用户名: 密码: 验证码:
芒在中国的分布及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒(Miscanthus sinensis)系禾本科(Poaceae)芒属(Miscanthus Andersson)的一个重要种,因其具有分布广、适应性强、多年生、生物质产量和纤维素含量高等众多优点而被认为是极具开发潜力的新型能源植物资源。我国是芒的分布中心,但这一宝贵物种在我国目前仍处于鲜为人知的野生状态。为了探明这一重要植物资源在我国的蕴藏情况,提供其种质资源开发、利用与保护的理论依据,本文对我国芒进行了系统的分布调查、气候研究和资源收集,采集了500余份活体材料,建立了芒种质资源圃,并从中选取388份有代表性的材料进行了我国芒种质资源遗传多样性的研究,同时还分别采用形态标记和分子标记对广西和海南两个省份的芒进行了野生居群遗传结构分析。主要研究结果如下:
     1.芒的分布和气候模式研究结果表明:(1)芒在我国分布广泛。其地理分布范围为东经100.45°~127.55°E,北纬18.34°~43.70°N,垂直分布范围为一12~1900m;行政地区的分布为:安徽、重庆、福建、甘肃、广东、广西壮族自治区、贵州、海南、黑龙江、河南、河北、湖北、湖南、江苏、江西、吉林、辽宁、陕西、山东、四川、台湾、云南和浙江等23个省(直辖市、自治区);区系分布为蒙古草原地区、东北地区、华北地区、华东地区、华中地区、岭南山地地区、滇黔桂地区、台湾地区、南海地区、北部湾地区和滇缅泰地区等11个植物地区。(2)芒的生境多样。其自然生境包括道路边、林缘、草甸、山脚、山坡、山谷、山顶、海滩边、溪边、灌木丛中、竹林边。土壤类型包括红壤、黄壤、砂壤、棕壤、紫壤、腐殖土;(3)芒的气候适应性强。其气候模式为年积温2650.00-8500.00℃,年平均温度为3.40~24.40℃,为30.90~45.20℃,最冷月低温—45.00~8.00℃,1月份平均气温为-23.00~18.70℃,7月份平均气温为18.20~32.70℃,全年无霜期为128.00~365.00d,年累积日照时数为511.00~2700.00h,年平均降雨量为466.50~2444.00mm。
     2.芒种质资源表型多样性研究结果表明:(1)芒种质资源表型变异丰富。15个分类学性状的变异范围16.21~61.39%,平均29.27%。15个农艺性状的变异范围20.78~89.75%,平均38.05%。(2)分类学性状变异主要来源于种子宽、种子厚、种子长和千粒重等4个性状,农艺性状的变异主要来源于单茎干重,叶片数,主茎长,最大叶片宽,第1节窄边宽,第1节宽边直径等6个性状。(3)不同区系间表型性状变异大小顺序为华北地区(34.95%)>华东地区(32.17%)>华中地区(27.08%)>东北地区(26.40%)>岭南山地地区(25.11%)>滇黔桂地区(24.69%)>北部湾地区(23.86%)>南海地区(23.65%)>滇缅泰地区(20.69%),说明华北地区芒种质资源多样性最丰富,而滇缅泰地区遗传多样性相对贫乏。(4)通过聚类分析可以将参试的388份种质资源成“低矮型”和“高大型”2类,低矮型主要来源于东北和华北地区,高大型主要来源于华东地区、华中地区、岭南山地地区、滇黔桂地区、南海地区、北部湾地区和滇缅泰地区。不同区系来源种质能聚成一类,说明芒种群内不同区系间可以产生杂交。(5)综合考虑产量和产量构成因子,根据隶属函数法对参试种质资源进行赋值(D),根据D值从小到大的顺序将所有种质资源分成“差”(32份,D介于0.05~0.18),“较差”(72份,D介于0.18~0.32),“中等”(129份,D介于0.32~0.45),“良”(131份,D介于0.45~0.58)和“优”(23份,D介于0.58~0.71)等5大类。
     3.芒种质资源SSR标记遗传多样研究结果表明:(1)芒种质资源DNA水平遗传多样性丰富。利用33对SSR引物对来自中国16个省的46份野生芒种质进行遗传多样性分析。结果显示:33对SSR引物共扩增出87条DNA条带,75条为多态性条带,占86.21%,条带大小范围80-310bp。(2)遗传多样性参数分析结果:Shannon's信息指数(I)变幅为0.020~1.522,平均0.745,引物多态性信息含量(PIC)变幅为0.040~0.738,平均0.445,遗传相似系数(GS)的变幅为0.315~0.933,平均0.569,说明我国芒种质资源遗传基础宽,遗传多样性丰富。(3)相似系数UMPGA聚类结果与主成分聚类(PCA)结果一致,可将46份种质分为3大类群,类群Ⅰ主要由中部芒组成,类群Ⅱ主要由北方芒组成,类群Ⅲ主要由南方芒组成,西南芒在每个类群中均有渗透,这一结果说明芒种质资源的遗传分化与其种源的地理分布有一定的相关性,但与地理起源不能完全吻合。
     4.芒野生居群遗传多样性研究结果表明:(1)芒野生居群表型变异丰富。各表型性状在居群内的和居群间差异均达到极显著水平,同一性状在不同居群间变异系数的变化范围为11.35~49.86%,同一居群内不同的性状变异系数的变化范围为17.07~27.65%。(2)芒居群内的表型变异大于居群间的表型变异,18个表型性状分化系数变化范围为17.99~47.21%,平均为32.05%,居群内表型分化率为67.95%,说明芒表型性状的变异主要来自居群内。(3)芒居群在DNA水平上也有着丰富的遗传多样性。SSR标记分析海南岛15个野生居群,显示其居群遗传相似性系数在0.8241~0.9647之间,遗传多样性指数H居群=0.0930,Shannon信息指数J居群=0.1371。(4)芒在DNA水平上变异也同样是居群内大于居群间。居群遗传变异结构分析表明芒的基因多样性指数Ht=0.1755,居群内的基因多样性指数Hs=0.0993,居群间的遗传分化系数Gst=0.4342<0.5,说明芒居群内的基因变异大于居群间。居群间的基因流Nm=0.5643<1.0,说明居群间基因流较弱,遗传漂变和近交可能是造成居群内遗传分化的主要因素。
Miscanthus sinensis is one of the species of Miscanthus Genus, Poaceae. Recently, it was regarded as a kind of energy crop for its wild distribution, large biomass, strong resistance and higher cellulose content. In this paper, we investigated the nature distribution of M. sinensis in China and collected a number of germplsams, from which we selected388collections to do genetic diversity research. At the same time, we chose Guangxi and Hainan provinces to analyze genetic diversity in wild populations of M. sinensis with morphological and molecular markers respectively. The results show that:
     1. The result of distribution and climate adaptation of Miscanthus sinensis show that1) The nature distribution field of M. sinensis in China was100.45°~127.55°E,18.34°~43.70°N, Alt.-12-1900m, the administrative areas distribute23provinces, which consist of Anhui, Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Heilongjiang, Henan, Hebei, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Shaanxi, Shandong, Sichuan, Taiwan, Yunnan and Zhejiang. The floristic distributions of M. sinensis were IB4, IIID7, IIID8, IIID9, IIID10, IIID11, IIID12, IVG19, IVG21, IVG22and IVG23.2) The habitat diversity of M. sinensis was rich:the habitat of M. sinensis included roadside, shrub of forest, foot of hill, hillside, top of mountain, seaside, riverside, bamboo forest, etc.3) The adaptation of M. sinensis was abundant. It's annual accumulated temperature of climate model was variable from2650.00℃to8500.00℃, yearly average temperature was variable from3.40℃to24.40℃, yearly average rain fall was varied from466.50from to2444.00mm, extremely high temperature was varied from-8.86℃to6.40℃,extremely low temperature was varied from -45.00℃to8.00℃average temperature of January was varied from-23.00℃to18.70℃, average temperature of July was varied from-23.00℃to18.70℃, frost-free period was varied from128.00d to365d and annual accumulated sun time was variable from511.00h to2700h.
     2. The research results of genetic diversity of phenotypic traits of accessions show1) The germplasm phenotypic variation of M. sinensis was abundant. The average coefficients of variation of15taxonomic traits were29.27%with the variation from16.21%to61.39%and the average coefficients of variation of15agronomic traits were38.05%with the variation from20.78%to89.75%.2) The variation of taxonomic traits comes from4traits, which were seed width, seed thickness, seed length,1000-seed weight. The variation of agronomic traits come from6traits, which were dry weight per tiller, leaf number per tiller, stem height, largest leaf width, first node long axis and first node short axis.3) The average coefficient of phenotypic traits of9flora were IIID8(34.95%)> IIID9(32.17%)> IIID10(27.08%)> IIID7(26.40%)> IIID11(25.11%)> IIID12(24.69%)> IVG22(23.86%)>IVG21(23.65%)>IVG23(20.69%).4)388accessions can be divided into two categories by cluster analysis, which were lower type and topper type. The lower type mainly comes from IIID7and IIID8and the topper type were main consist of the accessions from other flora.5) Take yield and yield component factor into consideration,388accessions were comprehensively evaluated by subordination function method. According to the D index,388accessions can be divided into five categories:I type with the D value which was varied from0.05to0.18, II type with the D value which was varied from0.18to0.32, III type with the D value was varied from0.32to0.45, IV type with the D value which was varied from0.45to0.58and the V type with the D value which was varied from0.58to0.71.
     3. The research result of genetic diversity by SSR markers show that1)33SSR primer pairs produced87bands with75polymorphic (86.21%) and the size of amplified DNA varied from80to310bp.2) The result of genetic diversity: Shannon diversity index (I) was0.020~1.522, the average is0.745. Polymorphic information content (PIC) was about0.040~0.738, the average is0.445. Genetic similarity coefficient is about0.315~0.933, the average is0.569. The genetic similarity coefficient of UPGMA and PCA Cluster were the same. The46collections of M. sinensis can be divided into3groups. Group I was mainly composed of the germplasm from center China, group II composed of those from north China and group III composed of those from south China. These results indicated that there were some relevance between M. sinensis varieties and geographical distributions, but M.sinensis varieties were not inconformity with geographic origin.
     4. The research results of genetic diversity of nature populations show that (1) There were abundant genetic diversity in the nature populations of M. sinensis and the analysis of variance for all traits showed that there were significant differences among and within populations. The variation coefficients of the same trait in different populations were varied from11.35%to49.86%. The variation coefficients of different traits in the same population were varied from17.07%to27.65%.(2)The phenotypic differentiation coefficients (VST) within populations were bigger than among populations. The average is was32.05%.The variation range of18phenotypic differentiation coefficients was from17.99%to47.21%, phenotypic differentiation rate was67.95%. This means that the genetic variability of M. sinensis existed mainly within population.(3) DNA level of populations have high genetic diversity. SSR marks analyzed15wild populations showed that the genetic similarity coefficients from0.8241to0.9647, the gene diversity of Nei's (H) was0.0930and the average information index of Shannon (I) was0.1371.(4) The DNA level variation within populations were bigger than among populations.The total gene diversity of Nei's (Ht) was0.1755and the gene diversity of Nei's within population (Hs) was0.0993, the gene differentiation coefficient (Gst) was0.4342<0.50, which suggested genetic diversity existed within population. The index of gene flow (Nm) was0.5643<1.0suggested gene flow was small, genetic drift and inbreeding might be the main factors influencing population genetic structure of M. sinensis.
引文
1. Adati S. Studies on the Miscanthus genus with special reference to the Japanese suitable for breeding purposes as fodders crops[J]. Bulletin of the faculty of Agriculture,1985,12: 1-112.
    2. An G H, Miyakawa S, Kawahara A, Osaki M, Ezawa T. Community structure of arbuscular mycorrhizal fungi asso-ciated with pioneer grass species Miscanthus sinensis in acidsulfate soils:habitat segregation along pH gradients. SoilScience & Plant Nutrition,2008,54:517-528.
    3. Andersson N J. Om de med Saccharum besl€agtade genera[J].6fvers Kungl Vet Adad Forh Stockholm,1956,12:151-168.
    4. Arduini I, Ercoli L, Mariotti M, Masoni A. Response of miscanthus to toxic cadmium applications during the period of maximum growth[J]. Environmental and Experimental Botany,2006a,55:29-40.
    5. Arduini I, Masoni A, Ercoli L, Effects of high chromium applications on miscanthus during the period of maximum growth[J]. Environmental and Experimental Botany, 2006b,58:234-243.
    6. Arduini I, Masoni A, Mariotti M, Ercoli L, Low cadmium application increase miscanthus growth and cadmium trans-location[J]. Environmental and Experimental Botany,2004, 52:89-100.
    7. Atienzal S G, Satovic Z, Petersen K K, et al. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss[J]. Euphytica,2003a,132:353-361.
    8. Atienzal S G, Satovic Z, Petersen K K, et al. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter[J]. Theor Appl Genet,2003b,107:123-129.
    9. Atienzal S G, Satovic Z, Petersen K K, et al. Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss.Ⅱ. Chlorine and potassium content[J].Theor Appl Genet,2003c,107:857-863.
    10. Atienzal S G, Satovic Z, Petersen K K, et al. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers[J]. Theor Appl Genet,2002,105:946-952.
    11. Beale C V, Long S P. Seasonal dynamics of nutrient accu-mulation and partitioning in the perennial C4-grasses Miscanthus xgiganteus and Spartina cynosuroides[J]. Biomass & Bioenergy,1997,12:419-428.
    12. Bergmann F. The allelic distribution at an acid phosphatase locus in Norway spruse (Picea abies) along similar climatic gradients[J]. Theoretical and Appled Genetics,1978,52: 57-64.
    13. Cesare M D, Hodkinson T R, Barth S. Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharumand related grasses (Panicoideae, Poaceae)[J].2010,26:539-544.
    14. Chen S L, Renvoize S A. Flora of China [M]. Beijing:science press,2006:581-583.
    15. Chou C H. Population variation and evolutionary trendof Miscanthus taxa in Taiwan. In: Chou CH, Waller CH, Reinhardt GHC (eds) Biodiversity and allelopathy:from organisms to ecosystems in the Pacific. Academia Sinica,Taipei, Taiwan,1989:37-46.
    16. Chou C H. Miscanthus used as and alternative biofuel material:the basic studies on ecology and molecular evolution[J]. renewable Energy,2009,34:1908-1912.
    17. Christian D G, Riche A B, Yates N E. Growth, yield and mineral content of Miscanthus giganteusgrown as a biofiiel for 14 successive harvests[J]. Industrial Crops and Products, 2008,28:320-327.
    18. Christian D G, Haase E. Agronomy of Miscanthus, in:M. Jones and M. Walsh (Eds.), Miscanthus for Energy and Fibre, James & James, London, UK, pp.2001:21-25.
    19. Clayton W D, RenvoizeS A. Genera graminum, grasses of the world[J]. Kew Bull Add Ser,1986,13:1-389.
    20. Clifton-Brown J C, Breuer J, Jones M B. Carbon mitigation by the energy crop Miscanthus[J]. Glob Change Biol,2007,13:2296-2307.
    21. Clifton-Brown J C, Lewandowski I, Andersson B, et al. Performance of 15 Miscanthus genotypes at five sites in Europe[J]. Agronomy Journal,2001a,93:1013-1019.
    22. Clifton-Brown J C, Stampfl P F, Jones M B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J]. Glob Chang Biol,2004,10:509-518.
    23. Clifton-Brown J C, Chiang W C, Hodkinson T R. Miscanthus genetic resources and breeding potential to enhance bioenergy production. In:Vermerris W (Eds.) Genetic improvement of bioenergy crops. Springer Science, New York, USA,2008:273-294.
    24. Clifton-Brown J C, Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance[J]. New Phytol,2000,148:287-294.
    25. Clifton-Brown J C, Neilson B M, Lewandowski I, et al. The modeled productivity of Miscanthus giganteus(GREEF et DU) in Ireland. Ind Crop Prod,2000,12:97-109.
    26. Clifton-Brown J C, Long S P, Jorgensen U. Miscanthus productivity in M.B. Jones and M. Walsh (Eds.), Miscanthus for Energy and Fibre, James & James, London, UK,2001: 46-67.
    27. Collura S, Azanbre B, Finqueneisel G, et al. Miscanthusxgiganteus straw and pellets as sustainable fuels:combination and emission tests. Environ Chem Lett,2006,4:75-78.
    28. Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin of the Botanical Society of America.1987,19:11-15.
    29. Ezaki B, Nagao E, Yamamoto Y, et al. Wild plants,Andropogon virginicusL. And Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses[J].Plant Cell Reports,2008,27:951-961.
    30. Farage P K, Blowers D, Long S P, Baker N R. Low growthtemperatures modify the efficiency of light use by photosystem II for CO2assimilation in leaves of two chilling-tolerant C-4 species Cyperus longusL. and Miscanthus giganteus[J]. Plant Cell & Environment,2006,29:720-728.
    31. Fang J Y, Li Y. Climatic factors for limiting northward distribution of eight temperate tree species in Eastern North America. Journal of Integrative Plant Biology,2002,44:199-203.
    32. Greef J M, Deuter M, Jung C, et al. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting[J]. Genetic Resources and Crop Evolution,1997,44: 185-195.
    33. Greef J M, Deuter M. Syntaxonomy of Miscanthusxgiganteus GREEF et DEU[J]. Angewandte Botanik,1993,67:87-90.
    34. Hayashi I, Numata M. Viable buried-seed population in the Miscanthus and Zoysiatype grasslands in Japan ecological studies on the buried-seed population in the soil related to plant succession IV[J]. Japanese Journal of Ecology,1979,20:243-252.
    35. Hayashi I. The autecology of some grassland species. In:Ecology of Grasslands and Bamboolands in the World (ed. Numata M),1979:141-152.
    36. Heaton E A, Dohlmeman F G, Long S P. Meeting US biofuels goals with less land:the potential of Miscanthus.Global Change Biology,2008,14:2000-2014.
    37. Hernandez P, Dorado G, Laurie DA, et al. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus[J]. Theor Appl Genet,2001,102:616-622.
    38. Hewson J.'Elean-the UK's first straw fired power station, in Bullard M J, Christian D G, Knight J D, Lainsbury MA and Parker SR (eds.), Biomass and Energy Crops II, University of York, Association of Applied Biologists.2001.
    39. Hodkinson T R, Chase M W, Takahashi C, Leitch I J, Bennett M D, Renvoize S A. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharineae, Andropogoneae, Poacea) based on DNA sequencing from ITS nuclear ribosomal DNA and plasticd trnL intron and tmL-F intergenic spacers[J].J Plant Res,2002,115:381-392.
    40. Hodkinson T R, Chase M W, Takahashi C, Leitch I J, Bennett M D, Renvoize S A. The use of DNA sequencing (ITS and trnL-F) AFLP and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae)[J]. Am J Bot,2002a,89:279-286.
    41. Hodkinson T R, Chase M W, Takahashi C, Leitch I J, Bennett M D, Renvoize SA. Characteristization of a generticresource collection for Miscanthus (saccharineae, andropo-goneae, poacea) using AFLP and ISSSR PCR. Am Bot,2002b,89:627-636.
    42. Honda M. Monographia Poacearum Japonicarum, Bam-busoideis exclusis[D]. J Fac Sci Imperial Univ Tokyo Sect 3 Bot,1930.
    43. Ibaragi Y. The taxonomy of Diantrantus (poaceea)[J]. Acta Phytotaxonom Geobot,2003, 54:109-125.
    44. Ibaragi Y, Ohashi H. A taxonomy study of Miscanthus section Kariyasua (Grammineae)[J]. J Jpn Bot,2004,79:4-22.
    45. Jiang J X, Wang Z H, Tang B R, et al. Development of novel chloroplast Microsatellite markers for Miscanthus species (POACEAE)[J]. American Journal of Botany,2012: 230-233.
    46. Jinno N, Umeno M. Soil properties at habitats of gramineous plants (Phragmites communis, P. japonica, Phaceluruslatifolius, Miscanthus sacchariflorus, M. sinensis) on HonmyoRiver water system in Isahaya City, Nagasaki Prefecture[J]. Science Bulletin of the Faculty of Education,1995,53:19-26.
    47. John C, Clifton-Brown J C, Paul F, et al. Miscanthus biomass production for energy in Europeand its potential contribution to decreasing fossil fuel carbon emissions[J]. Global Change Biology.2004,10:509-518.
    48. Jones M B, Walsh M. Miscanthus for energy and fiber.James & James, London, UK Kayama M. Comparison of the aluminum tolerance of Miscanthus sinensis Anderss. And Miscanthus sacchariflorus Ben-tham in hydroculture[J]. International Journal of Plant Sciences,2001,162:1025-1031.
    49. Kobayashi K. Studies on the growth and maintenance ofpatch of Miscanthus sinensis Andress. Formation process of thepatch and its ecological characteristics in a warm region.Journal of the Japanese Society of Grassland Science,1981,27:71-78.
    50. Koyama T. Grasses of Japan and Its Neighboring Regions:An Identification Manual. Kodansha Ltd, Tokyo.1987.
    51. Lewandowski I, Clifton-Brown J C, Scurlock J M O, et al. Miscanthus:European experience with a novel energy crop[J]. Biomass and Bioenergy,2000,19:209-227.
    52. Lewandowski I, Clifton-Brown J C, Andersson B, et al. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 2003,95:1274-1280.
    53. Lewandowski I, Schmidt U. Nitrogen, energy and land use efficiencies of Miscanthus, Reed canary grass and triticale as determined by the boundary line approach[J]. Agric Ecosyst Environ,2006,112:335-346.
    54. Lucia L, Francesca S, Gabriella S, et al. Characterization of Italian grasspea (Lathyrus sativusL.) germplasm using agronomic traits, biochemical and molecular markers[J], Genet Resour Crop Evol,2011,58:425-437.
    55. Matumura M, Hasegawa T, Saijoh Y. Ecological aspects of Miscanthus sinensis var.condensatus, M. sacchariflorus, and their 3x-,4x-hybrids (1) Process of vegetative spread. Research Bulletin of the Faculty of Agriculture[J], Gifu University,1985,50: 423-433.
    56. Millar C I, Robert D W. Distribution and climatic relationships of the American pika (Ochotona princeps) in the Sierra Nevada and Western Great Basin, USA.Periglacial Landforms as Refugia in Warming Climates[J]. Arctic, Antarctic, and Alpine Research, 2010,42:76-88.
    57. Mori T. Aluminum tolerance of plant.Study of Ecology,1939,5:41-54.
    58. Mutoh N, Kimura M, Oshima Y, et al. Species diversityand primary productivity in Miscanthus sinensis grasslands.1.Diversity in relation to stand structure and dominance[J]. Bota-nical Magazine,1985,98:159-170.
    59. Numata M, Mitsudera M. Efficient environmental factorsin relation to the growth and production of the Miscanthussinensis meadows in Japan. Japanese Journal of Botany, 1969,20:135-151.
    60. Peng J F, Gou X H, Chen F H, et al. Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibertan Plateau[J]. Dendrochronologia,2008,26:87-96.
    61. Qin J P, Yang Y, Jiang J X, et al.Comparison of lignocellulose composition in four major species of Miscanthus[J]. African Journal of Biotechnology,2012,11:12529-12537.
    62. Renvoize S A. The genus Miscanthus[J].Plantman,2003:207-211
    63. Sang T, Zhu W X. China's bioenergy potential[J]. GCB Bioenergy,2011,3:79-90.
    64. Scally L, Hodkinson T, Jones M B. Origins and taxonomy of Miscanthus. In:Jones M B, Walsh M(eds) Miscanthus for energy and fiber[J]. James & James, London, UK, 2001:1-9.
    65. Sims R E H, Hastings A, Schlamadinger B, et al. Energy crops:current status and future prospects.Glob Change Biol 2006,12:2054-2076.
    66. Stamyf P, Clifton-Brown J C, Jones M B. European wide GIS-based modeling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Glob Change Biol 2007,13:2283-2295.
    67. Sun Q, Lin Q, Yi Z L, et al. A taxonomic revision of Miscanthus s.l. (Paaceae) from China[J]. Botanical Journal of the Linnean Society,2010,164:178-220.
    68. Visser, P, Pignatelli, V. Utilisation of Miscanthus, in:M.B. Jones and M. Walsh (eds.), Miscanthus for Energy and Fibre. London, James& James.2001.
    69. Von M V C, Richard L, Laura F M, et al. Characterization of flowering time and SSR marker analysis of spring and winter typeBrassica napus L. germplasm[J]. Euphytica, 2007,153:43-57.
    70. Wang D, Naidu S L, Portis A R, et al. Can the cold tolerance of C-4 photosynthesis in Miscanthus giganteus relative to Zeamays be explained by differences in activities and thermal properties of Rubisco?[J]. Journal of Experimental Botany,2008,59:1779-1787.
    71. Watanabe T, Jansen S, Osaki M. Al-Fe interactions andgrowth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils[J]. Plant, Cell &Environment,2006,29:2124-2132.
    72. Xu N, Zhang W, Ren S F, et al. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus[J]. Biotechnology for biofuels,2012,5:58-85.
    73. Yan J, Chen W L, Luo F, et al. Variability and adaptability of Miscanthus species evaluated for crop domestication [J]. GCB Bioenergy,2012,4:49-60.
    74. Yi Y N. New Flora of Korea [M]. Kyo Hak Publishing Company, Seoul,2006.
    75. Yoshii Y. Aluminum requirements of solfatara plants[J]. The Botanical Magazine,1937, 51:262-270.
    76.陈鹏飞,张锡亭,胡久清,等.荻良种选育及品种资源研究[J].湘潭师范学院学报,1989,(3):26-40.
    77.陈少风.生物学拉丁语基础[M].北京:中国轻工业出版社.2007
    78.陈守良.中国植物志:禾本科(五)[M].北京:科学出版社.1997:4-26.
    79.程序.能源牧草堪当未来生物能源之大任[J].草业学报,2008,17(3):1-5.
    80.迟光宇,刘新会,刘素红,等.大坞河流域重金属污染与五节芒光谱效应关系研究[J].生态环境,2005,14(4):549-554.
    81.赤峰,徐柱,闫伟红,等.扁穗雀麦种质资源形态变异分析[J].草地学报,2011,19(4):668-673.
    82.刁英,胡小虎,郑兴飞,等.利用SRAP和ISSR标记分析五节芒(Miscanthus floridulus)的遗传多样性[J].武汉大学学报,2010,56(5):578-583.
    83.杜凤,蒋建雄,卢玉飞,等.芒属植物核型分析技术体系的建立[J].现代生物医学进展,2009,10:1878-1880.
    84.傅晓平.禾本科.中国高等植物[M].青岛:青岛出版社,2009:1085-1092.
    85.葛颂,王明麻,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1998,24(11):399-409.
    86.耿以礼.中国主要植物图说—禾本科[M].北京:科学出版社.1959.
    87.辜云杰,罗建勋,吴远伟,等.川西云杉天然种群表型多样性[J].植物生态学报,2009,33(2):291-301.
    88.郝佳波,司马永康,徐亮.云南拟单性木兰的地理分布与气候因子的关系.西部林业科学,2007,36(2):105-109.
    89.何立珍,曹学军,等.南荻同源四倍体的研究[J].遗传学报,1997,24(6):544-549.
    90.贺晨帮,宗绪晓.豌豆种质资源形态标记遗传多样性分析[J].植物遗传资源学报,2011,12(1):42-48.
    91.胡守荣,夏铭,郭长英,等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    92.胡小虎,刁英,郑兴飞,等.芒AFLP反应体系的建立[J].氨基酸和生物资源,2010a,34(3):10-14.
    93.胡小虎,刁英,郑兴飞,等.能源植物芒的SRAP分子标记体系建立与优化[J].中国农学通报,2010b,26(22):58-61.
    94.黄春琼,刘国道,白昌军,等.475份狗牙根种质资源形态多样性的研究[J].草业学报,2012,21(4):33-42.
    95.焦树英,徐家林,李红利,等.芒草对NaCl和PEG胁迫的生理响应及相关性分析[J].中国草地学报,2010,32(5):21-26.
    96.金琳.五节芒遗传多样性的ISSR分析[D].南昌:南昌大学,2010.
    97.金燕,卢宝荣.遗传多样性的取样策略[J].生物多样性,2003,11(2):155-161.
    98.李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性,2002,10(2):181-188.
    99.李贺,张维康,王国宏.中国云杉林的地理分布与气候因子间的关系[J].植物生态学报,2012,36(5):372-380
    100.李书柯,江川,王金英.用SSR标记分析福建漳浦野生稻的遗传多样性[J].植物遗传资源学报,2011,12(1):75-79.
    101.李志勇,王宗礼,师文贵,等.牧草种质资源描述规范和数据标准[M].北京:中国农业出版社,2005:9-38.
    102.李培英,孙宗玖,阿不来提.PEG模拟干旱胁迫下29份燕麦草种质种子萌发期抗旱性评价[J].中国草地学报,2010,32(1):32-39.
    103.梁绪振,陈太祥,白史且,等.芒属植物种质资源研究进展[J].草业与畜牧,2010,10:1-5.
    104.刘建秀,郭爱桂,郭海林.我国狗牙根种质资源形态变异及形态类型划分[J].草业学报,2003,12(6):99-104.
    105.刘亮,朱明,朱太平.芒荻类植物资源的开发和利用[J].自然资源学报,2001,6(16):562-563.
    106.刘新龙,蔡青,毕艳,等.中国滇蔗茅种质资源遗传多样性的AFLP分析[J].作物学报,2009,35(2):262-269.
    107.刘新龙,蔡青,吴才文,等.甘蔗品种资源的表型遗传多样性[J].生物多样性,2010,18(1):37-43.
    108.卢玉飞,蒋建雄,易自力.玉米SSR引物和甘蔗EST-SSR引物在芒属中的通用性研究[J].草业学报,2012,21(5):86-95.
    109.卢玉飞.芒属植物系统学研究[D].长沙:湖南农业大学,2012.
    110.陆苏璃,俞明亮,马瑞娟,等.硬肉桃品种群SSR标记的遗传多样性分析[J].植物遗传资源学报,2010,11(3):374-379.
    111.倪健.中国木荷及木荷林的地理分布与气候的关系[J].植物资源与环境,1996,5(3):28-34.
    112.庞广昌,姜冬梅.群体遗传多样性和数据分析[J].林业科学,1995,31(6):543-550.
    113.秦建桥,夏北成,赵鹏.五节芒不同种群对Cd污染胁迫的光合生理响应[J].生态学报,2010,30(2):288-299.
    114.任学敏,杨改河,王得祥,等.环境因子对巴山冷杉—糙皮桦混交林物种分布及多样性的影响[J].生态学报,2012,32(2):605-613.
    115.司马永康,于鸿,杨桂英,等.云南省三尖杉属植物的地理分布与环境因子的关系[J].林业调查规划,2004,29(1):83-87.
    116.宋俊双,高洪文,王赞,等.三种锦鸡儿属植物表型多样性分析[J].草业学报,2005,14(3):123-130.
    117.苏东,周延林,于林清,等.利用SSR分析中国北方野生黄花苜蓿种群的遗传多样性[J].中国草地学报,2010,32(5):85-89.
    118.王江,张崇邦,常杰,等.五节芒对重金属污染土壤微生物生物量和呼吸的影响[J].应用生态学报,2008,19(8):1835-1840.
    119.王娅丽,李毅.祁连山青海云杉天然群体的种实性状表型多样性[J].植物生态学报,2008,32(2):355-362.
    120.吴建国,周巧富.中国嵩草属植物地理分布模式和适应的气候特征[J].植物生态学报,2012,36(3):199-221.
    121.吴征镒,洪德元.中国植物志图集.科学出版社[M].北京:科学出版社,2008.
    122.吴征镒,孙航,周浙昆,等.中国种子植物区系地理[M].北京:科学出版社,2010,52-56.
    123.谢文刚,张新全,马啸,等.中国西南区鸭茅种质遗传变异的SSR分析[J].草业学报,2009,18(4):138-146.
    124.徐雁鸿,关建平,宗绪晓.豇豆种植资源SSR标记遗传多样性分析[J].作物学报,2007,33(7):1206-1209.
    125.鄢家俊,白史且,马啸,等.川西北高原野生老芒麦居群穗部形态多样性研究[J].草业学报,2007,16(6):99-106.
    126.鄢家俊,白史且,张新全,等.青藏高原东南缘老芒麦自然居群遗传多样性的SRAP和SSR分析[J].草业学报,2010,19(4):122-134.
    127.易自力,周朴华,储成才等.南荻遗传转化系统的建立及转基因植株的获得[J].高技术通讯,2001,11(4):20-24.
    128.易自力.芒属植物资源的开发与利用[J].湖南农业大学学报.2012,38(5):455-463.
    129.郁香荷,章秋平,刘威生,等.中国李种质资源形态性状和农艺性状的遗传多样性分析[J].植物遗传资源学报,2011,12(3):402-407.
    130.张崇邦,王江,王美丽.尾矿砂堆积地五节芒自然定居对土壤微生物生物量、呼吸速率及酶活性的影响[J].植物营养与肥料学报,2009a,15(2):386-394.
    131.张崇邦,王江,柯世省,等.五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J].植物生态学报,2009b,33(4):629-637.
    132.张睿鹂,贾茵,张启翔.滇北球花报春天然群体表型变异研究[J].生物多样性,2008,16(4):362-368.
    133.张向前,刘景辉,齐冰洁,等.燕麦种质资源主要农艺性状的遗传多样性分析[J].植物遗传资源学报,2010,11(2):168-174.
    134.赵香娜,岳美琪,刘洋,等.国内外甜高粱种质遗传多样性的SSR分析[J].植物遗传资源学报,2010,11(4):407-412.
    135.钟智林,蒋建雄,杨璐,等.玉米SSR引物在芒属植物遗传多样性分析的应用研究[J].现代生物医学进展,2009,9(11):2076-2078.
    136.钟智林.中国华南地区芒属植物遗传多样性的SSR分析[D].湖南:湖南农业大学,2009.
    137.朱明东,蒋建雄,肖亮,等.基于形态性状及Adh1基因序列的芒与五节芒自然杂交现象研究[J].草业学报,2012,21(3):132-137.
    138.朱学海,张艳红,宋燕春,等.基于SSR标记的谷子遗传多样性研究[J].植物遗传资源学报,2010,11(6):698-702.
    139.竺利波,顾万春,李斌.紫荆群体表型性状多样性研究[J].中国农学通报,2007,23(3):138-145.
    140.宗俊勤,陈静波,聂东阳,等.我国不同地区芒和荻种质资源抗盐性的初步评价[J].草地学报,2011,19(5):803-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700