,et al.The Lasing Characteristics of GaN-Based Vertical-Cavity Surface-Emitting Laser With AIN-GaN and Ta2O5-SiO2 Distributed Bragg Reflectors[J]. IEEE Photon. Techn. Lett..2006,18(7):877-879
    [41]Jung-Tang Chu,Tien-Chang Lu,Min You,et al.Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers[J].Appl. Phys.Lett.,2006,89:121112
    [42]V.I. Kozlovskii, B.M. Lavrushin, Ya.K. Skasyrskii,et al.Vertical-external-cavity surface-emitting 625-nm laser upon optical pumping of an InGaP/AlGaInP nanostructure with a Bragg mirror[J]. Quantum Electron.,2009.39(8) 731-734
    [43]M.I. Muller, N. Linder. C. Karnutsch.et al.Optically pumped semiconductor thin-disk laser with external cavity operating at 660nm.Proc. of SPIE,2002,4649:265-271
    [44]Schneider R.P.,Bryan R.P.,Lott J.A.,et al.Visible (657nm) InGaP/InAlGaP strained quantum well vertical-cavity surface-emitting laser[J]Appl. Phys. Lett..2009,60(15):1830-1832
    [45]Jennifer E. Hastie. Stephane Calvez,Martin D. Dawson. et al.High power CW red VECSEL with linearly polarized TEM00 output beam[J].Opt. Exp.,2005,13(1):77-81
    [46]J. E. Hastie, Hopkins J.-M..Calvez S..et al.0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser[J].IEEE Photon. Techn. Lett..2003,15(7):894-896
    [47]R. Jäger, M. Grabherr,C. Jung, et al.57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs[J].Electrow. Lett.,1997,33(4):330-331
    [48]Beyertt S.S., Brauch U.,Demaria F..et al.Efficient gallium-arsenide disk laser[J].IEEE J. Q. E., 2007,43(10):869-875.
    [49]W. Zhang,T. Ackemann,S. McGinily, et al.Operation of an optical in-well-pumped vertical-external-cavity surface-emitting laser[J] Appl. Opt.,2006,45(29):7729-7735
    [50]Mark A. Holm, David Burns, Pasquale Cusumano, et al.High-Power Diode-Pumped AlGaAs Surface-Emitting Laser[J]. Appl. Opt.,1999,38(27):5781-5784
    [51]William J. Alford, Thomas D. Raymond.and Andrew A. Allerman. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser[J]. J. Opt. Soc. Am. B,2002,19(4):663-666
    [52]Li Fan,Chris Hessenius, Mahmoud Fallahi,et al.Highly strained InGaAs/GaAs multiwatt vertical-external-cavity surface-emitting laser emitting around 1170 nm [J]. Appl. Phys. Lett., 2007,91(131114):1-3
    [53]Jari Lyytik"ainen, Jussi Rautiainen, Soile Suomalainen,et al. MBE grown optically pumped semiconductor disk lasers emitting at 940 nm[J]. Materials Science and Engineering B,2008,147:161-165
    [54]S. Lutgen, T. Albrecht, P. Brick.et al.8W high-efficiency continuous-wave semiconductor disk laser at 1000nm[J]. Appl. Phys. Lett.,2003,82(21):3620-3622
    [55]Ki-Sung Kim, J. Yoo, G. Kim.et al.920-nm Vertical-External-Cavity Surface-Emitting Lasers With a Slope Efficiency of 58% at Room Temperature [J]. IEEE Photon. Techn. Lett.,2007,19(20):1655-1657
    [56]Chery J White, Alan H Paxton, John G Mclnerney,etal. High-power optically pumped pulsed InGaAs/GaAs vertical-cavity surface-emitting semiconductor laser with resonant periodic gain at 918 nm.Proc.ofSPIE,1992,1634:92-101
    [57]M.Jacquemet, M. Domenech, G. Lucas-leclin, et al. Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling[J]. Appl. Phys. B,2007,86:503-510.
    [58]J Konttinen, A Harkonen, P Tuomisto,et al.High-power (>1W) dilute nitride semiconductor disk laser emitting at 1240nm[J]. New J. of Phys.,2007,9(140):1-8
    [59]A.Rutz, V. Liverini,D.J.H.C. Maas,et al.Passively modelocked GalnNAs VECSEL at centre wavelength around 1.3um[J].Eletron. Lett.,2006,42(16):926-927
    [60]Stephane Calvez, David Burns, and Martin D. Dawson.Optimization of an Optically Pumped 1.3um GaInNAs Vertical-Cavity Surface-Emitting Laser[J].IEEE Photon. Techn. Lett.,2002,14(2):131-133
    [61]Kevin Schires,Rihab Al Seyab,Antonio Hurtado,et al.Optically-pumped dilute nitride spin-VCSEL[J].Ppt.Exp.,2012,20(4):3550-3555
    [62]C.Reith, S. J. White, M. Mazilu,et al.Room temperature electron spin relaxation in GalnNAs multiple quantum wells at 1.3 μm[J].Appl. Phys. Lett.,2006,89(21):211122
    [63]Hopkins, J.-M.,Scott, S.A., Burns, et al.A 0.6W CW GalnNAs vertical external cavity surface emitting laser emitting at 1.32um[J].Electron. Lett.,2004,40(1):30-31
    [64]Hans Lindberg, Mahdad Sadeghi, Mathias Westlund,et al.Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber[J]. Opt.Lett.,2005,30(20):2793-2795
    [65]Antti Rantamaki,Jussi Rautiainen, Alexei Sirbu. et al.1.56 μm 1 watt single frequency semiconductor disk laser[J].Opt. Exp.,2013.21(2):2355-2360
    [66]H.Lindberg, M. Strassner. J. Bengtsson, et al.InP-based optically pumped VECSEL operating CW at 1550 nm[J].IEEE Photon. Techn.Lett.,2004,16(2):362-364
    [67]J.Lyytikainen,J. Rautiainen.A. Sirbu,et al.High-power 1.48-μm wafer-fused optically pumped semiconductor disk laser[J].IEEE Photon. Techn. Lett.,2011,23(13):917-919
    [68]J. Rautiainen, J. Lyytikainen, A. Sirbu,et al.2.6 W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion[J].Opt. Exp.,2008,16(26):21881-21886.
    [69]A.Harkonen, M. Guina, O. Okhotnikov,et al.1-W antimonide based vertical external cavity surface emitting laser operating at 2 um[J].Opt. Exp.,2006,14:6479-6484
    [70]N.Schulz,M. Rattunde, C. Manz,et al.Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 um[J].IEEE Photon. Techn. Lett.,2006,18(9):1070-1072
    [71]N. Schulz, M. Rattunde, C. Ritzenthaler,et al.Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 um[J]Appl. Phys. Lett.,2007,91:091113
    [72]Rosener B., Rattunde M., Moser R., et al.Continuous-wave room-temperature operation of a 2.8 Mm GaSb-based semiconductor disk laser[J].Opt. Lett.2011,36:319-321
    [73]T. Hosoda,G. Belenky, L. Shterengas,et al.Continuous-wave room temperature operated 3.0 μm type I GaSb-based lasers with quinternary AlInGaAsSb barriers[J]. Appl. Phys. Lett.,2008,92:091106
    [74]Z. Shi,G. Xu, P. J. McCann,et al.IV-VI compound midinfrared high-reflectivity mirrors and vertical-cavity surface-emitting lasers grown by molecular-beam epitaxy [J]. Appl. Phys. Lett.,2000, 76(25):3688-3690
    [75]M. Rahim, A. Khiar, F. Felder,et al.4.5 um wavelength vertical external cavity surface emitting laser operating above room temperature[J]. Appl. Phys. Lett.,2009,94:201112-14
    [76]M. Rahim, M. Arnold, F. Felder, et al.Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5 um wavelength[J]. Appl. Phys. Lett.,2007,91:151102
    [77]Rahim M., Fill M.,Felder F.,et al.Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power. [J]. Appl. Phys. Lett.,2009,95(24):241107
    [78]J.Fiirst and H. Pascher.Continuous-wave emission from midinfrared IV-VI vertical-cavity surface-emitting lasers[J]. Appl. Phys. Lett.,2004,84(17):3268-3270
    [79]S. Calvez, D. Burns and M. D.Dawson. Optimization of an optically pumped 1.3-μm GaInNAs Vertical-Cavity Surface-Emitting Laser [J]. IEEE Photon. Techn. Lett.,2002,14(2):131-133
    [80]Ki-Sung Kim, J. Yoo, G. Kim et al.. Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser [J].IEEE Photon. Techn. Lett.,2007,19(23): 1925-1927
    [81]Li Fan, Jorg Hader, Marc Schillgalies,et al.High-Power Optically Pumped VECSEL Using a Double-Well Resonant Periodic Gain Structure[J]. IEEE Photon. Techn. Lett.,2005,17(9):1764-1766
    [82]Li Fan.Mahmoud Fallahi,Jorg Hader,et al.Multichip vertical-external-cavity surface-emitting lasers:a coherent power scaling scheme[J].Opt. Lett.,2006,31 (24):3612-3614
    [83]K. S. Kim, J. R. Yoo, S. H. Cho,et al.1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature. [J]. Appl. Phys. Lett.,,2006,88:091107
    [84]Chilla Juan,Butterworth Stuart,Zeitschel Alex,et al.High power optically pumped semiconductor lasers.Proc. of SPIE,2004,5332:143-150
    [85]Jun Ho Lee, Jun Youn Kim, Sang Moon Lee,et al.9.1-W High-Efficient Continuous-Wave End-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser[J].IEEE Photon.Techn. Lett.,2006,18(20):2117-2119.
    [86]Hunziker Lukas E,Shu Qi-Ze,Bauer Dominik,et al.Power-scaling of optically-pumped semiconductor lasers. Proc. of SPIE,2007.6451:64510A
    [87]B. Rudin, A. Rutz, M. Hoffmann, et al.Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J].Opt. Lett.,2008,33(22):2719-2721
    [88]Wang T.-L.. Kaneda Y.. Yarborough J.M.,et al. High-power optically pumped semiconductor laser at 1040 nm[J].IEEE Photon. Techn. Lett.,2010,22, (9):661-663
    [89]Chernikov A., Herrmann J., Koch M., et al.Heat management in high-power verticalexternal-cavity surface-emitting lasers[J].IEEE J. Sel. Top. Quantum Electron.,2011.22,(9):1772-1778
    [90]B.Heinen,T.-L.Wang,M.Sparenberg,and et al.,106W continuous-wave output power from vertical-external-cavity surface-emitting laser[J].Electron. Lett.2012,48(9):516-517
    [91]T.-L. Wang, B. Heinen, J. Hader,et al.Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W[J]. Laser & Photon. Rev.,2012.6(5):L12-L14
    [92]A. J. Kemp,John-Mark Hopkins,A. J. Maclean, et al. Thermal Management in 2.3-um Semiconductor DiskLasers:A Finite Element Analysis[J]. IEEE J. Q. E.,2008,44(2):125-135
    [93]B. Rosener, N. Schulz, M. Rattunde,et al. High-Power High-Brightness Operation of a 2.25-um (AlGaIn)(AsSb)-Based Barrier-PumpedVertical-External-Cavity Surface-Emitting Laser [J].IEEE Photon. Techn. Lett.,2008,20(7):502-504
    [94]Hans Lindberg, Martin Strassner et al. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader[J].IEEE Photon. Techn. Lett.,2004,16(5):1233-1235
    [95]A.R.Albrecht, A.Stintz, F.T.Jaecke,et al.1220-1280-nm Optically Pumped InAs Quantum Dot-based Vertical External-cavity Surface-emitting Laser[J].IEEE J. Sel. Top. Quantum Electron., 2011,17(6):1787-1793
    [96]A.CapraraJ,L. Chilla, L. A. Spinelli,et al.Intracavity frequency-converted optically-pumped semiconductor laser.US,5991318[P].1998-10-26
    [97]Y. Kaneda, J. M. Yarborough, L. Li,et al.Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator[J].Opt. Lett.,2008,33(15):1705-1707.
    [98]T. Schwarzback, H.Kahle, Eichfelder, M., et al.Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGalnP vertical external-cavity surface emitting laser down to 328 nm[J].Appl. Phys. Lett.,2011,99:261101.
    [99]J. Hastie, L. Morton, A. Kemp,et al.Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface emitting laser[J].Appl. Phys. Lett.,2006,89(6):061114.
    [100]S. Calvez, J. E. Hastie. M. Guina,et al.Semiconductor disk lasers for the generation of visible and ultraviolet radiation[J].Laser & Photon.Rev.,2009.3(5):407-434.
    [101]E. Schiehlen, M. Golling, and P.Unger.Diode-Pumped Semiconductor Disk Laser With Intracavity Frequency Doubling Using Lithium Triborate (LBO) [J].IEEE Photon. Techn. Lett..2002.14(6):777
    [102]O. CASEL1,D. WOLL,M.A. TREMONT.et al.Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser[J]. Appl. Phys.B,2005.81:443-446.
    [103]JunHo Lee,SangMoon Lee.Taek Kim,et al.7 W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser[J].Appl. Phys. Lett..2006,89:241107
    [104]R. Hartke,E. Heumann,G. Huber,et al.Efficient green generation by intracavity frequency doubling of an optically pumped semiconductor disk laser[J]. Appl. Phys.B,2007,87:95-99
    [105]A. Hein,S. Menzel. and P. Unger.High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range[J].Appl. Phys. Lett.,2012,101:111109.
    [106]M. Fallahi. Y. Li Fan. C. Kaneda.et al.5-W yellow laser by intracavity frequency doubling of high power vertical-external-cavity surface-emitting laser[J].IEEE Photon. Techn. Lett..2008.20(20): 1700-1702.
    [107]T. Leinonen. V. Korpijarvi, A.Harkonen.et al.7.4 W yellow GaInNAs based semiconductor disk laser[]].Electron. Lett.,2011,47(20):1139-1440.
    [108]E Gerster, I Ecker, S Lorch, et al.Orange emitting frequency doubled GaAsSb/GaAs semiconductor disk laser[J].J. of Appl. Phys.,2003,94:7397-7401
    [109]A. Rantamaki, A. Sirbu, A. Mereuta,et al.3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser[J].Opt. Exp.,2010,18(21):21645-21650.
    [110]A. Rantamaki, J. Rautiainen, J. Lyytikainen.et al.l W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser[J].Opt.Exp.,2012,20(8):9046-9051
    [111]S. Hoogland, S. Dhanjal, A. C. Tropper,et al.Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photon. Techn. Lett.,2000,12:1135-1138
    [112]Reto Haring, Rudiger Paschotta, Alex Aschwanden.et al.High-Power Passively Mode-Locked Semiconductor Lasers[J]. IEEE J. of Q.E.,2002,38(9):1268-1275.
    [113]Hans Lindberg, Mahdad Sadeghi, Mathias Westlund,et al.Mode locking a 1550 nm semiconductor disk laser by using a GalnNAs saturable absorber[J]. Opt. Lett.,2005,30(20):2793-2795
    [114]A. H. Quarterman, K. G. Wilcox.V. Apostolopoulos.et al.A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses[J].Nature Photon.,2009,3:729-731
    [115]M. Hoffmann, O. D. Sieber, D. J. H. C. Maas,et al.Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs[J].Opt. Exp.,2010.18:10143-10153.
    [116]K. G. Wilcox,A. H. Quarterman,H. E. Beere,et al.Repetition-frequency-tunablemode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz[J].Opt. Exp.,2011,19(23):23453-23459.
    [117]O. D. Sieber,V. J. Wittwer,M. Mangold.et al.FemtosecondVECSEL with tunable multi-gigahertz repetition rate[J].Optf.Exp.,2011,19(23):23538-23543.
    [118]M. Hoffmann, O. D. Sieber, V. J. Wittwer, et al.Femtosecond high-power quantum dot vertical external cavity surface emitting laser[J]. Opt. Exp.,2011,19(9):8108-8116.
    [119]P. Klopp, U. Griebner, M. Zorn.et al.Pulse repetition rate up to 92 GHz or pulse duration shorterthan 110 fs from a mode-locked semiconductor disk laser[J]. Appl. Phys. Lett.,2011,98(7):071103.
    [120]M. Scheller, T.-L. Wang, B. Kunert,et al.Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power[J]. Electron. Lett.,2012,48(10):588-589.
    [121]L. Kornaszewski,G. Maker,G. P. A. Malcolm,et al. SESAM-free mode-locked semiconductor disk laser[J].Laser & Photon.Rev.,2012,6(6):L20-L23.
    [122]Keith G. Wilcox, Anne C. Tropper, Harvey E. Beere,et al.4.35 kW peak power femtosecond pulse modelockedVECSEL for supercontinuum generation[J]. Opt. Exp.,2013,21(2):1599-1605
    [123]M. S. Miguel, Q. Feng, and J. V. Moloney.Light polarization dynamics in surface emitting semiconductor lasers[J].Phys. Rev. A,1995,52(2):1728-1739.
    [124]A.Gahl. S. Balle, and M. San Miguel.Polarization Dynamics of Optically Pumped VCSEL's[J]. IEEE J. of Q. E.,1999,35(3):342-351
    [125]R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman,et al.Memory Effect for Polarization of Pump Light in Optically Pumped Vertical-Cavity Semiconductor Lasers[J].IEEE J. of Q. E., 1998,34(8):1455-1460
    [126]Iba Satoshi,Koh Shinji,Ikeda Kazuhiro,et al.Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells[J]. Appl. Phys. Lett..2011.98(8):081113
    [127]Jennifer E. Hastie, Stephane Calvez, and Martin D. Dawson.High power CW red VECSEL with linearly polarized TEM00 output beam[J]. Opt. Exp.,2005,13(1):77-81
    [128]Li Fan,Mahmoud Fallahi,James T. Murray,et al.Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers[J].Appl. Phys. Lett.,2006.88:021105
    [129]Li Fan.Mahmoud Fallahi.Jorg Hader,et al.Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser[J]. Appl. Phys. Lett.,2007,90:181124
    [130]Zhu YiMing,Zhang Fan,You GuanJun,et al.Stable Circularly Polarized Emission from a Vertical-Cavity Surface-Emitting Laser with a Chiral Reflector[J].Appl.Phys. Exp.,2012,5(3):032102.
    [131]Li Fan,Chris Hessenius, Mahmoud Fallahi, et al.Highly strained InGaAs/GaAs multiwatt vertical-external-cavity surface-emitting laser emitting around 1170 nm[J]. Appl. Phys. Lett.,2007. 91:131114
    [132]C. Borgentun,J. Bengtsson,A. Larsson,et al.Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser[J].IEEE Photon. Techn. Lett.,2010,22(13):978-980.
    [133]C.Borgentun,C. Hessenius,J. Bengtsson,et al.Widely-tunable high-power semiconductor disk laser with non-resonant ARassisted gain element on diamond heat spreader[J].IEEE Photon. Journal, 2011,3(5):946-953.
    [134]J. M. Hopkins, A. J. Maclean, E. Riis,et al.Tunable, single-frequency, diode-pumped 2.3μm VECSEL[J]. Opt. Exp.,2007,15(13):8215
    [135]J. Paajaste, S. Suomalainen,R. Koskinen,et al.High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2um[J]. Journal of Crystal Growth,2009,311:1917-1919
    [136]A. Laurain, M. Myara, G. Beaudoin,et al.High power single frequency continuously tunable compact extended cavity semiconductor laser[J].Opt. p.,2009,17(12):9503-9508.
    [137]A. Khiar, M. Rahim, M. Fill, et al. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si [J]. Appl. Phys. Lett.,2010,97 (151104):1-3
    [138]A. J. Kemp, A. J. Maclean, John-Mark Hopkins,et al.Thermal management in disc lasers: doped-dielectric and semiconductor laser gain media in thin-disc and microchip formats[J]. J. of Modern Optics,2007,54(12):1669-1676
    [139]Adrian Keating, Alexis Black, Adil Karim and et al. High-Temperature Optically Pumped 1.55-umVCSEL Operating at 6 Gb/s[J]. IEEE Photon. Techn. Lett.,2000,12(2):115-118
    [140]A.Laurain,M. Myara,G. Beaudoin,et al.Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser[J].Opt.Exp.,2010,18(14): 14627-14636
    [141]Marc Schmid.Sarah Benchabane,Firuz Torabi-Goudarzi,et al.Optical in-well pumping of a vertical-external-cavity surface-emitting laser[J]Appl.Phys. Lett.,2004,84(24):4860-4862
    [142]Peter Brick, Stephan Lutgen, Tony Albrecht,et al.High-efficiency high-power semiconductor disc laser.Proc. of SPIE,2003.4993:50-56
    [143]Hans Lindberg, Martin Strassner, Jorgen Bengtsson,et al.High-Power Optically Pumped 1550-nm VECSEL With a Bonded Silicon Heat Spreader[J]. IEEE Photon. Techn. Lett.,2004,16(5):1233-1235
    [1]N. J. Ekins-Daukes,K. Kawaguchi.and J. Zhang.Strain-Balanced Criteria for Multiple Quantum Well structures and its signature in X-ray rocking curves[J]. Crystal Growth & Design,2002,2(4):287-292
    [2]C.P. Lee, C.M. Tsai and J.S. Tsang.Dual-wavelength Bragg reflectors using GaAsIAIAs multilayers[J].Electron. Lett.,1993,29(22):1980-1981
    [3]S. Calvez, D. Burns and M. D.Dawson. Optimization of an optically pumped 1.3-μm GalnNAs Vertical-Cavity Surface-Emitting Laser [J]. IEEE Photon. Techn. Lett.,2002,14(2):131-133
    [4]Ki-Sung Kim, J. Yoo, G. Kim et al.. Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser [J].IEEE Photon. Techn. Lett.,2007,19(23):1925-1927
    [5]Li Fan, Jorg Hader, Marc Schillgalies,et al.High-Power Optically Pumped VECSEL Using a Double-Well Resonant Periodic Gain Structure[J]. IEEE Photon. Techn. Lett.,2005,17(9):1764-1766
    [6]C.Roux, E. Hadji and J.-L. Pautrat 2.6 um optically pumped vertical-cavity surface-emitting laser in the CdHgTe system[J], Appl. Phys. Lett.,1999,75(24):3763-3765
    [7]William J Alford, Thomas D Raymond,and Andrew A Allerman.High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser [J]. J. Opt.Soc.Am.B.,2002,19(4):663-666
    [8]曹玉莲,廉鹏,王青等780nm InGaAsP/InGaP/AlGaAs高功率半导体激光器[J].半导体学报,2006,27(9):1621-1624
    [9]E. Schiehlen, M. Golling, and P. Unger.Diode-Pumped Semiconductor Disk Laser With Intracavity Frequency Doubling Using Lithium Triborate (LBO)[J].IEEE Photon. Tech. Lett.,2002,14(6):777-779
    [10]Guoguang Lu, Chunfeng He,Li Qin,et al.980-nm optically pumped semiconductor disk laser[J]. Chinese Opt.Lett.,2007,5(s):151-153
    [11]Fei Wang, Xiaohua Wang, Zhipeng Wei. High Beam Quality 978 nm Optically Pumped Vertical External Cavity Surface Emitting Semiconductor Laser[J]. Optik,2013,124(11):1019-1021.
    [12]Chilla Juan,Butterworth Stuart,Zeitschel Alex.et al.High power optically pumped semiconductor lasers.Proc. of SPIE,2004,5332:143-150
    [13]Jan Muszalski,Artur Broda,Agata Jasik,et al.VECSELs emitting at 976nm designed for second harmonic generation in the blue wavelength region. Proc. ofSPIE,2004,8702:143-150
    [1]A. J. Kemp, G. J. Valentine, Jon-Mark Hopkins,et al.Thermal Management in Vertical-External-Cavity Surface-Emitting Lasers:Finite-Element Analysis of a Heatspreader Approach [J]. IEEE J. Q. E.,2005, 41(2):148-155.
    [2]A. J. Kemp,John-Mark Hopkins,A. J. Maclean, et al. Thermal Management in 2.3-um Semiconductor DiskLasers:A Finite Element Analysis [J]. IEEE J. Q. E.,2008,44(2):125-135.
    [3]H.Lindberg, M. Strassner, E. Gerster et al.. Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers [J]. IEEE J. Sel. Top. Q. E.,2005,11(5): 1126-1134.
    [4]A.J. Kemp,A.J. Maclean,J.E. Hastie,et al. Thermal lensing, thermal management and transverse mode controlin microchip VECSELs[J].Appl. Phys.B,2006,83:189-194.
    [5]Park K H.Kim K J.Chang O M. Effects of pad properties on materialremoval in chemical mechanical polishing[J]. J. of Materials Processing Techn.,2007,187-188:73-76.
    [6]Jianfeng Luo and David A. Dornfeld.Material removal mechanism in chemical mechanical polishing: theory and modeling[J].IEEE Transactions on Semiconductor Manufacture..2001.14(2):112-133
    [7]G. B. Basim, J. J. Adler, U. Mahajan,et al.Effect of Particle Size of Chemical Mechanical Polishing Slurries for Enhanced Polishing with Minimal Defects[J]. J. Electrochem. Soc.,2000,147(9):3523-3528
    [8]M.G. John,D. Chris. Polishing pad surface characterisation in chemical mechanical planarisation[J].J of Materials Processing Techn.,2004,153-154:666-673.
    [9]R Kolenknow, R Nagahara. Chemical-mechanical wafer polishing and planarization in batch systems[J].Solid State Technology,1992,12:112-114.
    [10]J. J. LePore.An improved technique for selective etching of GaAs and Ga1-xAlxAs[J].J. of Appl. Phys.,1980.51:6441-6442.
    [11]Y. Uenishi, H. Tanaka. and H. Ukita.Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining[J].IEEE Transactions on Electron Devices,1994,41(10):1778-1783.
    [12]侯立峰,冯源,杨永庄,等.高功率垂直腔面发射激光器的湿法腐蚀工艺[J].发光学报,2011,32(6):598-602.
    [13]Wu M.K..Liu M.,Tan F.,et al.Selective oxidization cavity confinement for low threshold vertical cavity transistor laser [J]Appl. Phys. Lett.,2013,103(1):011104
    [14]Changling Yan.Yun Deng,Peng Li,et al. Improvement of InGaAs/GaAs vertical-cavity surface-emitting lasers by post-oxidation annealing[J].Chinese Opt. Lett.,2012.10(12):122501
    [15]Mong-Kai Wu,Feng M.,Holonyak N.Surface Emission Vertical Cavity Transistor Laser[J].IEEE Photon. Techn. Lett.,2012,24(15):1346-1348
    [16]王玉霞,王晓华,李辉.半导体激光器电极制备中的蒸发技术[J].半导体技术,2001,26(2):54-55
    [17]K. Yoshida and H.Morigami.Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability.2004,44:303-308
    [18]Z. L. Liau. Semiconductor wafer bonding via liquid capillarity [J]. Appl. Phys. Lett.,2000,77(5): 651-653
    [19]A. J. Kemp, G. J. Valentine, Jon-Mark Hopkins,et al.Thermal Management in Vertical-External-Cavity Surface-Emitting Lasers:Finite-Element Analysis of a Heatspreader Approach [J]. IEEE J. Q. E.,2005,41(2):148-155
    [20]A Haerkoenen,S Suomalainen,E Saarinen,et al.4W single-transverse mode VECSEL utilising intra-cavity diamond heat spreader [J]. Electron. Lett.,2006.42(12):693-694
    [21]Schulz N,Rattunde M,Ritzenthaler C,etal. Resonant optical in-well pumping of an (AIGaln)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 μm[J]. Appl. Phys. Lett..2007,91(9):1-3
    [22]J Y Kim,S Cho,S M Lee,etal. Highly efficient green VECSEL with intra-cavity diamond heat spreader [J]. Electron. Lett.,2007.43(2):105-107
    [23]A.J. Maclean, R. B. Birch, P. W,et al.Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders [J]. J. Opt. Soc. Am.B.,2009,26(12):2228-2236
    [1]Hans Lindberg, Martin Strassner et al. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader[J].IEEE Photon. Techn. Lett.,2004,16(5):1233-1235
    [2]K. Kim, J. Yoo, G. Kim,et al.Enhancement of pumping efficiency in a vertical-external-cavity surface-emitting laser[J]. IEEE Photon. Techn. Lett.,2007,19(23):1925-1927
    [3]A.R.Albrecht, A.Stintz, F.T.Jaeckel,et al.1220-1280-nm Optically Pumped InAs Quantum Dot-based Vertical External-cavity Surface-emitting Laser[J]. IEEE J. Sel. Top. Q. E.,2011,17(6):1787-1793
    [4]Schwarzback T.,Bek R.,Hargart F.,High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W[J].Appl. Phys. Lett.,2013,102(9):092101
    [5]Aramais R Zakharian,Joerg Hader,Jerome V Moloney,etal.Modeling and experimental result analysis for high-power VECSELs.High-power fiber and semiconductor lasers. Proc. of SPIE. 2003,4993:104-110
    [6]Chilla Juan,Butterworth Stuart,Zeitschel Alex,et al.High power optically pumped semiconductor lasers.Proc. of SPIE,2004,5332:143-150
    [7]Hunziker Lukas E,Shu Qi-Ze,Bauer Dominik,et al.Power-scaling of optically-pumped semiconductor lasers. Proc. of SPIE,2007,6451:64510A
    [8]B.Rudin, A.Rutz, M. Hoffmann, et al.Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J].Opt. Lett.,2008,33(22):2719-2721
    [9]Wang T.-L., Kaneda Y., Yarborough J.M.,et al. High-power optically pumped semiconductor laser at 1040 nm[J].IEEE Photon. Techn. Lett.,2010,22 (9):661-663
    [10]Chernikov A., Herrmann J., Koch M., et al.Heat management in high-power verticalexternal-cavity surface-emitting lasers[J].IEEE J.Sel. Top. Q. E.,2011,22,(9):1772-1778
    [11]B. Heinen,T.-L.Wang.M.Sparenberg,and et al.,106W continuous-wave output power from vertical-external-cavity surface-emitting laser[J].Electron. Lett.,2012,48(9):516-517
    [12]T.-L. Wang, B. Heinen, J. Hader,et al.Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W[J]. Laser Photon. rev.,2012,6(5):L12-L14
    [13]A J Kemp,A J maclean,J E Hastie,etal.Thermal lensing, thermal management and transverse mode control in microchip VECSELs[J] Appl Phys B.2006,83:189-194
    [14]李军,何春凤,秦莉等.光泵浦垂直外腔面发射半导体激光器的热管理[J].半导体光电,2008,29(2):170-172
    [15]陈柏众,戴特力,梁一平等.用有限元法讨论光抽运垂直外腔面发射半导体激光器的散热性能[J].中国激光,2009,36(10):2745-2750
    [16]Y.Menesguen and R. Kuszelewicz.Thermal Modeling of Large-Area VCSELs Under Optical Pumping[J].IEEE J. of Q. E.,2005,41 (7):901-908
    [17]H. Lindberg, M. Strassner. E. Gerster et al.. Thermal Management of Optically Pumped Long-Wavelength InP-Based Semiconductor Disk Lasers [J].IEEE J. Sel. Top. Q. E.,2005,11(5): 1126-1134
    [18]A. J. Kemp,John-Mark Hopkins,A. J. Maclean, et al.. Thermal Management in 2.3-um Semiconductor DiskLasers:A Finite Element Analysis[J].IEEE J. Q. E.,2008,44(2):125-135
    [19]Z. L. Liau. Semiconductor wafer bonding via liquid capillarity [J]. Appl. Phys. Lett.,2000,77(5): 651-653
    [20]Y Xia. J Yin. Generation of a focused hollow beam by an 2n phase plate and its application in atom ormolecule optics[J]. J.Opt.Soc.Am.B.2005.3(22):529-536
    [21]Cai YJ.Wang F.Partially coherent anomalous hollow beam and its paraxial propagation[J].Phys. Lett. A,2008,372(25):4654-4660
    [22]Liu J,Zhang GT,Sun F.Diffractive micro-optical elements for implementing hollow beam and bi-focus simultaneously[J].Opt.& Laser Techn.,2008,40(7):912-919
    [23]Yangjian Cai.Model for an anomalous hollow beam and its paraxial propagation[J].Opt. Lett.,2007,32(21):3179-3181
    [24]Rijuparna Chakraborty,Ajay Ghosh.Generation of an elliptic hollow beam using Mathieu and Bessel functions[J]. J.Opt.Soc.Am.A,2006,23(9):2278-2282
    [25]Hu ML,Wang CY,Serebryannikov EE,etal.Wavelength-tunable hollow-beam generation by a photonic-crystal fiber[J].Laser Phys. Lett.,2006,3(6):306-309
    [26]Chengliang Zhao,Yangjian Cai,Fei Wang,etal. Generation of a high-quality partially coherent dark hollow beam with a multimode fiber[J].Opt. Lett.,2008,33(12):1389-1391
    [27]Zhang Lei,Lu Xuan-Hui,Chen Xu-Min,etal.Generation of a Dark Hollow Beam inside a Cavity[J].Chinese phys. Lett.,2004,21(2):298-301
    [28]Depret B,Verkerk P,Hennequin D.Characterization and modelling of the hollow beam produced by a real conical lens[S].Opt. Commun.,2002,211(1-6):31-38
    [1]Jun-Youn Kim and Jongin Shim. An Analytical Model of the lntracavity Optical Second Harmonic Generation ina Vertical-External-Cavity Surface-Emitting Laser[J]. IEEE J. of Q. E.,2008,44(8): 755-762
    [2]M.Kuznetsov,F.Hakimi.R.Sprague,et al. Design and Characteristics of High-Power(>0.5-W CW)Diode-Pumped Veryical-External-Cavity Surface-Emitting Semiconductur Lasers with Circular TEMoo Beams[J]. IEEE J.Sel.Top.Q. E.,1999,5(3):561-573
    [3]M. Hoffmann, O. D. Sieber, V. J.Wittwer, et al.Femtosecond high-power quantum dot vertical external cavity surface emitting laser[J]. Opt. Exp.,20\1,19(9):8108-8116.
    [4]P. Klopp, U. Griebner. M. Zorn.et al.Pulse repetition rate up to 92 GHz or pulse duration shorterthan 110 fs from a mode-locked semiconductor disk Iaser[J]. Appl. Phys. Lett..2011,98(7):071103.
    [5]L. Kornaszewski, G. Maker, G. P. A. Malcolm.et al. SESAM-free mode-locked semiconductor disk laser[J].Laser & Photon.Rev.,2012,6(6):L20-L23.
    [6]Keith G. Wilcox, Anne C. Tropper, Harvey E. Beere.et al.4.35 kW peak power femtosecond pulse modelocked VECSEL for supercontinuum generation[J]. Opt. Exp.,2013.21(2):1599-1605
    [7]Y. Kaneda. J. M. Yarborough, L. Li.et al.Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator[J].Opr. Lett.,2008,33(15):1705-1707.
    [8]T. Schwarzback, H. Kahle, Eichfelder, M., et al.Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGalnP vertical external-cavity surface emitting laser down to 328 nm[J]Appl. Phys. Lett.,2011,99:261101.
    [9]J. Hastie, L. Morton, A. Kemp,et al.Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface emitting laser[J].Appl.Phys. Lett.,2006,89(6):061114.
    [10]S. Calvez, J. E. Hastie, M. Guina,et al.Semiconductor disk lasers for the generation of visible and ultraviolet radiation[J].Laser & Photon.Rev.,2009,3(5):407-434.
    [11]O.CASEL1,D. WOLL,M.A. TREMONT,et al.Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laserr[J]. Appl. Phys.B,2005,81:443-446.
    [12]JunHo Lee,SangMoon Lee,Taek Kim,et al.7 W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser[J].Appl. Phys. Lett.,2006,89:241107
    [13]A. Hein, S.Menzel, and P. Unger.High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range[J].Appl. Phys. Lett.,2012,101:111109.
    [14]M. Fallahi, Y. Li Fan, C. Kaneda,et al.5-W yellow laser by intracavity frequency doubling of high power vertical-external-cavity surface-emitting laser[J].IEEE Photon.. Techn. Lett.,2008.20(20): 1700-1702.
    [15]E Gerster, I Ecker, S Lorch, et al.Orange emitting frequency doubled GaAsSb/GaAs semiconductor disk laser[J].J. of Appl. Phys.,2003,94:7397-7401
    [16]A. Rantamaki. A. Sirbu, A. Mereuta,et al.3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser[J].Opt. Exp.,2010,18(21):21645-21650.
    [17]A. Rantamaki, J. Rautiainen, J. Lyytikainen,et al.1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser[J].Opt. Exp.,2012,20(8):9046-9051

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700