用户名: 密码: 验证码:
乙肝病毒感染过程中白细胞介素-32的表达调控和抗病毒反应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎是世界性的流行性疾病,在全球每年至少导致了一百万人的死亡,也是影响我国人民健康最大的问题之一。乙肝病毒感染是导致慢性肝炎、肝硬化和肝癌的重要因素之一。本研究致力于慢性乙型肝炎过程中乙肝病毒感染与一种重要的炎症基因白细胞介素-32(白介素-32,IL-32)的相互关系的探讨,旨在阐明IL-32被病毒诱导表达的调控机制,并探明这一炎症因子在病毒感染过程中发挥的作用。
     IL-32曾经被命名为自然杀伤细胞转录本4(NK4),最近有报道认为它是一种重要的炎症因子。它主要由免疫细胞表达,在一些病变的炎症组织中也有表达。为了确定该炎症因子在乙型肝炎中是否发挥作用,我们首先检测了它在177例慢性乙型肝炎病人和40例健康人血清中的含量。数据显示IL-32在病人血清中的含量显著性地高于正常人。于是我们开展了进一步的检测,分析确定慢性乙型肝炎病人血清中高水平的IL-32由何种细胞和组织表达产生的。肝脏细胞是乙肝病毒主要的宿主细胞,同时也有大量的报道表明人外周血单个核细胞(PBMC)也可以被乙肝病毒低水平的感染.因此我们检测了IL-32在这两种组织细胞中的表达水平。肝脏组织切片的免疫组织化学检测显示,慢性乙型肝炎的肝组织切片(n=16)中的IL-32水平明显高于正常人肝组织切片(n=16)。针对PBMC的荧光定量PCR结果显示,慢性乙型肝炎病人PBMC (n=17)中IL-32的mRNA水平显著性地高于正常人(n=10)。在肝癌细胞系和免疫细胞系中,我们转染乙肝病毒表达质粒pHBV-1.3同样可以诱导IL-32mRNA和蛋白的表达水平。这说明在乙肝病毒慢性感染者体内,肝细胞和PBMC中的IL-32都被病毒感染激活表达,并且存在分泌型的IL-32γ的表达,这使得血清中的IL-32水平显著升高。
     为了研究乙肝病毒诱导IL-32表达转录调控的分子生物学机制,我们首先利用P-mach软件对该基因的启动子进行分析,结果显示在750bp的核心启动子区域内,存在多个顺式作用元件,包括三个NF-κB和一个CREB结合位点。我们构建了核心启动子的报告基因质粒,并针对以上位点对IL-32启动子进行截短和突变。将这些报告质粒和pHBV-1.3或空载体共转染,通过报告基因萤光素酶活性检测分析显示,乙肝病毒重要通过激活IL-32启动子NF-κB位点,从而诱导转录。NF-KB通路特异性的抑制剂BAY-11实验也表明该通路被抑制时,乙肝病毒诱导的内源性的IL-32的表达大部分被抑制。染色体免疫共沉淀(CHIP)实验结果显示,乙肝病毒极大地促进了转录因子P65在NF-κB位点的结合。因此,在转录水平乙肝病毒主要通过激活NF-KB通路诱导IL-32表达。
     我们克隆了IL-32的3’非翻译区(UTR)并构建到含有报告基因的克隆载体上,与pHBV-1.3共转染后,我们发现乙肝病毒能上调该UTR的活性。这暗示在乙肝病毒对IL-32表达的翻译水平具有正向调控作用。最近报道,细小RNA (microRNA, miRNA)能通过结合基因mRNA的3'UTR来调节mRNA稳定性和翻译活性,是细胞内重要的翻译水平调控因子。我们利用miRNA结合预测软件进行分析,预测出20多种miRNA可能结合在该UTR上。根据我们已开展的乙肝病毒感染细胞系的miRNA表达芯片筛选结果,并参考以前报道的乙型肝炎中miRNA表达的临床数据,我们从这20多种(?)niRNA中找到了4个与乙肝病毒感染相关,它们分别是miR-29a, miR-29b, miR-29c, miR-223随后,我们从公司购买了这四种人工合成的成熟的miRNA以及它们对应的抑制子(互补的miRNA),然后将它们与IL-323'-UTR报告质粒进行共转染。荧光素酶检测分析结果显示,在四种miRNA中只有miR-29b能显著地抑制IL-323'UTR活性,并且在四种抑制子中唯有miR-29b能增强IL-323'UTR活性。为了进一步确认miR-29b对IL-32表达的调控作用,我们转染miR-29b和它的抑制子,然后检测IL-32的表达。结果显示,(?)niR-29b不仅能影响IL-323'UTR活性,而且参与了调控细胞内源性IL-32的表达。之后,为了确认miR-29b在IL-323'UTR上的结合位点,我们将构建好的报告质粒依照软件软件预测的结合位点进行了定点突变。结果显示突变后的UTR活性不受miR-29b和它的抑制子的影响,从而证实了软件预测的结合位点。最后我们在细胞系和病人临床样本中检测了miR-29b在乙肝病毒感染时的表达水平。结果显示,无论是在细胞系中还是在病人的PBMC中,乙肝病毒感染均可抑制这—miRNA水平。为了研究在体内乙肝病毒感染时(?)miR-29b对IL-32表达的调控关系,我们对17份慢性乙肝病人PBMC样本和8份乙肝病毒感染的肝脏组织样本中的miR-29b和IL-32水平做相关性分析,结果显示两种RNA水平在PBMC和肝组织样本中均存在显著的负相关性。因此,研究者认为乙肝病毒通过抑制miR-29b水平从而促进IL-32的翻译,这是对这一炎症基因表达调控机制的重要补充。
     IL-32在乙型肝炎中发挥的作用,尤其是对病毒感染和复制的影响是该研究工作的另一重要部分。鉴于报道在IL-32六种间接异构体中γ亚型具有最好的活性,我们在乙肝病毒表达细胞系HepG2.2.15中采用IL-32γ开展抗病毒实验。但是结果显示无论是IL-32γ转染过表达质粒还是添加人源重组蛋白,乙肝病毒DNA和蛋白抗原表达水平都无显著性改变。由于乙型肝炎病人血清中IL-32高水平的存在,启发了研究者采用模拟体内真实环境的模型开展抗病毒实验。我们首先从正常人和肝炎病人血液中分离PBMC并进行体外培养,然后用重组IL-32γ蛋白进行刺激,利用收集的细胞培养上清液培养HepG2.2.15.结果显示乙肝病毒的复制和表达被这种上清液显著地抑制。此外,这种细胞培养上清液对艾滋病毒、肠道病毒-71和丙肝病毒的复制有显著性的抑制作用。研究者认为这种具有广谱抗病毒作用的细胞培养上清中存在着有效抗病毒作用的分子。基于Ⅰ型和Ⅲ型干扰素(IFN)是目前发现的最有效的抗病毒因子,我们开展了这两种IFN的抗体中和实验。结果显示,IFN-λ1抗体中和的上清液的抗病毒效果完全消失。这暗示重组IL-32γ蛋白在PBMC培养体系中导致了大量IFN-λ1的表达并分泌到上清液中从而使其具有抗病毒作用。针对IFNs的荧光定量PCR实验证实了IL-32γ能在PBMC中诱导IFN-λ1的表达,而IFN-α和IFN-β的表达量没有显著性的改变。深入的研究发现IL-32γ能通过激活IFN-λ1启动子远端的一串独特的NF-κB位点簇从而选择性地大量诱导这一抗病毒因子的表达。因此,我们认为血清中的IL-32γ通过在PBMC中特异性地诱导IFN-λ1的表达从而发挥抗病毒作用,这也阐明了IL-32抗病毒的途径和机制。
     我们用研究IL-32同样的方法研究了IFN-λ1的3'UTR,筛选出并证明了miR-548能结合IFN-λ1mRNA3'UTR,从而调控基因表达。并且miR-548/抑制子能通过调控IFN-λ1的表达影响细胞内天然免疫反应。同时我们发现,病毒感染时(?)niR-548表达水平是被抑制的。这是对病毒感染诱导IFN-γ1及其介导的抗病毒反应机制的重要补充。
引文
1. Werner BG, Blumberg BS. e Antigen in hepatitis B virus infected dialysis patients:assessment of its prognostic value. Ann Intern Med 1978;89:310-4.
    2. Zhang L, Wang G, Hou W, Li P, Dulin A, Bonkovsky HL. Contemporary clinical research of traditional Chinese medicines for chronic hepatitis B in China:an analytical review. Hepatology 2010;51:690-8.
    3. Arya SC. Global warming and therapeutic intervention for hepatitis B and C virus infection. Hepatology 1999;29:610-11.
    4. Moulias RL, Couleru O, Goust JM. Viral hepatitis B and Dane particles. N Engl J Med 1973;288:1409.
    5. Lipman MB, Hierholzer WJ, Jr., Schluederberg A. Isolation of cores from hepatitis B Dane particles. J Infect Dis 1973;128:664-7.
    6. Hruska JF, Robinson WS. The proteins of hepatitis B Dane particle cores. J Med Virol 1977;1:119-31.
    7. Brown JL, Carman WF, Thomas HC. The clinical significance of molecular variation within the hepatitis B virus genome. Hepatology 1992;15:144-8.
    8. Wang Y, Liu H, Zhou Q, Li X. Analysis of point mutation in site 1896 of HBV precore and its detection in the tissues and serum of HCC patients. World J Gastroenterol 2000;6:395-397.
    9. Miller RH, Kaneko S, Chung CT, Girones R, Purcell RH. Compact organization of the hepatitis B virus genome. Hepatology 1989;9:322-7.
    10. Michel ML, Tiollais P. Structure and expression of the hepatitis B virus genome. Hepatology 1987;7:61S-63S.
    11. Guo W, Chen M, Yen TS, Ou JH. Hepatocyte-specific expression of the hepatitis B virus core promoter depends on both positive and negative regulation. Mol Cell Biol 1993; 13:443-8.
    12. Gerlach KK, Schloemer RH. Hepatitis B virus C gene promoter is under negative regulation. Virology 1992; 189:59-66.
    13. Bulla GA, Siddiqui A. Negative regulation of the hepatitis B virus pre-S1 promoter by internal DNA sequences. Virology 1989;170:251-60.
    14. Kuo YL, Ting LP. Differential regulation of major surface promoter in hepatitis B virus. DNA Cell Biol 1997;16:545-57.
    15. Raney AK, Zhang P, McLachlan A. Regulation of transcription from the hepatitis B virus large surface antigen promoter by hepatocyte nuclear factor 3. J Virol 1995;69:3265-72.
    16. Raney AK, Le HB, McLachlan A. Regulation of transcription from the hepatitis B virus major surface antigen promoter by the Spl transcription factor. J Virol 1992;66:6912-21.
    17. Raney AK, Milich DR, McLachlan A. Complex regulation of transcription from the hepatitis B virus major surface antigen promoter in human hepatoma cell lines. J Virol 1991;65:4805-11.
    18. Yang Y, Wu Y, Zhang WL, Yu B, Huang AL. [Regulation of the hepatitis B virus X promoter activity by a novel negative regulatory element]. Zhonghua Gan Zang Bing Za Zhi 2007;15:893-6.
    19. Buhlmann S, Racek T, Schwarz A, Schaefer S, Putzer BM. Molecular mechanism of p73-mediated regulation of hepatitis B virus core promoter/enhancer Ⅱ:implications for hepatocarcinogenesis. J Mol Biol 2008;378:20-30.
    20. Billet O, Grimber G, Levrero M, Seye KA, Briand P, Joulin V. In vivo activity of the hepatitis B virus core promoter:tissue specificity and temporal regulation. J Virol 1995;69:5912-6.
    21. Zheng Y, Li J, Ou JH. Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein. J Virol 2004;78:6908-14.
    22. Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 2011;53:1137-47.
    23. Kim S, Park SY, Yong H, Famulski JK, Chae S, Lee JH, Kang CM, Saya H, Chan GK, Cho H. HBV X protein targets hBubRl, which induces dysregulation of the mitotic checkpoint. Oncogene 2008;27:3457-64.
    24. Valenzuela P, Gray P, Quiroga M, Zaldivar J, Goodman HM, Rutter WJ. Nucleotide sequence of the gene coding for the major protein of hepatitis B virus surface antigen. Nature 1979;280:815-9.
    25. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000;64:51-68.
    26. McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology 2009;49:S45-55.
    27. Hoofnagle JH, Doo E, Liang TJ, Fleischer R, Lok AS. Management of hepatitis B:summary of a clinical research workshop. Hepatology 2007;45:1056-75.
    28. Lok AS, Heathcote EJ, Hoofnagle JH. Management of hepatitis B:2000-summary of a workshop. Gastroenterology 2001; 120:1828-53.
    29. Hoofnagle JH. Reactivation of hepatitis B. Hepatology 2009;49:S156-65.
    30. Tassopoulos NC, Papaevangelou GJ. Correlation of hepatitis B surface antigen clearance with the route of hepatitis B virus infection. J Gastroenterol Hepatol 1990;5:252-5.
    31. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32:a cytokine and inducer of TNFalpha. Immunity 2005;22:131-42.
    32. Li W, Sun W, Liu L, Yang F, Li Y, Chen Y, Fang J, Zhang W, Wu J, Zhu Y. IL-32:A Host Proinflammatory Factor against Influenza Viral Replication Is Upregulated by Aberrant Epigenetic Modifications during Influenza A Virus Infection. The Journal of Immunology 2010;185:5056-5065.
    33. Joosten LAB. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proceedings of the National Academy of Sciences 2006; 103:3298-3303.
    34. Andoh A. Mucosal cytokine network in inflammatory bowel disease. World Journal of Gastroenterology 2008;14:5154.
    35. Wei Li YL, Muhammad Mahmood Mukhtar, Rui Gong, Ying Pan, Sahibzada T. Rasool, Yecheng Gao,, Lei Kang QH, Guiqing Peng, Yanni Chen, Xin Chen, Jianguo Wu, Ying Zhu. Activation of Interleukin-32 Pro-Inflammatory Pathway in Response to Influenza A Virus Infection. PLoS ONE 2008;3:e1985.
    36. Rasool ST, Tang H, Wu J, Li W, Mukhtar MM, Zhang J, Mu Y, Xing HX, Zhu Y. Increased level of IL-32 during human immunodeficiency virus infection suppresses HIV replication. Immunol Lett 2008;117:161-7.
    37. Moschen AR, Fritz T, Clouston AD, Rebhan I, Bauhofer O, Barrie HD, Powell EE, Kim SH, Dinarello CA, Bartenschlager R, Jonsson JR, Tilg H. Interleukin-32:a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis. Hepatology 2011;53:1819-29.
    38. Netea MG. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1 and IL-6 production through a caspase 1-dependent mechanism. Proceedings of the National Academy of Sciences 2005; 102:16309-16314.
    39. Nold MF, Nold-Petry CA, Pott GB, Zepp JA, Saavedra MT, Kim SH, Dinarello CA. Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 2008; 181:557-65.
    40. Zepp JA, Nold-Petry CA, Dinarello CA, Nold MF. Protection from RNA and DNA Viruses by IL-32. The Journal of Immunology 2011;186:4110-4118.
    41. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9.
    42. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-8.
    43. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001;106:23-34.
    44. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-8.
    45. Yang Z, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci 2011; 1:31.
    46. Ryazansky SS, Gvozdev VA, Berezikov E. Evidence for post-transcriptional regulation of clustered microRNAs in Drosophila. BMC Genomics 2011; 12:371.
    47. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60.
    48. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003;278:44312-9.
    49. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 2003; 100:9779-84.
    50. Pestka S. The human interferon-alpha species and hybrid proteins. Semin Oncol 1997;24:S9-4-S9-17.
    51. LaFleur DW, Nardelli B, Tsareva T, Mather D, Feng P, Semenuk M, Taylor K, Buergin M, Chinchilla D, Roshke V, Chen G, Ruben SM, Pitha PM, Coleman TA, Moore PA. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem 2001;276:39765-71.
    52. Peng FW, Duan ZJ, Zheng LS, Xie ZP, Gao HC, Zhang H, Li WP, Hou YD. Purification of recombinant human interferon-epsilon and oligonucleotide microarray analysis of interferon-epsilon-regulated genes. Protein Expr Purif 2007;53:356-62.
    53. Osterlund PI, Pietila TE, Veckman Ⅴ, Kotenko SV, Julkunen Ⅰ. IFN regulatory factor family members differentially regulate the expression of type Ⅲ IFN (IFN-lambda) genes. J Immunol 2007; 179:3434-42.
    54. Kawai T, Akira S. TLR signaling. Cell Death Differ 2006;13:816-25.
    55. Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA. The role of transposable elements in the regulation of IFN-lambdal gene expression. Proc Natl Acad Sci U S A 2009;106:11564-9.
    56. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008;8:559-68.
    57. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003;4:63-8.
    58. Almeida GM, de Oliveira DB, Magalhaes CL, Bonjardim CA, Ferreira PC, Kroon EG Antiviral activity of type I interferons and interleukins 29 and 28a (type Ⅲ interferons) against Apeu virus. Antiviral Res 2008;80:302-8.
    59. Robek MD, Boyd BS, Chisari FV. Lambda Interferon Inhibits Hepatitis B and C Virus Replication. Journal of Virology 2005;79:3851-3854.
    60. Hong SH, Cho O, Kim K, Shin HJ, Kotenko SV, Park S. Effect of interferon-lambda on replication of hepatitis B virus in human hepatoma cells. Virus Res 2007; 126:245-9.
    61. Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. Biological activity of interleukins-28 and -29:comparison with type I interferons. Cytokine 2005;31:109-18.
    62. Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, Iwakura Y, Aiba S, Yamaya M. IL-28 elicits antitumor responses against murine fibrosarcoma. J Immunol 2007; 178:5086-98.
    63. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. IFN-lambdas mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex. Nat Immunol 2003;4:69-77.
    64. Pasquinelli C LF, Chatenoud L, Beaurin G Gazengel C, Bismuth H, Degos F, Tiollais P, Bach JF, Brechot C. Hepatitis B virus DNA in mononuclear blood cells. A frequent event in hepatitis B surface antigen-positive and -negative patients with acute and chronic liver disease. JHepatol.1986;3(1):95-103.
    65. Lobbiani A LF, Lugo F, Colucci G. Hepatitis B virus transcripts and surface antigen in human peripheral blood lymphocytes. J Med Virol 1990;31(3):190-194.
    66. Stoll-Becker S, Repp R, Glebe D, Schaefer S, Kreuder J, Kann M, Lampert F, Gerlich WH. Transcription of hepatitis B virus in peripheral blood mononuclear cells from persistently infected patients. J Virol 1997;71:5399-407.
    67. Mori N, Yamada Y, Ikeda S, Yamasaki Y, Tsukasaki K, Tanaka Y, Tomonaga M, Yamamoto N, Fujii M. Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 2002;100:1828-34.
    68. Netea MG, Azam T, Lewis EC, Joosten LAB, Wang M, Langenberg D, Meng X, Chan ED, Yoon D-Y, Ottenhoff T, Kim S-H, Dinarello CA. Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-y-Dependent Mechanism. PLoS Medicine 2006;3:1310-1319.
    69. Benn J, Schneider RJ. Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci U S A 1995;92:11215-9.
    70. Benn J, Su F, Doria M, Schneider RJ. Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 1996;70:4978-85.
    71. Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 1996;70:4558-66.
    72. Wang X, Li Y, Mao A, Li C, Tien P. Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 2010;7:341-8.
    73. Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Sunakozaka H, Sakai Y, Horimoto K, Kaneko S. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 2009;49:1098-112.
    74. Yu Y, Gong R, Mu Y, Chen Y, Zhu C, Sun Z, Chen M, Liu Y, Zhu Y, Wu J. Hepatitis B virus induces a novel inflammation network involving three inflammatory factors, IL-29, IL-8, and cyclooxygenase-2. J Immunol 2011; 187:4844-60.
    75. Ji Y, He Y, Liu L, Zhong X. MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett 2010;584:961-7.
    76. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 2010;52:60-70.
    77. Pan Y, Wei W, Kang L, Wang Z, Fang J, Zhu Y, Wu J. NS5A protein of HCV enhances HBV replication and resistance to interferon response. Biochem Biophys Res Commun 2007:359:70-5.
    78. Wu K, Mu Y, Hu J, Lu L, Zhang X, Yang Y, Li Y, Liu F, Song D, Zhu Y, Wu J. Simultaneously inhibition of HIV and HBV replication through a dual small interfering RNA expression system. Antiviral Res 2007;74:142-9.
    79. Gottwein JM, Scheel TK, Hoegh AM, Lademann JB, Eugen-Olsen J, Lisby G, Bukh J. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology 2007; 133:1614-26.
    80. Kim KH, Shim JH, Seo EH, Cho MC, Kang JW, Kim SH, Yu DY, Song EY, Lee HG, Sohn JH, Kim J, Dinarello CA, Yoon DY. Interleukin-32 monoclonal antibodies for immunohistochemistry, Western blotting, and ELISA. J Immunol Methods 2008;333:38-50.
    81. Li W, Liu Y, Mukhtar MM, Gong R, Pan Y, Rasool ST, Gao Y, Kang L, Hao Q, Peng G, Chen Y, Chen X, Wu J, Zhu Y. Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS One 2008;3:e1985.
    82. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 2006;80:4501-9.
    83. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33:e179.
    84. Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein, Int J Biochem Cell Biol 2006;38:1417-28.
    85. Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G Spisni E, Pantaleo MA, Biasco G, Tomasi V. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 2009;315:1439-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700